
DESIGN OF A VARIABLE KEY LENGTH

CRYPTOGRAPHIC PROCESSOR
Bharathwaj S.V. *, Kishore L.N.**, Arulalan M R***

Department of Electronics and Communication Engineering

Sri Venkateswara College of Engineering, Sriperumbudur

ABSTRACT - Secrecy has always played a central role. Not just military applications, even day-to-day civilian

applications like Internet require data to be transmitted through a secure network. Most software based

cryptographic systems are not only easier to design & upgrade but also portable and flexible; but it has an

inherent inefficacy - the level of security is often not sufficient for a number of applications such as e-

commerce, e-mail and e-banking. Hardware implementations are by nature physically more secure as they

cannot be easily read or modified by an eavesdropper. Hardware also has another advantage: in the encryption

process the data is correlated according to an algorithm which usually performs operation on the same data, this

characteristic prevents computer techniques such as out of order execution to improve performance of the

software execution which is executed one instruction at a time; meanwhile hardware implementations tend to

be extremely parallel in nature and therefore will run many orders of magnitudes better than a software

implementation.

In this paper we propose a novel architecture for designing variable key length cryptographic processor based

on Advanced Encryption Standard that will improve security. This novel architecture will provide a security

that will increase as the cube of the present standard, which is most suited for the present industrial

requirements.

Key Words: Cryptographic processor, Advanced Encryption Standards, Reconfigurability, Variable Key length.

1 THE ADVANCED ENCRYPTION

STANDARDS:
 The Advanced Encryption Standard (AES)

specifies a NIST-approved cryptographic algorithm

that can be used to protect electronic data .The AES

algorithm is a symmetric block cipher that can

encrypt (encipher) and decrypt (decipher)

information. Encryption converts data to an

unintelligible form called cipher text; decrypting the

cipher text converts the data back into its original

form, called plaintext.

 This standard specifies the Rijndael algorithm, a

symmetric block cipher that can process data blocks

of 128 bits, using cipher keys with lengths of 128,

192, and 256 bits. The AES involves a specific set of

operations that are carried out a stipulated number of

times as determined by one of the 3 data block or key

lengths used. In this project we implement the

Rijndael algorithm using a fixed data block length of

128 bits and utilize all the 3 different key lengths to

encrypt the plain text.

 The design of Rijndael are based on the

considerations of the following [1]:

• Resistance against all known attacks

• Speed and code compactness on a wide

range of platforms

• Simplicity of design

The round transformation is composed of three

distinct invertible uniform transformations, called

layers. The suggested layers have following

functions:

• The linear mixing layer: guarantees high

diffusion over multiple rounds.

• The non-linear layer: parallel application of

S-boxes that have optimum worst-case non-

linearity properties.

• The key addition layer: A simple EXOR of

the Round Key to the intermediate State.

 Before the first round, a key addition layer is

applied. The motivation for this initial key addition is

that any layer after the last key addition in the cipher

(or before the first in the context of known-plaintext

attacks) can be simply peeled off without knowledge

of the key and therefore does not contribute to the

security of the cipher. In order to make the cipher

and its inverse more similar in structure, the linear

mixing layer of the last round is different from the

mixing layer in the other rounds.

 Thus the security offered by AES against all the

unauthorized attacks is dependable and that the

flexibility in deciding the length of the keys to be

used provides further a scope to enhance the security.

2 RECONFIGURABLE ARCHITECTURE:
 Complex system designers are very much keen

in providing a Reconfigurable architecture especially

for the applications in Wireless Communication

Systems. Reconfigurable hardware offers an

acceptable trade-off between flexibility of

programmable general-purpose processors and

performance of a dedicated hardware designs. This

characteristic qualifies reconfigurable hardware to be

used in application areas showing a fast progression

in the proliferation of standards, as it is the case for

upcoming OFDM (Orthogonal Frequency Division

Multiplexing) based WLAN standards like IEEE

802.11A/G.

 The concept of a processor with dedicated

hardware accelerators is afflicted with the low

flexibility of the accelerating units. If standards

supported by the hardware accelerator change, the

chip may no longer provide the desired acceleration.

A time consuming and therefore expensive redesign

is required. The critical nature of the problem forces

many manufacturers to use high performance

general-purpose processors, which provide the

desired flexibility regarding standard updates. The

limitation is that due to their lack of specialization

for the required tasks, they have poor component

utilization and therefore require a large chip area that

has a negative impact on the cost per chip.

 Reconfigurable processors offer a possible

solution for these problems. The processor allows an

efficient realization of the control-flow dominated

tasks, while the reconfigurable component can be

used to speed up data-flow intensive tasks. In order

to lower the inherent hardware overhead of

reconfigurable solutions, the reconfiguration

capabilities can be reduced to a special application

area, resulting in a function-specific reconfigurable

device [2].

3 SUITABILITY OF AES FOR

RECONFIGURATION
 In the present application that we propose, the

AES employs a number of variations with regards to

selecting the key length and the data block length. As

for the latter is concerned, implementation of

different block lengths is not justified from the

economical point of view, as it would increase circuit

area and cost without any considerable gain in

security. Hence we consider exploiting the variations

in key length to encrypt a block of data. This would

provide a multi-fold increase in security due to the

complete randomness of the selection of key lengths.

 Moreover reconfiguration can also be brought

about by employing different algorithms to encrypt

the data in addition to AES. The efficiency in terms

of speed and area utilization is then determined by

the operations employed in various algorithms that

are common.

For the present case we restrict to a single algorithm

that can be reconfigured to encrypt data using

alternate key lengths of either 128,192 or 256 bits, as

specified by the AES.

4 PROPOSED ARCHITECTURE

The organization of the processor is given in fig 1.

The processor is reconfigured to encrypt the

incoming data block in one of the three AES

standards (AES-128, AES-192, and AES-256) by a

random number generator. The selection of the block

length for the data is determined by the value

produced by a random number generator. This is a

Pseudo Noise (PN)-sequence generator of 3 bits

width that will decide the length of the data block as

well as the cipher key.

 This will also decide upon the number of rounds

the operations have to be carried out in the

encryption process. A PN sequence generator can be

realized using a feedback connection of a series of

flip –flops.

The output of the Pseudo Random Number generator

will select one of the entries stored in the Look-Up

Table (LUT).

 Data In

Key In

 Data out

Fig 1 : Proposed Architecture

KEY

SCHEDUL

-ER

KEY

REGISTER

SEQUENCER
&

TIMING/
CONTROL

UNIT

LOOK
UP

TABLE

STATE

REG

AES

BLOCKS

RANDOM

NUMBER
GENERATOR

HEADER

GENERATION
UNIT

The sequence of the operations to be carried out in

the algorithm is stored in the LUT in the form of

control signals. The entries in the LUT provide the

bit pattern corresponding to one of the sub-

operations to be performed in the encryption process.

As specified by the AES standard there are four

transformations to be carried out on the State array

repeatedly for a specific number of rounds. The

signals are derived from the LUT to enable the

appropriate block, delegated to perform a specific

sub-operation.

The heart of the architecture is the SEQUENCER &

TIMING CONTROL UNIT. It is designed to route

the signals obtained from the LUT to the specified

blocks corresponding to the bit pattern .The

sequencer also ensures that the data pass through the

stages in the exact order as specified by the

standards. As the ADD ROUND KEY operation

requires the cipher key from the KEY

SCHEDULER, the control unit also ensures the

coordination between the encryption blocks and the

key generator. The beginning and the end of the

encryption process is signaled by the CONTROL

UNIT. This unit also ensures that every block in the

encryption unit has successfully implemented the

transformation and that the processor is reconfigured

according to the specific key length.

 The core of encryption is carried out in the AES

BLOCK. This is composed of 4 independent units

that perform one of the operations as mentioned in

the Rijndael algorithm. The SEQUENCER activates

one of these units and correspondingly the

transformation of the state is carried out by that unit

.The ADD ROUND KEY block alone depends on

the cipher key generated by the KEY SCHEDULER.

Except for this, the other blocks operate on the

contents of the state register and generate the

intermediate cipher text. The AES BLOCK contains

MIX COLUMN, ADD KEY, BYTE SUB and

SHIFT ROWS blocks. It is interesting to infer from

the algorithm that except for the MIX COLUMN

operation the other transformation doesn’t require a

much rigorous hardware implementation [5]. The

ADD KEY, BYTE SUB and SHIFT ROWS blocks

perform a simple X-OR operation, memory fetch and

a simple reordering of bytes respectively. Hence the

number of clock cycles involved is comparatively

lesser than that taken by the MIX COLUMN unit.

Hence this unit requires a more efficient

implementation in hardware [6]. We use a novel

method here to perform the MIX COLUMN

operation.

 To maintain the synchronization, a header is

incorporated with the encrypted data to identify the

length of the cipher key. A HEADER

GENERATION unit based upon the reconfiguration

mode generates a stream of bits carrying information

about the length of the key used for encryption. At

the end of the encryption process the cipher text is

appended with this header and together sent out as

the encrypted data. The header can be further

encrypted so that the information carrying the length

of the cipher key can be camouflaged within the

header. The KEY GENERATION unit performs

the key scheduling and key expansion operation from

the initial set of Nk words where Nk =Key

length/32.The steps involved in key generation are

very similar to those used for the data encryption.

This effectively reduces the complexity involved in

the generation of the key for every round of

transformation.

 A key register holds the round key to be used by

the ADD ROUND KEY operation. A STATE

REGISTER is provided for the storage of the

intermediate states of the encrypted data at the end of

each round.

5 HEADER GENERATION UNIT:

 We have used standard architecture for the

Rijndael algorithm and implementation. But the

change here is the inclusion of reconfigurability and

an additional Header Generation Unit. The former is

explained in the previous section. It is worth

explaining the architecture of the header generation

unit.

 As mentioned earlier, the 40-bit header performs

two functions. It helps the receiver to identify the

key length used in the encryption and it also adds to

the encryption. The technique used here is called ‘N-

Marker Counter’. The number of ones in the 40bit

header is the factor that determines the key length

used to encrypt. For instance, the following table

gives the key lengths and the number of ones used to

indicate them:

Key

length

Number of

ones

128 11-17

192 21-27

256 31-38

 Table 1 : Relation Between Key Length and

Number of Markers in the Header

Bits `b0` and `b1` from the Random Number

Generator `A` and the 3 bits from the `Local Random

Number Generator` selected the row and column of

the LUTI. The value read from the LUTI is the

number of ones, which the header has to contain.

This is then mapped to a 21x40 RAM to produce the

header. Further rotation and shifting makes the

header more secure. Latches, decoders and ROM are

used to implement the above architecture the signals

b0 and b1 are input to this unit from the Random

number Generator Clock is also an input signal from

the control unit. Q0, Q1, and Q2 are the three

internally generated signals (from the Local Random

Number generator) ‘Hdr’ is the header generator.

Shown below is the RTL Schematic of the unit.

Fig 2: RTL Schematic of the Header generation

Unit

6 PSEUDO RANDOM NUMBER

GENERATOR:
As mentioned earlier, one of the three key lengths is

chosen randomly. For this purpose we need a

pseudorandom number generator. We use a type of

random number generator called ‘Linear Feedback

Shift Registers’.

 Shift register sequences are used in both

cryptography and coding theory. There is a wealth of

theory about them; stream ciphers based on shift

registers have been the workhorse of military

cryptography since the beginnings of electronics.

 A feedback shift register is made up of two parts:

a shift register and a feedback function. The shift

Register is a sequence of bits. (The length of a shift

register is figured in bits; if it is n bits long, it is

called an n-bit shift register.) Each time a bit is

needed all of the bits in the shift register are shifted 1

bit to the right. The new left-most bit is computed as

a Function of the other bits in the register. The

output of the shift Register is often the least

significant bit. The period of a Shift register is the

length of the output sequence before it starts

repeating.

 Cryptographers have liked stream ciphers made

up of shift register: They are easily implemented in

digital hardware. The simplest kind of feedback shift

register is a linear feedback shift register, or LFSR.

The feedback function simply performs the XOR of

certain bits in the register; the list of these bits is

called a tap sequence. Because of the simple

feedback sequence, a large body of mathematical

theory can be applied to analyzing LFSRs. LFSRs

are the most common type of shift registers used in

cryptography

 Fig 3: Pseudorandom Number generator

7 UNIQUE FEATURES OF THE

CRYPTOGRAPHIC PROCESSOR:
The functioning of the ‘CRYPTOGRAPHIC

PROCESSOR’ is based upon the control signals that

are encoded in a Look-Up Table (LUT). The LUT is

a ROM consisting of the information that enables the

processor to determine which of the four sub-

operations of the encryption process is slated for the

next machine cycle. An LUT can effectively speed

up the operations as the delay involved is that of

simple memory access and with the LUT located on-

chip this delay doesn’t impede the time efficiency of

the processor. Such an LUT based operation is also

simple to integrate as the sequence of sub-operations

are predefined and hence the control signals

necessary to activate them can be accessed from

LUT. This in contrast to the architectures based on

Finite State Machine (FSM) [3] has its advantage of

forestalling any unprecedented ‘state conflicts’,

which are common in the FSM, based machines due

to the asynchronous delay of the individual

components that make up the FSM.

 Implementing the AES in hardware has many

advantages over software. The most significant

achievement is the phenomenal increase in speed. In

most cases hardware designed for a specific

application can perform its task much faster than

software running on a microprocessor.

 A hardware implementation of AES can process

1.82 Gbits/sec using a 0.18 um CMOS library vs.

100 Mbits/sec for software running on a Pentium 200

Processor [4]. The speed of hardware is ideal for

encrypting/decrypting Internet traffic at the physical

layer that requires very high throughput so that

bottlenecks don’t occur. Although software provides

greater flexibility, hardware provides greater

efficiency. This efficiency extends to power

dissipation. For applications such as mobile phones,

hardware is a good choice because of the significant

power saving which translates into extended battery

life.

 A hardware implementation also allows for

physical separation of the encryption/decryption

module from the rest of the system it is being used

in. Physical separation provides greater security

because data in the encryption/decryption process

never gets seen or has the potential to be intercepted

by any other processors in the system. Thus

incorporating this processor in the physical layer of

any network allows the total isolation of the data

from the other top layers. Further any additions

towards error checking and correction can be

implemented in this layer. This has the potential of

appreciably reducing the payload in the top layers

thus once again facilitating the enhancement in speed

as well as security.

 Another striking feature of the proposed

processor is the ability to reconfigure itself for

different key lengths. Implementation using fixed

length for both the cipher key and the data block may

not utilize the flexibility inherent in AES to the

maximum. As specified by the standard AES

algorithm shall support at least one of the three key

lengths 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8

respectively). Implementations may optionally

support two or three key lengths, which may promote

the interoperability of algorithm implementations.

AES, by itself can guarantee security to a great

degree and by reconfiguring it for different key

lengths the security level achieved will be scaled

sufficiently. Specifically, by using 3 different key

lengths, the probability that the encrypted block of

data will be successfully decoded into the plaintext

will drastically get reduced to the cube of the

probability of success for decrypting a single key

length AES encrypted data block. Put in other words,

the security offered by encrypting data block using 3

different key lengths is going to surge the security

offered by single key length AES, Sf to its third

power i.e. Sf
3
. Thus, the provision offered by AES in

specifying the lengths of the cipher key directly

contributes to the enhancement of the security of the

information to be transferred.

 Additional security is imparted by the

‘CRYPTOGRAPHIC PROCESSOR’ through its

HEADER GENERATION unit .The header which is

chosen to be of 40 bit in length accomplishes the

synchronization between the encryption and

decryption process by incorporating the information

of the key length used in the encryption process. In

addition, it also performs additional encryption by

not directly revealing the key length employed as the

number and relative position of ‘1’s which are the

fundamental factors of determining the key length

information are made completely random. In this

way security is implanted in the entire block of data

that originates from the ‘CRYPTOGRAPHIC

PROCESSOR’.

8 SIMULATION RESULTS:

Table 2: UTILIZATION OF SLICES, IOBs AND

LUTs:

UNIT

SLICES

AVLB-

6912

BONDED

IOBs

AVLB-320

INPUT

LUTs

AVLB-

13824

Byte

substitution
189 332

136

Add round

key
74 128 84

Mix

columns
152 264 256

Pseudo

random

number

generator

3 5 4

Table 3: UTILIZATION OF BUFFERS:

UNIT

INPUT

BUFFERS

OUTPUT

BUFFERS

TOTAL

Byte

substitution
8 128 136

Shift rows 128 256 384

Add rnd

key
256 128 384

Mix col 128 128 256

Rand num

generator
2 2 4

Header

Generation
0 40 40

9 PROPOSED ALTERNATIVES

The ‘CRYPTOGRAPHIC PROCESSOR’ can offer a

great deal of security with its reconfigurability

architecture. The employment of different keys of

varying lengths to encrypt a block of data by itself

can enhance the shielding of sensitive data against

illegal attacks.

 Keeping the underlying architecture intact, a

number of different alternatives can bring about

further enhancements. Firstly, the

‘CRYPTOGRAPHIC PROCESSOR’ presented in

this project works on Rijndael Algorithm, which is

an accepted as the AES algorithm by the NIST

(National Institute of Standards and Technology).

The AES algorithm is a symmetric block cipher that

can encrypt and decrypt information. Moreover apart

from the Rijndael Algorithm any of the algorithms

approved by NIST can also be employed for the

encryption and decryption of data. Before the

Rijndael was recognized as the algorithm for the

AES there were many candidate algorithms such as

Two Fish, Blow Fish, Cast, Frog etc that finally lost

to Rijndael [5]. So the CRYPTOGRAPHIC

PROCESSOR can seek to implement all the above

algorithms with the reconfiguration of algorithms

done at random. This will enhance the security

further but then the implementation cost is the prime

factor in choosing the algorithms.

 A closer look into the AES algorithm will clearly

reveal that all its operations involve only simple

steps such as memory read, rotation and modulo -2

addition (XOR operation). Thus the blocks that make

up the encryption unit can be efficiently realized in

hardware using any of the architectures suggested in

various literatures. But, the MIX COLUMNS

operation is one that needs attention as it can limit

the speed of the encryption process. Once again the

complication is simplified by making use of the

mathematical background of the steps involved in

this sub-operation. MIX COLUMNS is primarily

based on Galois Field Arithmetic in which

multiplication and addition are done in GF (2
8
). Thus

by incorporating an efficient GF multiplier the time

consumption of the MIX COLUMNS operation can

be greatly reduced. Some of the GF multipliers

suggested in various literatures are Mastrovito

multiplier, Massey-Omura multiplier, Hasaan-

Bhargava multiplier etc. which try to cut down the

time and area utilized in performing a GF

multiplication. [6][7][8]

The KEY SCHEDULING operation also plays a

major part in determining the time efficiency of the

processor. A suggested alternative to the proposed

encryption unit is one in which KEY SCHEDULING

operation is carried out in parallel with the

encryption process and utilizing the key for each

round simultaneously as and when required by the

encryption block. A ‘pipeline’ mechanism can also

be implemented in which each operation of the

encryption process can be overlapped. This will

highly increase the throughput and the speed of the

processor.

REFERENCES:

[1] J. Daemen and V. Rijmen, AES Proposal:

Rijndael, AES Algorithm Submission,

 September 3, 1999

[2] R.W. Boderson N. Zhang. Architectural

Evaluation of Flexible Digital Signal Processing

forWireless Receivers. In Asilomar Conference on

Signals, Systems and Computers, vol. I, oct 2000.

[3] Xinmiao Zhang and Keshab K.Parhi -

Implementation Approaches for the Advanced

 Encryption Standard Algorithm

[4] Kuo, Henry and Ingrid Verbauwhede -

Architectural Optimization for a 1.82Gbits/sec VLSI

implementation of the AES Rijndael Algorithm.

[5] M. A. Hasan and V. K. Bhargava. Bit-serial

systolic divider and multiplier for finite fields

GF(2
m
). IEEE Transactions on Computers,

41(8):972{980, Aug 1992.

[6] J. L. Massey and J. K. Omura. Computational

method and apparatus for finite field arithmetic.

U.S. Patent Application, 1981.

[7] M. A. Hasan and V. K. Bhargava. Bit-serial

systolic divider and multiplier for finite fields

GF(2
m
). IEEE Transactions on Computers, 41(8)

:972{980, Aug 1992

[8] E. D. Mastrovito. VLSI Architectures for

Computations in Galois Fields. PhD thesis,

Link¨oping University, Dept. Electr. Eng., link

oping, Sweden, 1991.

