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ABSTRACT - Secrecy has always played a central role. Not just military applications, even day-to-day civilian 

applications like Internet require data to be transmitted through a secure network. Most software based 

cryptographic systems are not only easier to design & upgrade but also portable and flexible; but it has an 

inherent inefficacy - the level of security is often not sufficient for a number of applications such as e-

commerce, e-mail and e-banking. Hardware implementations are by nature physically more secure as they 

cannot be easily read or modified by an eavesdropper. Hardware also has another advantage: in the encryption 

process the data is correlated according to an algorithm which usually performs operation on the same data, this 

characteristic prevents computer techniques such as out of order execution to improve performance of the 

software execution which is executed one instruction at a time; meanwhile hardware implementations tend to 

be extremely parallel in nature and therefore will run many orders of magnitudes better than a software 

implementation.  

In this paper we propose a novel architecture for designing variable key length cryptographic processor based 

on Advanced Encryption Standard that will improve security. This novel architecture will provide a security 

that will increase as the cube of the present standard, which is most suited for the present industrial 

requirements.  
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1 THE ADVANCED ENCRYPTION 

STANDARDS: 
   The Advanced Encryption Standard (AES) 

specifies a NIST-approved cryptographic algorithm 

that can be used to protect electronic data .The AES 

algorithm is a symmetric block cipher that can 

encrypt (encipher) and decrypt (decipher) 

information. Encryption converts data to an 

unintelligible form called cipher text; decrypting the 

cipher text converts the data back into its original 

form, called plaintext. 

   This standard specifies the Rijndael algorithm, a 

symmetric block cipher that can process data blocks 

of 128 bits, using cipher keys with lengths of 128, 

192, and 256 bits. The AES involves a specific set of 

operations that are carried out a stipulated number of 

times as determined by one of the 3 data block or key 

lengths used. In this project we implement the 

Rijndael algorithm using a fixed data block length of 

128 bits and utilize all the 3 different key lengths to 

encrypt the plain text. 

   The design of Rijndael are based on the 

considerations of the following [1]: 

•   Resistance against all known attacks 

•   Speed and code compactness on a wide 

range of platforms 

•   Simplicity of design 

 

 

The round transformation is composed of three 

distinct invertible uniform transformations, called 

layers. The suggested layers have following 

functions:  

• The linear mixing layer: guarantees high 

diffusion over multiple rounds. 

• The non-linear layer: parallel application of 

S-boxes that have optimum worst-case non-

linearity properties. 

• The key addition layer: A simple EXOR of 

the Round Key to the intermediate State.  

      

  Before the first round, a key addition layer is 

applied. The motivation for this initial key addition is 

that any layer after the last key addition in the cipher 

(or before the first in the context of known-plaintext 

attacks) can be simply peeled off without knowledge 

of the key and therefore does not contribute to the 

security of the cipher. In order to make the cipher 

and its inverse more similar in structure, the linear 

mixing layer of the last round is different from the 

mixing layer in the other rounds. 

      Thus the security offered by AES against all the 

unauthorized attacks is dependable and that the 

flexibility in deciding the length of the keys to be 

used provides further a scope to enhance the security. 

 



2 RECONFIGURABLE ARCHITECTURE: 
       Complex system designers are very much keen 

in providing a Reconfigurable architecture especially 

for the applications in Wireless Communication 

Systems. Reconfigurable hardware offers an 

acceptable trade-off between flexibility of 

programmable general-purpose processors and 

performance of a dedicated hardware designs. This 

characteristic qualifies reconfigurable hardware to be 

used in application areas showing a fast progression 

in the proliferation of standards, as it is the case for 

upcoming OFDM (Orthogonal Frequency Division 

Multiplexing) based WLAN standards like IEEE 

802.11A/G. 

      The concept of a processor with dedicated 

hardware accelerators is afflicted with the low 

flexibility of the accelerating units. If standards 

supported by the hardware accelerator change, the 

chip may no longer provide the desired acceleration. 

A time consuming and therefore expensive redesign 

is required. The critical nature of the problem forces 

many manufacturers to use high performance 

general-purpose processors, which provide the 

desired flexibility regarding standard updates. The 

limitation is that due to their lack of specialization 

for the required tasks, they have poor component 

utilization and therefore require a large chip area that 

has a negative impact on the cost per chip. 

     Reconfigurable processors offer a possible 

solution for these problems. The processor allows an 

efficient realization of the control-flow dominated 

tasks, while the reconfigurable component can be 

used to speed up data-flow intensive tasks. In order 

to lower the inherent hardware overhead of 

reconfigurable solutions, the reconfiguration 

capabilities can be reduced to a special application 

area, resulting in a function-specific reconfigurable 

device [2]. 

 

 

3 SUITABILITY OF AES FOR 

RECONFIGURATION  
        In the present application that we propose, the 

AES employs a number of variations with regards to 

selecting the key length and the data block length. As 

for the latter is concerned, implementation of 

different block lengths is not justified from the 

economical point of view, as it would increase circuit 

area and cost without any considerable gain in 

security. Hence we consider exploiting the variations 

in key length to encrypt a block of data. This would 

provide a multi-fold increase in security due to the 

complete randomness of the selection of key lengths.  

     Moreover reconfiguration can also be brought 

about by employing different algorithms to encrypt 

the data in addition to AES. The efficiency in terms 

of speed and area utilization is then determined by 

the operations employed in various algorithms that 

are common. 

For the present case we restrict to a single algorithm 

that can be reconfigured to encrypt data using 

alternate key lengths of either 128,192 or 256 bits, as 

specified by the AES. 

 

 

4 PROPOSED ARCHITECTURE 

The organization of the processor is given in fig 1. 

The processor is reconfigured to encrypt the 

incoming data block in one of the three AES 

standards (AES-128, AES-192, and AES-256) by a 

random number generator. The selection of the block 

length for the data is determined by the value 

produced by a random number generator. This is a 

Pseudo Noise (PN)-sequence generator of 3 bits 

width that will decide the length of the data block as 

well as the cipher key. 

    This will also decide upon the number of rounds 

the operations have to be carried out in the 

encryption process. A PN sequence generator can be 

realized using a feedback connection of a series of 

flip –flops. 

The output of the Pseudo Random Number generator 

will select one of the entries stored in the Look-Up 

Table (LUT). 
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Fig 1 : Proposed Architecture 
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The sequence of the operations to be carried out in 

the algorithm is stored in the LUT in the form of 

control signals. The entries in the LUT provide the 

bit pattern corresponding to one of the sub-

operations to be performed in the encryption process. 

As specified by the AES standard there are four 

transformations to be carried out on the State array 

repeatedly for a specific number of rounds. The 

signals are derived from the LUT to enable the 

appropriate block, delegated to perform a specific 

sub-operation. 

The heart of the architecture is the SEQUENCER & 

TIMING CONTROL UNIT. It is designed to route 

the signals obtained from the LUT to the specified 

blocks corresponding to the bit pattern .The 

sequencer also ensures that the data pass through the 

stages in the exact order as specified by the 

standards. As the ADD ROUND KEY operation 

requires the cipher key from the KEY 

SCHEDULER, the control unit also ensures the 

coordination between the encryption blocks and the 

key generator. The beginning and the end of the 

encryption process is signaled by the CONTROL 

UNIT. This unit also ensures that every block in the 

encryption unit has successfully implemented the 

transformation and that the processor is reconfigured 

according to the specific key length.  

     The core of encryption is carried out in the AES 

BLOCK. This is composed of 4 independent units 

that perform one of the operations as mentioned in 

the Rijndael algorithm. The SEQUENCER activates 

one of these units and correspondingly the 

transformation of the state is carried out by that unit 

.The ADD ROUND KEY block alone depends on 

the cipher key generated by the KEY SCHEDULER. 

Except for this, the other blocks operate on the 

contents of the state register and generate the 

intermediate cipher text. The AES BLOCK contains 

MIX COLUMN, ADD KEY, BYTE SUB and 

SHIFT ROWS blocks. It is interesting to infer from 

the algorithm that except for the MIX COLUMN 

operation the other transformation doesn’t require a 

much rigorous hardware implementation [5]. The 

ADD KEY, BYTE SUB and SHIFT ROWS blocks 

perform a simple X-OR operation, memory fetch and 

a simple reordering of bytes respectively. Hence the 

number of clock cycles involved is comparatively 

lesser than that taken by the MIX COLUMN unit. 

Hence this unit requires a more efficient 

implementation in hardware [6].  We use a novel 

method here to perform the MIX COLUMN 

operation. 

    To maintain the synchronization, a header is 

incorporated with the encrypted data to identify the 

length of the cipher key. A HEADER 

GENERATION unit based upon the reconfiguration 

mode generates a stream of bits carrying information 

about the length of the key used for encryption. At 

the end of the encryption process the cipher text is 

appended with this header and together sent out as 

the encrypted data. The header can be further 

encrypted so that the information carrying the length 

of the cipher key can be camouflaged within the 

header.     The KEY GENERATION unit performs 

the key scheduling and key expansion operation from 

the initial set of Nk words where Nk =Key 

length/32.The steps involved in key generation are 

very similar to those used for the data encryption. 

This effectively reduces the complexity involved in 

the generation of the key for every round of 

transformation. 

     A key register holds the round key to be used by 

the ADD ROUND KEY operation. A STATE 

REGISTER is provided for the storage of the 

intermediate states of the encrypted data at the end of 

each round. 

 

 

5 HEADER GENERATION UNIT: 

   We have used standard architecture for the 

Rijndael algorithm and implementation. But the 

change here is the inclusion of reconfigurability and 

an additional Header Generation Unit. The former is 

explained in the previous section. It is worth 

explaining the architecture of the header generation 

unit. 

     As mentioned earlier, the 40-bit header performs 

two functions.  It helps the receiver to identify the 

key length used in the encryption and it also adds to 

the encryption.  The technique used here is called ‘N-

Marker Counter’.  The number of ones in the 40bit 

header is the factor that determines the key length 

used to encrypt.  For instance, the following table 

gives the key lengths and the number of ones used to 

indicate them: 

Key 

length 

Number of 

ones 

128 11-17 

192 21-27 

256 31-38 

  Table 1 : Relation Between Key Length and 

Number of Markers in the Header 

 

Bits `b0` and `b1` from the Random Number 

Generator `A` and the 3 bits from the `Local Random 

Number Generator` selected the row and column of 

the LUTI.  The value read from the LUTI is the 

number of ones, which the header has to contain.  

This is then mapped to a 21x40 RAM to produce the 

header.   Further rotation and shifting makes the 

header more secure.  Latches, decoders and ROM are 



used to implement the above architecture the signals 

b0 and b1 are input to this unit from the Random 

number Generator Clock is also an input signal from 

the control unit.  Q0, Q1, and Q2 are the three 

internally generated signals (from the Local Random 

Number generator) ‘Hdr’ is the header generator. 

Shown below is the RTL Schematic of the unit. 

 

 
 

 

Fig 2: RTL Schematic of the Header generation 

Unit 

 

 

6 PSEUDO RANDOM NUMBER 

GENERATOR: 
As mentioned earlier, one of the three key lengths is 

chosen randomly. For this purpose we need a 

pseudorandom number generator. We use a type of 

random number generator called ‘Linear Feedback 

Shift Registers’.   

    Shift register sequences are used in both 

cryptography and coding theory. There is a wealth of 

theory about them; stream ciphers based on shift 

registers have been the workhorse of military 

cryptography since the beginnings of electronics. 

    A feedback shift register is made up of two parts: 

a shift register and a feedback function. The shift 

Register is a sequence of bits. (The length of a shift 

register is figured in bits; if it is n bits long, it is 

called an n-bit shift register.) Each time a bit is 

needed all of the bits in the shift register are shifted 1 

bit to the right. The new left-most bit is computed as 

a Function of the other bits in the register.  The 

output of the shift Register is often the least 

significant bit. The period of a Shift register is the 

length of the output sequence before it starts 

repeating. 

     Cryptographers have liked stream ciphers made 

up of shift register: They are easily implemented in 

digital hardware. The simplest kind of feedback shift 

register is a linear feedback shift register, or LFSR. 

The feedback function simply performs the XOR of 

certain bits in the register; the list of these bits is 

called a tap sequence. Because of the simple 

feedback sequence, a large body of mathematical 

theory can be applied to analyzing LFSRs. LFSRs 

are the most common type of shift registers used in 

cryptography 

 

 
      Fig 3: Pseudorandom Number generator 

 

 

7 UNIQUE FEATURES OF THE 

CRYPTOGRAPHIC PROCESSOR: 
The functioning of the ‘CRYPTOGRAPHIC 

PROCESSOR’ is based upon the control signals that 

are encoded in a Look-Up Table (LUT). The LUT is 

a ROM consisting of the information that enables the 

processor to determine which of the four sub-

operations of the encryption process is slated for the 

next machine cycle. An LUT can effectively speed 

up the operations as the delay involved is that of 

simple memory access and with the LUT located on-

chip this delay doesn’t impede the time efficiency of 

the processor. Such an LUT based operation is also 

simple to integrate as the sequence of sub-operations 

are predefined and hence the control signals 

necessary to activate them can be accessed from 

LUT. This in contrast to the architectures based on 

Finite State Machine (FSM) [3] has its advantage of 

forestalling any unprecedented  ‘state conflicts’, 

which are common in the FSM, based machines due 

to the asynchronous delay of the individual 

components that make up the FSM. 

      Implementing the AES in hardware has many 

advantages over software. The most significant 

achievement is the phenomenal increase in speed. In 

most cases hardware designed for a specific 

application can perform its task much faster than 

software running on a microprocessor. 



       A hardware implementation of AES can process 

1.82 Gbits/sec using a 0.18 um CMOS library vs. 

100 Mbits/sec for software running on a Pentium 200 

Processor [4]. The speed of hardware is ideal for 

encrypting/decrypting Internet traffic at the physical 

layer that requires very high throughput so that 

bottlenecks don’t occur. Although software provides 

greater flexibility, hardware provides greater 

efficiency. This efficiency extends to power 

dissipation. For applications such as mobile phones, 

hardware is a good choice because of the significant 

power saving which translates into extended battery 

life.  

    A hardware implementation also allows for 

physical separation of the encryption/decryption 

module from the rest of the system it is being used 

in. Physical separation provides greater security 

because data in the encryption/decryption process 

never gets seen or has the potential to be intercepted 

by any other processors in the system. Thus 

incorporating this processor in the physical layer of 

any network allows the total isolation of the data 

from the other top layers. Further any additions 

towards error checking and correction can be 

implemented in this layer. This has the potential of 

appreciably reducing the payload in the top layers 

thus once again facilitating the enhancement in speed 

as well as security. 

      Another striking feature of the proposed 

processor is the ability to reconfigure itself for 

different key lengths. Implementation using fixed 

length for both the cipher key and the data block may 

not utilize the flexibility inherent in AES to the 

maximum. As specified by the standard AES 

algorithm shall support at least one of the three key 

lengths 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8 

respectively). Implementations may optionally 

support two or three key lengths, which may promote 

the interoperability of algorithm implementations. 

AES, by itself can guarantee security to a great 

degree and by reconfiguring it for different key 

lengths the security level achieved will be scaled 

sufficiently. Specifically, by using 3 different key 

lengths, the probability that the encrypted block of 

data will be successfully decoded into the plaintext 

will drastically get reduced to the cube of the 

probability of success for decrypting a single key 

length AES encrypted data block. Put in other words, 

the security offered by encrypting data block using 3 

different key lengths is going to surge the security 

offered by single key length AES, Sf to its third 

power i.e. Sf
3
. Thus, the provision offered by AES in 

specifying the lengths of the cipher key directly 

contributes to the enhancement of the security of the 

information to be transferred. 

        Additional security is imparted by the 

‘CRYPTOGRAPHIC PROCESSOR’ through its 

HEADER GENERATION unit .The header which is 

chosen to be of 40 bit in length accomplishes the 

synchronization between the encryption and 

decryption process by incorporating the information 

of the key length used in the encryption process. In 

addition,  it also performs additional encryption by 

not directly revealing the key length employed as the 

number and relative position of ‘1’s which are the 

fundamental factors of determining the key length 

information are made completely  random. In this 

way security is implanted in the entire block of data 

that originates from the ‘CRYPTOGRAPHIC 

PROCESSOR’. 

 

 

8 SIMULATION RESULTS: 

Table 2: UTILIZATION OF SLICES, IOBs AND 

LUTs: 

 

UNIT 

SLICES 

AVLB-

6912 

BONDED 

IOBs 

AVLB-320 

INPUT 

LUTs 

AVLB-

13824 

Byte 

substitution 
189 332 

136 

 

Add round 

key 
74 128 84 

Mix 

columns 
152 264 256 

Pseudo 

random 

number 

generator 

3 5 4  

 

Table 3: UTILIZATION OF BUFFERS: 

 

UNIT 

INPUT 

BUFFERS 

 

OUTPUT 

BUFFERS 

 

TOTAL 

Byte 

substitution 
8 128 136 

Shift rows 128 256 384 

Add rnd 

key 
256 128 384 

Mix col 128 128 256 

Rand num 

generator 
2 2 4 

Header 

Generation 
0 40 40 

 

 

 



9 PROPOSED ALTERNATIVES 

The ‘CRYPTOGRAPHIC PROCESSOR’ can offer a 

great deal of security with its reconfigurability 

architecture. The employment of different keys of 

varying lengths to encrypt a block of data by itself 

can enhance the shielding of sensitive data against 

illegal attacks. 

     Keeping the underlying architecture intact, a 

number of different alternatives can bring about 

further enhancements. Firstly, the 

‘CRYPTOGRAPHIC PROCESSOR’ presented in 

this project works on Rijndael Algorithm, which is 

an accepted as the AES algorithm by the NIST 

(National Institute of Standards and Technology). 

The AES algorithm is a symmetric block cipher that 

can encrypt and decrypt information. Moreover apart 

from the Rijndael Algorithm any of the algorithms 

approved by NIST can also be employed for the 

encryption and decryption of data. Before the 

Rijndael was recognized as the algorithm for the 

AES there were many candidate algorithms such as 

Two Fish, Blow Fish, Cast, Frog etc that finally lost 

to Rijndael [5]. So the CRYPTOGRAPHIC 

PROCESSOR can seek to implement all the above 

algorithms with the reconfiguration of algorithms 

done at random. This will enhance the security 

further but then the implementation cost is the prime 

factor in choosing the algorithms. 

      A closer look into the AES algorithm will clearly 

reveal that all its operations involve only simple 

steps such as memory read, rotation and modulo -2 

addition (XOR operation). Thus the blocks that make 

up the encryption unit can be efficiently realized in 

hardware using any of the architectures suggested in 

various literatures. But, the MIX COLUMNS 

operation is one that needs attention as it can limit 

the speed of the encryption process. Once again the 

complication is simplified by making use of the 

mathematical background of the steps involved in 

this sub-operation. MIX COLUMNS is primarily 

based on Galois Field Arithmetic in which 

multiplication and addition are done in GF (2
8
). Thus 

by incorporating an efficient GF multiplier the time 

consumption of the MIX COLUMNS operation can 

be greatly reduced. Some of the GF multipliers 

suggested in various literatures are Mastrovito 

multiplier, Massey-Omura multiplier, Hasaan-

Bhargava multiplier etc. which try to cut down the 

time and area utilized in performing a GF 

multiplication. [6][7][8] 

The KEY SCHEDULING operation also plays a 

major part in determining the time efficiency of the 

processor. A suggested alternative to the proposed 

encryption unit is one in which KEY SCHEDULING 

operation is carried out in parallel with the 

encryption process and utilizing the key for each 

round simultaneously as and when required by the 

encryption block. A ‘pipeline’ mechanism can also 

be implemented in which each operation of the 

encryption process can be overlapped. This will 

highly increase the throughput and the speed of the 

processor. 
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