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Abstract: The contribution deals with the optimization of the EEG off-line, single-trial movement classification by 
means of parameterization tuning. The data we classify represent manifestations of the simple movements performed 
by the right shoulder (proximal movement) and right index finger (distal movement) of experimental subjects. We 
implemented several approaches to the EEG parameterization and compared results in order to increase the recognition 
score. The results are compared with the results from our earlier works and will form a strong basis for the coming 
experiments with a new EEG database. The target of our experiments is the implementation of the Brain Computer 
Interface machine recognizing movements performed on one side of the body using the non-invasive EEG scanning. 
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1   Introduction 
The contribution deals with the optimization of the EEG 
movement classification by means of parameterization 
tuning. 

The data we classify represent manifestations of the 
simple movements performed by the right shoulder 
(proximal movement) and right index finger (distal 
movement) of the experimental subject. The 
classification of the real movements performed on one 
side of the body is in general a tougher task than  
common problem of right/left hand movement 
classification [7][8], because the classifier cannot rely on 
the power differences between contra- and ypsi-lateral 
sensomotoric areas.  

We implemented several approaches to the EEG 
parameterization and compared results in order to 
increase the recognition score. The results are compared 
with the results from our earlier works and form a strong 
basis for the coming experiments with a new EEG 
database. Our work was aimed to increase the 
classification score as much as possible and thus to 
overcome the ubiquitous interpersonal differences in the 
classification score [11]. 

The target of our experiments is the implementation 
of the Brain Computer Interface machine recognizing 
movements performed on one side of the body using the 
non-invasive EEG scanning. 

 
2   EEG Database 
 The data we use for our experiments were originally 
recorded for EEG analysis presented in [1]. 

Seven healthy subjects took part in the experiment, 
all of them gave written consent prior to the recording. 
Subjects were sitting in a comfortable chair inside a dim 

shielded room and were instructed to voluntarily perform 
movements at irregular intervals (12-15 sec). This is an 
advantage of the presented study – it is quite common 
that some perceptual clues are presented to the 
experimental subjects during EEG recording which can 
positively influence the resulting system and 
classification score, as well [12]. All the subjects were 
right-handed. 

Two movements were performed: the proximal and 
distal ones [1]: 

Proximal movement: brisk elevation of the right 
acromion by about 2cm. 

Distal movement: brisk flexion of the right index 
finger at the proximal metacarpophalangeal joint. 

Each subject had an opportunity to practice 
movements prior to the recording. 

The data was continuously recorded from 59 scalp 
positions distributed over both hemispheres, the sample 
rate was 500Hz. Data were filtered into 0-100Hz band. 
Surface EMG and EOG were recorded as well.  The 
EEG was recorded at the surface of the scalp. 

In the subsequent processing the EEG with any 
artifacts was removed and the data were filtered with a 
surface Laplacian operator employing 8 neighboring 
electrodes [5].  Then the data were divided into 10sec 
long epochs with the movement onset in the 5th second 
(time instant 5.00 sec).  

The detailed recorded EEG analysis is to be found in 
[1]. There are three major phenomena accompanying the 
movement: 

µ/β event-related desynchronization (µ/βERD) – 
the fall of the power in µ (5-13 Hz)  and β (13-40 Hz) 
band accompanying the movement 



β event-related synchronization (βERS) – the 
power increase which comes approx. one second after 
the movement in β band. 

 
3 Classifier Design 
The used classification system is a universal one, the 
same that was used in our other EEG BCI works 
[2],[3],[4],[14],and [16]. 

The core of the system is built up on the Hidden 
Markov Toolkit originally developed by Professor 
Young [15]. A complete framework for EEG processing 
implemented in Matlab, C++ and shell was built around 
this tool. The three major parts were added to the whole 
system: 

parameterization system written in Matlab which is 
used instead of the standard HTK Hcode utility. All the 
below mentioned parameterizations were implemented; 
the input to this block is the raw EEG, the output is 
parameterized one in the HTK format. 

randomization procedure and supporting C++ 
utilities is responsible for the mitigation of the effect of 
the small training and testing set (we have only approx. 
100 realizations per movement, person and electrode). 
Each classification experiment was run for 30 times with 
different (and random) division of EEG realizations 
between the disjunctive training (60% of realizations) 
and testing (40% of realizations) sets. This helps us to 
get reliable results independent on the concrete selected 
training and testing EEG realizations. [4], [2]. 

 

 
Fig. 1: Model architecture and its correspondence to the 
real EEG shape. The first and last emitting state model 
the silence before and after the movement. The second 
emitting state holds the µ/βERD characteristics and the 
third one is related to βERS. 

 
classification scores evaluation procedure module 

collected the 30 results of independent runs and 

computed means and standard deviations of the 
classification scores. Only those aggregated numbers 
were used for comparison of the parameterizations. 
 
4   Classification 

Hidden Markov model classifier is the core of our 
system [3],[16],[17]. The used models have the 
following parameters: 

4 emitting states modelling the four significant 
phases of movement-related EEG  [1],[16] (silence, 
desynchronization, post-movement synchronization, 
silence) 

left-to-right, no skips architecture which models 
the sequence of the phases (see Fig. 1). 

The whole classification process is based on the 
conditional likelihood P(λ|R) computation, where λ is 
the selected model (distal or proximal) and R is the 
parameterized movement realization. See Fig. 2 for the 
flowchart of the whole classification. 

 

  
Fig. 2: The recorded EEG is analyzed, the epochs with 
artifacts are discarded. Then the surface filtration follows 
to increase the SNR of the signal. The signal is 
parameterized, the appropriate model is selected and the 
EEG is classified – information is assigned to the 
realization on the base of the selected distal or proximal 
models. 
 

The selected architecture have the following 
advantages: 

ability to model the EEG: we are able to generate 
synthetic realizations of the EEG for tests of various 
algorithms. 

physiological compatibility: the selected 4-state 
architecture matches the physiological process, it is even 
possible to segment the EEG with the help of the Hidden 
Markov model classifier (on the base of the trained 
transition matrices) – see [3], [4]. 

ease of the interpretation – it is quite simple to 
interpret the contents of the trained model. This is a big 
advantage compared to e.g. some kinds of neural 
networks, where the implementation of the trained 
system is not so straightforward. 



utilization of the context information – the system 
uses the temporary context of the EEG to improve the 
classification score. 

 
 

5   Parameterization 
Various parameterizations were analyzed and the results 
were compared with the baseline results published in [3]. 
We tested the following approaches: 

linear prediction coefficients: AR model of the 
sixth order was used. The order was estimated with the 
help of appropriate criterions (AIC, FPE, SBC, HQ and 
PHI were compared – [2],[18]) and is in a compliance 
with other findings [8]. The parameter vector consisted 
of 6 LPC coefficients. 

linear prediction coefficients + delta: delta 
coefficients (the first difference) were added to the 
parameterization vector. The delta coefficients were 
computed as the first derivations of the LPC time course 
polynomial approximation [2]. The parameter vector 
here was composed of 6 LPC + 6 deltas. 

reflection coefficients: coefficients of the lattice 
modeling filter computed with the help of the Levinson 
recursion.  The parameter vector contained 6 reflection 
coefficients. 

FFT parameterization: the magnitudes of the 40 
spectral lines (1-41 Hz) were used for parameterization 
[3]. The parameter vector had 40 coefficients, no 
windowing was applied. 

The reached classification scores for all these 
parameterization were compared and the appropriate 
conclusions drawn. 

Further, we tried to change some architecture 
parameters in order to better model the process: 

tying of the first and the last emitting HMM 
states: the 1st and 4th HMM state models the silence 
before and after the movement. Their tying was seen as a 
possible way how to further improve the classification 
score. 

combination of the electrodes: the input parameter 
vector was combined out of three electrodes lying over 
the sensomotoric cortex to combine all the parameters 
into one stream. 

As the input to the parametrizator we used EEG 
recorded from electrodes no. 25, 26 and 27 which were 
positioned over the contralateral sensomotoric cortex – 
approximate positions  C5 (el. 25), C3 (el. 26) and C1 
(el. 27) according to 10-20 system [6]. According to our 
previous research [3] we used 1 second long window 
with 200msec time resolution for parameters calculation 
(500 samples window length, 100 samples window step, 
400 samples overlap at fs = 500Hz). 

 
 

6   Results 
With the presented settings and for all the persons and 
parameterizations we executed classification 
experiments and process and gather the results with help 
of the developed tools.  The classification was computed 
for electrodes 25 (≈C5), 26 (≈C3) and 27 (≈C1). For 
each of the persons, the electrode with the highest 
classification score was chosen (“the best electrode” in 
the next text). 

Summary of the best reached classification results is 
presented in Table 1. Tables 2, 3 and 4 present the best 
results of classification with FFT, LPC and LPC+delta 
parameterizations. 

The results shows clear trends: 
1. it is obvious that in the future one can consider 

only two parameterizations (from the described): 
LPC+delta and FFT. 

2. adding delta coefficients to the LPC stream 
improved the classification for all persons but no. 7 
(slight alteration of results) and 3 (proximal score 
increased, distal decreased). 

3. we do not present the reflection coefficients 
parameterization classification results because they were 
not good. The parameterization simply did not work as 
expected. 

4. tying of the first and the last state. Obviously, the 
silence period after the movement exhibits different 
properties than the silence before the movement. 

5. the classification results show large variability 
across the electrodes used for classification. For majority 
of the persons is the best electrode classification score 
rather different from the scores at the remaining 
electrodes (difference for 10% ÷ 45%).  

6. the combination of all electrodes into one stream 
was not helpful as well. This is the result of the 
differences in classification scores between electrodes. If 
one combines all the electrodes into one stream, the 
resulting interesting EEG components from one 
electrode will be buried into the “noise” (spontaneous 
activity, etc.) recorded at the remaining electrodes. 
 
7   Conclusion 
Apparently, we were able to further increase the 
recognition score compared to the values published in 
[3], [16], and [17].  

In addition to classical works – e.g. [8],[19] - we 
tested LPC+delta and reflective parameterizations. The 
delta coefficients resulted in the increase of the 
recognition score. We classified EEG accompanying 
movement done only on one side of the body, which is a 
more difficult task than left-right hand movement 
classification [7],[8]  or mental states discrimination [10] 
commonly used in literature.  



The most common best electrode (no. 27) is located 
approximately over the part of the sensomotoric cortex 
responsible for fingers and shoulder control. This 
indicates that the subtle differences in EEG signal 
accompanying both movements could be used for a real 
computer control. 

Further, it is clear that even the optimal 
parameterization might be different for different persons. 
The classification of the EEG signal might be further 
improved with the optimal individual parameterization 
selection in addition to common optimal frequency band 
settings [10]. 
 

person 
no. ptype electrode

score 
prox. 

score 
dist. 

1 LPC+∆ 27 86% 89%
2 FFT 25 62% 70%
3 FFT 27 71% 68%
4 FFT 27 71% 99%
5 LPC+∆ 27 72% 72%
6 LPC+∆ 27 89% 90%
7 FFT 26 68% 76%

Table 1: The resulting classification score – the best 
results rounded to the two significant digits. Column 
ptype holds the best parameterization which reaches the 
score, electrode is the electrode which EEG reaches the 
best results and proximal/distal scores are classification 
scores of both movements. 
 

person 
no. electrode 

score 
prox. 

score 
dist. 

1 27 53% 81%
2 25 59% 83%
3 25 71% 68%
4 27 71% 99%
5 26 69% 70%
6 25 70% 99%
7 26 68% 76%

Table 2: The classification score reached with the help 
of the FFT parameterization.  The best electrode used for 
the classification varies  across all electrodes. 
 

person 
no. electrode 

score 
prox. 

score 
dist. 

1 27 67% 83%
2 27 56% 65%
3 26 52% 61%
4 27 61% 64%
5 27 61% 70%
6 27 85% 85%
7 27 73% 66%

Table 3: The classification results reached with pure 
LPC coefficients without deltas. Mention the electrode 
stability. 
 

 
 
 

person 
no. electrode 

score 
prox. 

score 
dist. 

1 27 86% 89%
2 27 66% 67%
3 26 55% 55%
4 27 78% 64%
5 25 72% 72%
6 27 89% 90%
7 27 65% 74%

Table 4: The classification score reached with the help 
of the LPC+∆ parameterization. The best electrode is 
nearly always the same. 

 
The next step in our work is to apply the best 

parameterizations on a new EEG database we recorded 
recently and results published in [13] to test the limits of 
this approach. Our work is targeted to the development 
of a prototype BCI device. 
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