Design of feedback dissipativity for transportation system
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Abstract : - This paper studies the traffic flow controlled by traffic lights on a single intersection.
Firstly, a discrete-time model that describes the evolution of queue length will be given. Secondly,
we show that, by regarding the flow entry of vehicles as the energy stored in the system, the
dissipativity concept can be applied. As a result, we derive a feedback control law which renders
our system dissipative, i.e. it dissipates the flow of vehicles in the intersection. Finally, an example

is worked out.
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1 Introduction

As the number of vehicles and the need for trans-
portation grow, cities around the world face serious
road traffic congestion problems. Costs include lost
work and leisure time, increased fuel consumption,
air pollution, health problems.... In general, there
exist different methods to tackle the traffic conges-
tion problem. The most effective measures in the
battle against traffic congestion seem to be a selec-
tive construction of new roads and a better control
of traffic through traffic management. Traffic light
control can be used to augment the flow of traffic in
urban environments by providing a smooth circula-
tion of the traffic or to regulate the access to high-
ways or main roads. The purpose of traffic lights is
to provide efficient interaction of vehicles within the
intersection. The goals of safety and efficiency are
met when the delay for each vehicle and the number
of accidents are kept to a minimum. We are inter-
ested in investigating the influence of better traf-
fic light control policies on controlling or preventing
traffic jams in urban environments. Currently, most
of the control methodology is based on rigidly trans-
ferring the access right from lane to lane in a pre-
programmed periodic cyclic thythm. This approach
is easy to implement but may be not efficient and
flexible because it does not take into account traffic
changes.
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2 System description and modelling

An intersection is defined as a node and a segment
that connects two nodes as a link (a vector imposed
with a direction). A two-way street is represented
by two links. Each node is operated by a traffic
signal that can be assigned a 2-phase, 3-phase or 4-
phase [9] operating system. At an intersection, the
traffic signal cycle times are divided into different
phases. Each phase is allotted a certain amount of
time (green time) during which a group of traffic
lanes is allowed to proceed. The movement may in-
clude vehicles going straight (through), turning left,
turning right, or a combination of them.

2.1 Systems description

We consider an isolated two-phase intersection with
controllable traffic lights on each corner (Figure 1).
It is supposed that there are two traffic flows of ve-
hicles to be served in the intersection. Hence, move-
ments 1 and 2 in each phase have the same charac-
teristics. Therefore, we are interested only on one
movement of flow in each phase. The same trans-
formation will be considered for movements 3 and
4. Traffic signal control separates traffic streams in
an intersection by allocating different time intervals
for conflicting traffic movements. For each move-
ment the signals are given cyclically in the following
order: Red, Green and Yellow. A green interval is
followed by a yellow change interval indicating that
a vehicle must stop if it can done safety.
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Fig. 1: Four-leg intersection with two-phase signal
control.

To be able to present the model, a certain number
of definitions are necessary:

Effective green time: as a vehicle approaches an
intersection displaying a red signal, the driver decel-
erates, and stops either at the stop line or at the end
of a queue (Figure 2). When the signal turns green,
the driver accelerates until the vehicle reaches its de-
sired or maximum possible speed. It is usually [2],
[10] assumed that after startup lost time the satura-
tion flow rate remains constant until the beginning
of the yellow change interval. The effective green
time is defined by:

ge=g+y—-l=g+y—(L1+1) (1)

where the lost time I is the sum of startup lost time
11 and clearance lost time lg, y represents the inter-
val of yellow light.
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Fig. 2: Effective green time.

Saturation flow rate: the discharge process of
the vehicles in the queue is controlled by the reac-
tion times and desired acceleration rates of drivers
as well as the acceleration rates of vehicles ahead.
At the beginning of the green interval the discharge
rate at stop lane starts to increase. As the queuing
vehicles have reached a constant speed at stop line
the discharge rate has reached its maximum, called
the saturation flow rate. More precisely, the satura-
tion flow rate is defined as the maximum number of
vehicles being able to use the corridor without inter-
ruption during the effective time of the green light
ge. The saturation flow rate may vary from cycle
to cycle, but an average value can be used for given
conditions.

Oversaturated conditions:
ditions is defined when arrival rate exceeds capacity
in the intersection. A phase is saturated when a ve-
hicle at least is constrained to await more than one
cycle to cross the crossroads. The crossroads is sat-
urated when at least one of its phases is saturated.
Formally, the number of arrivals E(k) during a cycle
k € N is defined by the following equation:

E(k) = E(ke) — E((k — 1)c) 2)

Where ¢ defined as length cycle and E(kc) defined
as the number of the arrivals at the end of the cycle.
The departure rate or saturation flow rate s during
the effective time of the green light ge is defined by

D(k) = s ge (3)

where D(k) is the number of departures at the end
of the effective green time g.. Figure 3 displays
a case where demand flow rate instantaneously in-
creases above the capacity at the beginning of a cy-
cle. The capacity curve C(t) is not the saw-toothed
departure curve D(t), so that the area between E(t)
and C(t) curves is the overflow delay [4]. The fol-
lowing inequality summarizes the definition of the
oversaturation condition:

E(k) > D(k) (4)
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Fig. 3: Model for overflow delay.

2.2 Modelling

The conventional delay formula can be modified into
a state-dependent form called state space equations.
An optimal control methodology can then be applied
to determine optimal timing from the constructed
state space of an intersection. The proposed model is
formulated as a discrete type operation. [1], [3], [4],
[5], [6] and [7] constructed similar models for oversat-
uration control. But their models are all continuous
ones. However, continuous models are limited in the
sense that the switch-over point does not necessar-
ily occur at the end of a cycle, and the termination

the oversaturated con-



of the oversaturated period occur only at the end of
the final cycle. On the other hand, the switch-over
points determined by a discrete model occur exactly
at the termination of a cycle. Discrete operation
provides a smooth, regular, and ordered transfer of
control. Calculating queue is more reliable. In the
case of a cross intersection with a two-phase signal
(see Figure 1), during the oversaturated period the
queue and dispersion situation is as indicated in Fig-
ure 3. Without loss of generality, it is assumed herein
that the cumulative demand on all approaches is a
linear asymptotic function of time and that the cu-
mulative output curves do not intersect the cumu-
lative input curves for any of the approaches. This
fact implies that no queue becomes negative or zero
before the end of the oversaturated period. Figure
4 shows both situations of queue during oversatu-
ration and the duality between the two phases. To
keep this duality, it is necessary that the queue rep-
resented during the effective green time terminates
at a certain cycle state k.
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Fig. 4: Queue of a four-leg intersection with two-
phase control.

let 21 (k) be a queue length of approach 1 when the
effective green time ge1 (k) = ¢ —ge2(k) terminates
at a certain cycle state k, according to Figure 4 the
relation of the queue lengths between cycle k and
k 4 1 can be represented by the following equation:

z1(k + 1) = z1(k) + E1(k) — D1(k) (5)

where E1(k) = q1ge2(k — 1) + q1 (¢ — ge2(k))
represents the number of arrivals at the end of ¢ —
ge2(k). D1(k) = s1(c — ge2(k)) represents the
number of departures at the end of ¢ — gea2(k).
Hence, equation (5) becomes:

x1(k+ 1) =x1(k) + q1 ge2(k — 1) (6)
+ q1 (¢ — ge2(k)) — 81 (c — ge2(k))

Similarly, let x2(k) be a queue length of approach
2 when the effective green time gez(k) terminates

at a certain cycle state k. Then the relation of the
queue lengths between states k and k + 1 can be
represented by the following equations:

x2(k + 1) = x2(k) + E2(k) — D2(k) (7)

where Fq(k) = g2c and Da(k) = s2 ge2(k) repre-
sent the number of arrivals and the number of depar-
tures during cycle k respectively. Hence, equation
(7) takes the form:

ZIJz(k + 1) = .’1}2(’6) + g2C — S2 ge2(k) (8)

Let (k) € R2 be the state vector defined as x(k) =
(w1 (K), mz(k))t, and €(k) € R? be the control vec-
tor defined by €(k) = (ge2(k), ge2(k — 1))t. Then
we can gather the two equations (6) and (8) in the
following matrix form:

a(k+1) = Az(k) + Be(k) +C  (9)

where *) *)
1 k ge2 k
k == k =
z(k) <m2(k:)> (k) <ge2(k - 1))
(10 _(s1—aq1 @1
a=(o ) p= ("2 9)
C = ((ql - 31) C>
qz2c
Note that B is nonsingular for all g1, s1, s2, and C

is constant vector. With this in mind, system (9)
can be rewritten as

z(k + 1) = Az(k) + B(e(k) + B~'C) (10)

with the preliminarily control u(k) = e(k)+B~'C,
then system (9) takes the simple form

z(k 4+ 1) = Ax(k) + Bu(k) (11)

Notice that it makes no sense to speak of negative
queue. Hence, if &g describes queue at time kK = 0
then x(k) > 0 for all k € N. Therefore, the system
(11) has physical meaning only if  belongs to the
region of admissible states 25 = {x € R™/x > 0}.

3 Dissipativity approach

This section focus on the study of the energy of sys-
tems in terms of their dissipativity property. Dissi-
pativity and its particular case of passivity were born
from the observation of physical systems behavior.
The energy concept is very useful in the analysis of
physical systems. Many systems can be studied from
its sources and of losses of energy. Having the idea of
the gain and the loss of energy, intuitively, a dissipa-
tive system is such a system which cannot store all



energy that has been given. A dissipative systems
dissipate energy and does not produce it, that is,
any increase of stored energy is only due to external
sources. The definition of dissipative system based
on the existence of three energy like functions: stor-
age function (representing the energy stored by the
system), a supply function (the energy injected to
the system from an external source, which restricts
the manner in which the system absorbs energy) and
the dissipation function (representing the total en-
ergy dissipated by the system in some time interval).
Depending upon the form of the supply function, dif-
ferent kinds of dissipativity are obtained; passivity
is the one which attracted more attention. The one
who defined dissipativity concepts by means of the
notion of the storage, the supply rate and the dissi-
pation rate function was Willems in the early 70’s
[11]and [12].

3.1 Feedback dissipativity through the dis-
sipativity equality

We begin by introducing a number of basic defini-

tions and concepts related to the notions of dissipa-

tivity and passivity. Let a linear discrete-time sys-

tem of the form

z(k + 1) = Ax(k) + Bu(k) (12)
y(k) = h(z(k), u(k)), (13)
where € € R™, v € R™ and y € RP. A and

B are appropriately dimensioned matrices. Assume
that a function s(-) defined on RP x R™ is given.
This function is called the supply rate. The following
definitions are taken from [8].

Definition 1 A dynamic system (12)-(13) with sup-
ply rate s(+) is said to be dissipative if there ex-

ists a nonnegative function V. : R™ — R, with

V' (0) = 0, called the storage function and a contin-

uous function ¢ : R™ X R™ — R, with ¢(+,u)

positive for each uw € R™, regarded as the dissipa-

tion rate function, such that for all u € R™ and all

k eN.

V(z(k +1)) — V(x(k)) = s(y(k), u(k))
— ¢(x(k), u(k)) (14)
Definition 2 A system of the form (12)-(13) is

said to be passive if it is dissipative whit s = ytu.

Definition 3 Consider the system (12)-(13) and
two scalar functions V() and s(y,v) as a storage
function and a supply function, respectively. The

system is said to be feedback dissipative with the func-
tions V and s , if there exists a reqular static state
feedback control law of the form uw = a(x,v), with v
as the new input, such that the feedback transformed
system is dissipative with respect to v.

Definition 4 A system of the form (12)-(13) is
said to be feedback passive if it is feedback dissipa-
tive whit s = yv.

The existence of the feedback control law of the form
u = a(x, v) for with the system is rendered dissipa-
tive must be assessed from the existence of solutions,
for the control input u, of the following equation:

V(z(k +1)) — V(z(k)) = s(h(z(k), u(k)), v(k))

— ¢(x(k), u(k)) (15)

The work of (Navarro-Lopez et al) ensure the suffi-
cient conditions under which feedback dissipativity
is possible [8].

3.2 Application of passifying methodology
to queues evolution model

The feedback dissipativity scheme defined in preced-
ing section will be applied to the passivation of our
system (11). Indeed, the intersection is regarded as
being a system which receives the external energy.
This energy is exactly the flow of the vehicles which
feeds our system. The increase of the flow generates
an increase on queues, therefore a dissipation of en-
ergy (external flow) implies a minimization on the
level of the queues. The energy associated to the
system will be used as storage function. The feed-
back dissipativity methodology is then applied with
s = yv and V = xtx. The output of the system is
considered to be y = x. First of all, a function ¢
must be proposed. This function will be chosen in
order to collect the positive terms in V (x(k + 1)).
The control which passifies the system will be then
obtained from the equation:

V(x(k+1))—=V(z(k)) = y(k)v(k)—p(x(k), u(k))

(16)
with v the new control input. Hence, for our system,
equation (15) becomes,

o(xz,u) = xtv + xtx — (& + Bu)!(xz + Bu)
which implies
o(z,u) = v — 22*Bu — v*B*Bu (17)

Consequently, a possibility for ¢ is the following one
¢(xz,u) = utB*Bu +ztQx, where Q is positive



definite matrix. Then, from the equation (17) the
control which passifies the system will be derived as
follow:

u(k) = B (o(k) — Qa(k) (19

It is important to note that for v = 0, equation (15)
yields

V(z(k+1)) — V(x(k)) = —¢(z(k), a(z,0))
(19)
Since V' and ¢ are positive definite, it follows that
the feedback control a(x,0) stabilizes the system.
Hence, to achieve this fact with our proposed feed-
back dissipativity, the matrix @ must be chosen such
that the matrix I — @ be a stable one. To do this
observe that for all matrix M of order n with eigen-
values A;, it spectral radius o (M) = max; |\
verifies
n
o(M) = max |5
Hence, it suffice to choose @ such that

n
m;jix Zl |6’L.7 — ngl <1
J:

where ;5 is the kronecker symbol. Summarizing the
above results give the following Proposition.

Proposition 1 Consider the transportation system
(11). Let V. = xtxz and s = yv be the storage
function and a supply function respectively. Then
the feedback control u(k) = B_l(%v(k) —Qx(k)),
with Q being positive definite such that

n
m?x Zl |6'L.7 — le <1
J:

renders the feedback transformed system passive with
v as the new input.

The following simulations illustrate the application
of the feedback passitivity to our system. The first
simulation run represents the dynamic of the queue
length when v(k) = 0. We can immediately ob-
serve that the feedback control law u = —B~1Qx
stabilizes the system.
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Fig. 5: Stability of the queue evolution system

The second simulation run represents the evolution
of the energy (the norm of the queue length) V' =
xtx stored into the system. We can observe that
the application of feedback passitivity renders our
system dissipative. In other word, the control makes
the queue length less than a certain level. Therefore,
the system can’t be oversaturated.
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Fig. 6: Energy dissipation of queue evolution system

We notice that the application of the dissipation

strategy through the feedback control dissipation makes

the system stable and it dissipates the energy stored
into the system. The only requirement to apply this
strategy is the choice of matrix @ such that the con-
dition given in Proposition 1 is verified.

4 Conclusion

In this paper, we have proposed a modelling which
manages queues length in an insolated intersection.
We have introduced the concept of dissipativity by
considering the flow entry of vehicles as being the en-
ergy stored in the system. Through the dissipativity
equality we found a feedback control law that ren-



derers the system dissipative, i.e., the system can’t
be oversaturated.
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