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Abstract: - Several efforts have been focused on the improvement of the quality of service of air transportation in
order to face the increasing of the demand. Consequently, in the latest decade, a growing body of advances
concerning several aspects of this transportation mode has appeared in the operation research literature. At the
best of our knowledge Stochastic Petri Nets (SPN) have not been yet used for the graphical description, the
analysis of flows and the dynamic control of the ground holding problem. Due to the characteristics of the air
transportation systems, this paper shows that the Controlled Stochastic Petri Net (CSPN) model of such a system
is very efficient.

Indeed, the presented CSPN model aims at minimizing simultaneously the aitborne and the ground delays,
taking into consideration the probabilistic nature of the air traffic. As it is shown, this mathematical tool is very
interesting for the real-time scheduling of the plane landing or flight at the airport.

The CSPN model of an elementary landing system is described and defined and this paper shows that it has
interesting properties. It illustrates the interest of such a tool with a numerical application in which it analyses the
optimal solution.
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1. Introduction

Several authors deal with issues of the air traffic
planning in order to provide more efficient usage of
the resources. Indeed, in the last decade, the
competition becomes harder and the air traffic flow is
very dense. Consequently, a growing body of advances
concerning several aspects of the air transportation has
appeared in the operation research literature. Most of
the approaches aim at fulfilling the need for a better
management of the air traffic that leads to minimize
the traffic congestion at airports. The advantages of this
are numerous, such as reducing airborne delays and the
air pollution as well as increasing the safety level. These
approaches are based on optimization techniques and
on simulation approaches.

Due to the tremendous size and the complexity of
air transportation systems, diverse models of these
systems have been proposed in the literature [1] and
[2]. Indeed, the air transportation industry is very rich
in terms of problems, which can be modeled and
solved using mathematical techniques. This paper
focuses on the landing and on the flightscheduling
problem based on the wellknown ground holding

policy (GHP). In the literature, the modeling and
the solutions of this problem are mainly based on
a deterministic approach. However, the plane
landing at the airport involves considerable
uncertainty about weather conditions and plane
safety. Thus, it is interesting to introduce a
stochastic approach for modeling such a problem.

However, at the best of our knowledge, except
the analysis of the number of the relief strips,
stochastic Petri Nets (SPN) have not been yet used
for the graphical description, the analysis and the
real-time control of air traffic flows.

In this paper, the CSPN model aims at real-
time optimizing delays, taking into consideration
the airborne safety aspect and the quality of
service. The use of this model allows to tackle the
well-known problem of the GHP. The study is
limited to one destination airport, which has to
choose which flight to delay, in order to face the
growing down of its capacity. As it is shown in the
following, this mathematical tool is useful to take
a decision at the airport when a conflict situation
occurs about plane landing or flight. This paper



illustrates the interest of such a tool with a numerical
application.

This paper is organized as follows. In the second
section, a brief description of the CSPN theory is given.
The third section introduces the dealt traffic flow.
Afterward, the CSPN model is shown and the
simulation results are presented in the fourth section.
Finally, a conclusion and prospects are given.

2. CSPN

The CSPN are widely used for the design of stochastic
discrete event systems, especially for the study of
manufacturing systems, telecommunication networks
and computer systems [4]. They offer graphical and
mathematical description of the system. This enables us
to evaluate the performance and to compute the
optimal control [5]. Thus they are very useful because
they afford an appreciable aid to the designer, who
attempts to predict the system behavior at the design
stage rather than at the implementation one. This
mathematical tool can be applied in the field of the
transportation science, as it has been already shown in
several recent works [6]. This paper introduces the
CSPN-modeling of a particular problem of air traffic
flow management.

More precisely the Petri Net (PN) allows modeling
of sequential and concurrent actions including
phenomena such as contention and synchronization.
The additional structure in the Stochastic PN (SPN) [5]
allows the extraction of additional performance
information about the modeled system. Indeed, the
reachability graph of the Continuous Time SPN
(CTSPN) with exponentially distributed delays is
isomorphic to homogeneous Continuous Time
Markov Chain (CTMC) and this opens up an area of
analysis for performance measures such as average
delay and throughput. A Markov Reward Process
(MRP) is obtained from the Stochastic Reward Nets
(SRN) model, where a realvalued reward rate is
associated to each marking of the reachability graph.
This MRP allows an evaluation of the performances of
the system. The SRN is a Controlled SPN (CSPN),
when the isomorphic MRP is subject to control and a
finite set of selections can be done.

In the following, we recall the basic Petri net
terminology and notations.

A Petri net (cf. Fig. 1) is a five-tuple N=(P,T,1,0,M,)
where :

e P={p;,py....p,} is a finite set of places(represented
with circles),

o  T={t,t;,...,t,} is a finite set of transitions
(represented with line segments),

e [:is an input function such that I(p,t) is the
weight of the arc directed from place p; to
transition t;,

e O: is an output function such that O(p,t) is
the weight of the arc directed from transition
t; to place p;,

e  M,; is an initial marking that associates zero or
more tokens to each place.

The state of a Petri net is defined by the
number of tokens in each place and is represented
by a vector M=[M(p)),...,M(p,)], called the marking
vector of the Petri net, where M(p,) is the number
of tokens in place p.. A transition ;€ T is said to be
enabled if and only if M(p)2I(p,,t), with p€P. An
enabled transition may fire. When transition ¢
fires, I(p,t) tokens are removed from each input
place p; of t;, and O(p,,t) tokens are added to each
output place p; of t. The dynamic behavior of the
modeled system is described by the transitions
firing mechanism. If the transition ¢ is fired then
the marking Mo(p;) results in a new marking M(p;)
such that M(p) = Mq(p) + O(p,,t) - I(p,,t).

1
Pi 4 P2 M,;=[0,1]
Fig. 1 Petri net

To obtain the performance of the dealt air
transport system, the SPN model required to be
solved analytically. The general procedure to solve
an SPN model includes [7?]:

1-  Generating the reachabilitry graph from SPN
model,

2- Transforming the reachability graph into
Markov model

3. Solving the Markov model

Let t designate the time. We use the following
theoretical ~ definitions to model the air
transportation system. Let Z ={Z(¢),t > 0}denote
a CTMC with finite state space Q. Define the
infinitesimal generator matrix Q:lq,_/_J consisting

of the direct transition rates from state i/ to j and

the diagonal entries defined as: ¢, =— > ¢, . A
Jo#i

homogeneous CTMC can be completely described



by its infinitesimal generator matrix Q and its initial
probability vector p(0). The transient probability
vector at time ¢>0 for a CTMC, p(), is obtained by

solving the equation

wzp(t).Q (1)
dt

whose solution can be formally written as
p(t) = p(0)- H(r) with H(t)=e? .

Let a realvalued reward rate 7; for each state ic Q
and, if the Markov chain stays in state i for duration
t, a reward 7;-¢, is gained. Let R(¢) represents the

random variable corresponding to the instantaneous
reward rate. The expected value of the reward rate as a
function of time can be computed as

X()=ER(E)]=Xr-p,(t). In the time interval
€Q

[o,.s)the accumulated reward is defined by
Y(0)= [ R(u)du. The expected wvalue of the

accumulated reward E[y(¢)] can be computed as:
1
Y()= [\ X ()du = T, [ p, () .
€eQ 0

Let the MDP be an MRP subject to control. We
define the decision arcs that denote the option to select
the transition rate from one state to another. At every
point of time a set of transition rates is possible for
each decision arc. A strategy S(T) comprises a set of
done selection for all options of the model at particular
points of time #,¢,...1, with0<¢, <t,...<t, <T.A

strategy  S(T) is considered optimal if the
performability measure under strategy S(T') is greater

or equal than the performability measure under any
other strategy S(T').

3. Traffic description
The GHP deals with the airport congestion that is due
to the probabilistic nature of the air traffic. Actually,

for example, even if the maximum airport capacity
were adequate to meet the scheduled demand, it
does happen that bad weather conditions drop
this capacity by half or more. Consequently,
several flights can be delayed. The planners have
to take an option either to give preference to the
airborne delay or to the ground delay. The GHP is
based on the principle that ground delay is safer,
less pollutant and less expensive than the airborne
delay. The GHP consist in giving preference to
ground delays over airborne delays.

However, even under optimal assignment of
ground-holds, there will be instances in which
airport landing capacity is lost where planes sit
waiting on the ground. These occurrences could
be more frequent than necessary when bad
weather is expected. Indeed, airports tend to
provide conservative capacity forecasts to protect
their airspace from saturation. The trade-off in
establishing ground-hold delays is between
conservative policies that may at times assign
excessive ground-holds and optimistic ones that
may result in more expensive airborne delays.

Thus to overcome the drawback of both type
of policies, the authors of [7] define the
requirements of an effective ground delay
program, as follows: Z;

e Considering relative costs of ground and air
delays

e Taking into account uncertainty regarding
airport capacities

e Being able to respond to a constantly
changing system.

The considered air traffic can be described in
reference to the single-destination network shown
in Fig.2. The proposed CSPN model (cf. Fig.3) of
this system attempts to address the key issues
involved by the authors of [|. The semantic of the
model is presented on Table 1. This model

AirportZ
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Ground queue

Fig.2 Traffic at the airport



captures the essential elements needed to solve the
GHP problem:

Airport Z is the only capacitated element of the
network.

N planes (flight F4y, ..., Fay) are scheduled to arrive
at the “arrival” airport Z from the “departure”
airports.

M planes (flight Fgi, ..., Fon) are scheduled to fly
form airport Z.

The departure and the arrival times (6; and 6,
respectively) of each plane are deterministic and
known in advance.

The capacity of airport Z is expressed by means of
the minimum admitted time interval, which
separates two successive plane actions, i.e. landing
or flight.

Ground and air delay cost functions for each flight
are known.
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Fig.3 CSPN model

The semantic of the model is as follows:

The marking of places:

o pa with i=1...N represents the plane i flying
and waiting for an order to land.

o  pg with i=1...M represents the plane i on
the ground and waiting for an order to fly.

o Pr represents the fact that the runway is
free.

o P, represents the fact that the runway is
not free.

There are two classes of transitions: the first one
represents the timed transitions whose delays are
exponentially distributed random variables. Each
timed transition is associated with a constant firing
rate. This rate is the inverse of the average firing
time of the transition. The one represents the
controlled transitions, ca and cg, whose delays are

deterministically 7, and i respectively. These
times represent the moments when the planes
are allowed to land or to fly. This means that
there is a clock the time 7z Thus, when <z, or
I<lg;, planes Fy or Fg, are not allowed to land
or to fly, even if transitions cy or cg are
enabled respectively. The meanings of the
firing rates whose are depicted in the figure 2
are explained in the table 1.

Table 1. Timed Transitions Description of the

CSRN Model
Parameter Meaning
1 6., the scheduled arrival times of
T 0_,41' flight F»; with i=1...N
! O the scheduled arrival times of
Hei = Q_Gl flight Fg; with i=1..M
1 - the minimum admitted time
Hai _9_ interval, which separates two
¢ successive plane actions, i.e.
landing or flight.
Iy The new scheduling landing time
G The new scheduled flight time

One can note that a negative reward must be
associated to each state where places ps and pg;
are marked. Indeed, such a marking means that
plane landings or flights are delayed. The value of
the negative reward depends on the nature of the
expected plane action i.e. landing or flight. In
other words, it is necessary to distinguish the
ground delay cost and the air delay cost, which is
more expensive. Hence, solving equations (1) and
(3), it is possible to define the objective function
to optimize.

4. Real-time management of an

elementary traffic flow

The analyzed system is the one depicted in fig.4.
This assumes that a plane Fg; is ready to fly and
the arrival time of another plane F,; is expected
for 6. Thus we have to decide 15 which
minimizes both delay costs. The CSPN model of
the system is presented in fig.5. The MDP has
nine states. Five of them represents airborne-delay
or ground-delay.
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Fig.4 Elementary traffic flow

We assume that the airborne-delay is ten times
more expensive than the ground delay. Thus, fig.6
shows the variation of the optimal 75, against6,.

e
Fig.5 Elementary CSPN model
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Fig.6 Variation of 6y, against I

From fig.6 one can note the interest of such an
approach where:

® An interval of safety is taken into consideration.
Indeed, when 15,>0, 15,-64:>0.

e The model ovoid an unnecessarily ground delay.
Indeed, when 6,,>81,2 sec 15,=0.

e The ground holding policy is kept. Indeed, plane
F, still priority.

5. CONCLUSION AND PROSPECTS

We have proposed in this paper an approach
to model air transportation systems using the
CSPN and MDP theories. This allows improving
the real-time management of the air traffic flow.
Indeed, we have shown through an elementary
example that the proposed model takes into
consideration the probabilistic nature of the air
traffic flow, by avoiding an unnecessarily ground-
delay and by introducing a safety interval. Besides,
the GHP is kept.

Several issues deserve further investigation. We
expect to compare the results obtained by CSPN
model of GHP problem with the ones abstained
by a deterministic approach.
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