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Abstract: 

Broadband networks based on the asynchronous transfer mode (ATM) are emerging rapidly. Both the technological 
component in terms of ATM infrastructure, as well as the area of applications requiring Quality of Services (QoS) by the 
means of bandwidth or delay constraints is covered by a variety of projects and products. However, given the increasing 
interest in applications such as governmental communication, transmission of medical information, or commercial 
applications, the necessity of providing secure means of delivering sensitive contents is apparent. In this paper, we focus on 
security services in ATM network. .Data security plays an increasingly important role in today’s information technology. 
Potential data rates in the gigabit ranges such as offered by ATM networks, put many constraints on the design of a secure, 
but usable, network. In addition, the cell structure of ATM makes bulk data encryption as well as public key security 
services challenging tasks. This paper deals with agility of cryptographic algorithms that is the capability of an encryption 
device to change its algorithm. This feature appears to be very desirable for high speed networks because it facilitates 
design flexibility and future protocol additions and changes. We propose the use of reconfigurable hardware since they 
appear to be naturally suited for the task. The use of reconfigurable in cryptographic applications to our knowledge has not 
been systematically analyzed before and appears to be a highly interesting area within high speed network security. 

 
Introduction 
Adding security through cryptography to any system is almost 
never a trivial task. One must carefully weigh the issues when 
deciding how much or how little security will be provided. 
Obtaining security services through strong cryptography may 
require so much bandwidth and processing overhead or such a 
high production cost that the system would become infeasible for 
real world applications. On the other hand, providing a lower 
level of services may have better performance, but the security 
may be too weak. The ideal is to find a middle ground which 
satisfies security needs with a reasonable throughput cost/ ratio. 
Today’s most relevant networking topics are high speed networks 
and wireless technology, both of which have separate issues with 
cryptography. On one hand, we need encryption rates fast enough 
to sustain high speed data streams. On the other hand, we need 
low bandwidth / low power consumption solutions for wireless 
operations. 
ATM falls into the high speed category. It is difficult to design a 
universal solution to the ATM security problem, since so much of 
the design depends on the through put requirements of the 

network. ATM by nature does not specify the physical layer 
which will be used to transfer ATM cells. We therefore need 
some kind of scaleable architecture that can be implemented in 
today’s ATM technology, but can adapt to tomorrow’s with little 
effort or change in protocols. The mainstream developments with 
ATM support 155Mb/s and 622 Mb/s. The question is what 
cryptographic element is needed to support security services at 
these speeds. Unfortunately, software is too slow. A software 
implementation of a common private key block cipher (which are 
relatively fast encryptors) allows throughputs of 1- 10Mb/s [19]. 
Hardware versions typically run 3-4 orders of magnitude faster. 
1.1 Potential Threats 
The first step to take when developing a secure system is to 
identify the potential threats against the system. After the threat 
analysis is complete, the security services used to thwart the 
attack can be applied more effectively. Lane [9] describes a list of 
threats in an ATM Network. They range from passive listening to 
actively destroying network service. The complete list can be 
found in Table 1.1. 

Object Threat Example of Threat 
Information Privacy Disclosure Passive Listening 
Resource Availability Denial of Service Flooding Network 

Integrity Insertion, removal, or 
modification of data 

Modifying ATM Headers to alter 
channel definition(misrouting) 

Attached workstations Intrusion Unauthorized login 
Network or application provider 
revenue Fraud Using false identity to obtain 

resources 
Table 1.1 Network Threats 

1.2 Security Services 
There are many security services that the use of cryptography 
provides. Each one attempts to thwart one or more attacks from 
Table 1.1. This section serves as an outline to some features 
desirable in a secure ATM link. 
1. Privacy 

• Definition: The ability to send information in a manner 
so that only the intended recipients have the ability to 
“see” the data. 

• Solution: Use an encryption algorithm. Issues of key 
management will need to be resolved. 

2. Integrity 

• Definition: The process of verifying that a payload was 
not tampered with in transit. 

• Solution: Include a cryptographic checksum or Message 
Authentication Code (MAC) with the payload or use 
digital signatures. 

3. Authentication 
• Definition: Authentication is the process of one node 

calculating the true identity of a remote node and 
verifying that the payload has integrity. 

• Solution:  Use digital signatures and/or MAC codes. 
4. Access Control 



• Definition: The ability to control access to objects and 
resources based upon the identity or the current level of 
access granted to an entity. 

• Solution: For simpler discretionary access control, a 
password accessed system can be used. For mandatory 
access control, higher level labeling and compartmenting 
should be used. Access Control Lists (ACL) are usually 
kept to govern the access privileges of entities and 
objects. 

5. Replay Prevention 
• Definition: Preventing an opponent from resending a 

once valid payload at a later time. 
• Solution: Include a (secured) timestamp with the 

payload. If the packet arrives at a time interval greater 
than the local security policy allows, discard the cell 
and/or update audit trail. 

6. Non repudiation 
• Definition: The ability to prove the absolute identity of a 

payload. 
• Solution: Use public key signatures, Private Key 

signatures require that the two (or more) parties involved 
share a secret. If party A sends a private key signed 
packet to B. A can later cheat and claim that B sent the 
packet.  However, public key signatures would allow B 
to prove that only A knows how to generate a given 
signature. 

 
2. Background 
2.1 Encryption Hardware 
What encryption hardware can support these >100Mb/s 
throughput rates available in ATM links. There are currently two 
major forms of hardware suitable for cryptography, custom 
Application Specific Integrated Circuits (ASIC) or 
Reconfigurable Hardware i.e. Erasable Programmable Logic 
Devices / Field Programmable Gate Arrays (EPLD/ FPGA). 
 
2.1.1 ASIC(s) 
ASICs have some advantages over Reconfigurable (RC) 
hardware. First, they are usually faster, since they were designed 
specifically for the problem, whereas RCs are generic logic 
devices that are programmed using variable switching matrices 
and configurable logic elements. These switching matrices add 
variable delay due to increased parasitic capacitance and 
resistance of each switch, and the logic elements may sometimes 
exhibit poorer performance when compared to the gate 
implemented in custom silicon. Second, ASICs are usually 
smaller and consume less power because RCs have overhead logic 
for maintaining the reprogram able circuitry. However, ASICs 
cannot offer the flexibility of a reconfigurable device. 
 
2.1.2 Reconfigurable(s) 
Aside from the points made above, Reconfigurables RC have 
several major advantages over a custom ASIC design. 

1. Algorithm Agility:  Because the device can be 
reconfigured, it allows a designer to simply reprogram 
the device when a new algorithm is needed. With ASICs, 
a separate device must standby until it is needed. 

2. Shorter design time and verification: The development 
time of RC hardware is significantly shorter that a full 
custom solution because the designs can be verified 
quickly without waiting for manufacturing delays. 

3. Design changes are easily accommodated: If an 
algorithm changes in the future, the binary image can be 
distributed among the devices in the network allowing 
“hardware” upgrades to be done without actually 
changing any hardware. 

Reconfigurables would appear to be the ideal choice for 
implementing cryptographic elements. However, there are some 
major problems. Aside from the points above regarding the 
inherent delay/power-consumption/size problems, it is unclear 
whether RC hardware can accommodate cryptographic 
applications. Up until recently, these devices have been extremely 
small and could only replace a few thousand equivalent gates. A 
modern link encryptor may consume tens (or hundreds) of 
thousands of gates. In addition the I/O resources required 
supporting ATM cells and encryption is fairly significant and may 
have problems mapping to a device. The speed problem could 
become an issue as the link of the ATM network increases as 
well. How many RC devices are needed? An array of RCs may 
exhibit enough throughputs to sustain an OC-12(approx. 
622Mb/s) rate, but how many chips must run in parallel to achieve 
this. The most likely location for encryption will be in the ATM 
layer itself, before the data leaves a node. This means that all the 
encryption hardware must be on the local Network Interface Card 
(NIC). The card itself has size restraints and power consumption-
cooling requirements. Will laptops using PCMCIA cards ever are 
able to enjoy secure ATM? If they do, it will most likely be under 
an ASIC control or an external device. These topics need further 
evaluation. 
 
2.2 Symmetric Algorithms 
Lane and Cohen [10] acknowledge that there are many symmetric 
algorithms that can be used effectively with ATM. A general set 
of criteria can be established to test an algorithm for eligibility: 

1. The algorithm block size should be able to divide evenly 
into 384 bits the ATM (payload size). This allows for 
greater efficiency. 

2. The block size should be relatively large (>=64 bits) so 
that small patterns in the plaintext do not generate cipher 
text that is easy to perform “cipher text substitution” 
attacks. 

3. The combination of (1) and (2) limit the block sizes to be 
 64, 96,128 or 384 bits. 

4. The algorithm should have at least the strength of DES 
[23], but preferably higher in order to provide long term 
security. This includes both the key length, and level of 
immunity to linear ([12],[13],[14] )and differential 
([2],[3]) cryptanalysis. 

5. The algorithm should be easily implemented in hardware 
with either direct support of ATM speeds (45-622 Mb/s) 
or provisions for parallel execution to sustain these rates. 

6. It should include provisions for key agility on a per-cell 
basis. 

7. Details of the algorithm should be publicly available. 
Table 2.1 is a list of algorithms which meet the criteria. All items 
have been derived from [10] , [19] and [22]. 
 
 
 
 
 

Algorithm Block size Key Length Security Speed 
DES 64 56 Baseline Baseline 



Triple DES[15] 
DESX[18] 
RC2[17] 
RC5[16] 
IDEA[8] 
CA-1.1[7] 
CAST[1] 
SAFER[11] 
LOKI[4] 
3-Way[5] 

64 
64 
64 
variable 
64 
384 
64 
64 
64 
96 

112 
56+64 
variable 
variable 
128 
64+1024 
64 
64 
64 
96 

>> DES 
>DES 
variable 
variable 
>>DES 
unknown 
>=DES 
unknown 
>=DES 
Unknown 

1/3 DES 
=DES 
>DES 
variable 
>DES 
 
unknown 
>DES 
unknown 
>DES 

Table 2.1 Crypto algorithms suitable for ATM 
 
 
Currently the ATM Forum is discussing which algorithm will 
become the standard. One problem holding the decision back is 
the US Government’s restriction on exporting cryptography. The 
current law considers cryptography munitions and limits 
exportable encryption devices to 40 bits. This restriction is a 
matter of intense controversy. There are several policy proposals 
pending which would either increase the allowed bit length, drop 
the current restriction altogether, or would call for key 
escrow/recovery mechanisms. 
 
2.3 Mode of Operation 
A cryptographic algorithm usually provides only the core 
functionality of data encryption. Several methods or modes of 
operation exist to allow the customization needed for a particular 
application. For instance, one mode of operation, called Electronic 
Code Book (ECB) may be used to simply encrypt/decrypt in 
straight blocks without any feedback or additional operations. 
This creates a one-to-one mapping between plaintext and 
ciphertext. Other times, the previous input or output will actually 
change the next output. These are referred to as feedback modes. 
Feedback modes serve to randomize the output (thus producing a 
more non-deterministic output) and to make it harder to modify 
any given block of cipher text [19]. 
 
2.4 Interleaving 
When the available hardware crypto chips are not fast enough to 
sustain the desired rate (say 622Mb/s)  they must be 
interleaved (or run in parallel).  For instance, if a given chip runs 
with 64 bit blocks at 100Mb/s, and we want to encrypt at the 
ATM layer would need 

[(48/53*622Mb)/100] = [5.63] = 6 
chips to sustain an OC-12 line. Note the ratio 48/53 in the formula 
compensates for payload/cell-size differences. 
There are implications involved when using chips in parallel 
because it is necessary to generate new IVs for each chip in some 
modes of operation. 
 
2.5 Key Storage 
A typical modern day cryptographic system uses two types of 
cryptographic functions to establish a secure connection, public-
key and private key. 
Public-key encryption allows users to publish a key, which any 
node can obtain in order to send encrypted information to the 
issuing party. Only the publisher of the key is able to decrypt the 
encrypted message with a private-key which is mathematically 
linked to the published key. Conversely, public-key signatures 
allow a user to publish a verification key, which any node can 

verify the signature of a block, but only the publisher can produce 
a valid signature. The advantage of public-key is that information, 
such as a private-key does not need to be shared among users. 
The disadvantage is that the algorithms are inherently slow 
compared to private-key algorithms and the keys need to be very 
large (768-1024 bits are common) 
Private Key algorithms require users to share a common key 
between the two (or more) communicating nodes. The advantages 
of private-key include: fast encryption and shorter key lengths. 
The disadvantages include users must share a secret and keys 
must be transferred over a secure channel. 
 By using a combination of the two a designer can create a secure 
channel using public-key cryptography, negotiate “session key” 
with the remote party and continue the rest of the communications 
with the speed and agility of private key algorithms. Also security 
services such as data integrity and sender authentication are often 
achieved through public key digital signatures. This is what is 
known as a hybrid scheme, because it uses the advantages of 
multiple types of algorithms to produce a robust security system 
with good performance. 
 
2.6 Key Agility 
Key Agility defines the ability of a system to switch 
cryptographic keys. A security device that uses a single key for all 
communications would be considered non-key agile. A system 
that can switch keys on a per connection basis would be 
considered highly agile. In almost all scenarios, it is desirable to 
enable a separate cryptographically isolated channel on each 
virtual circuit. In a worst case scenario for a key agile system 
every cell arriving would originate from a unique VC. An ATM 
system that incorporates a technology with data rate x in the 
physical layer must be able to handle 424 bits/cell/x if it is to 
support a new key for every incoming cell. For instance if x is 
derived from OC-12 SONET, the transmission speed is 
622Mb/sec, yielding 

424/622*106 = 681ns 
This means that a new key (and initialization vector, if required) 
must be referenced and loaded in less than 681ns (minus the 
decryption time). This can have a significant impact on the overall 
design of the crypto unit. Agility can be realized by limiting the 
number of secure channels (thereby reducing the memory 
requirements) and to pipeline the crypto unit so that keys may be 
loaded before they are scheduled for decryption-encryption. [20] 
uses an address hash table and limits the secure connections to 
216. 
 
 



 
Figure 2.1 The Key Agile Architecture 

 

 
Figure 2.2 The General Security Architecture 

 

 
The general layout of the components is given in Figure 2.1. The 
idea is to use enough encryption hardware in parallel to sustain 
the link speed. 
 
2.7 Overall Layout 
The module described in Figure 2.1 is the heart of the general 
architecture presented in Figure 2.2 which demonstrates the 
placement of the hardware with respect to the utopia bus. This 
design allows traffic flowing through a bi-directional bus to use a 
single bank of security hardware, rather than having separate 
devices. 
Often times the hardware modules will not be local to one device, 
but rather spread out into separate modules. This allows larger 
memory and faster encryption hardware to be integrated. The 
layout may resemble Figure 2.3 
 
2.8 Architecture Description 
The Input Buffer 
The input buffers job is to essential queue one single cell (424 bits 
+ control information) while the memory unit is accessed. In the 
event that the memory unit is fast enough, this step is 
unnecessary. However, as we pointed out in earlier sections, as 
the speed of the network increases, this stage will become more 
and more important. If the network speed actually increases so 
high that the single buffer is not enough delay to accommodate 
the latency of the memory unit, additional units can be added as 
long as the memory unit has additional I/O ports.  
The Cipher Array 
The cipher array is a simple parallel configuration of two main 
components: The encryption block and a controlled bypass unit. 
Each block accepts one cell plus control data and will process that 
cell in a fixed time unit. The processing that occurs is essentially 
encrypting (or decrypting) the user payload of the cell (in the case 
of the encryption block) or simply passing the data through after 
the fixed amount of time has expired (in the case of the controlled 
bypass unit). 

 
Figure 2.3 Model Layout 

 
2.9 Algorithm Agility 
Algorithm agility is the ability to switch cryptographic algorithms. 
An implementation that has one algorithm in hardware would be 
non agile. An implementation that could switch crypto routines on 
 a per-cell basis would be highly agile. Algorithm agility is easy to 
accomplish if encryption is performed in software. However, 
ATM speeds dictate that hardware approaches must be used. 
Hardware algorithm agility can either be realized through 
providing all algorithms of interest on an ASIC, or to use 
reprogrammable logic (FPGAs/ EPLDs). One problem with the 
latter approach is that achievable data rates might be too slow for 
ATM. With today’s technology, it is not possible to reprogram the 
chip on a per cell basis. In fact, it takes orders of magnitude more 
time to program the chip as compared to the cell arrival rate. The 
FPGA method is good for allowing the flexibility of the protocol 
design, without allowing algorithm agility per cell. 
If the algorithms fit onto a feasible amount of ASIC chips, the 
ASIC approach offers a fast throughput to size ratio and may offer 
better overall performance in the ATM network. 
The ATM Forum is designing the system to allow algorithm 
type/version information to be exchanged at secure call setup 
time. This allows the two remote hosts to guarantee that both 
parties are using the same security devices. 
 
3. Implementation  
3.1 Introduction 
The next step in our investigation is to determine which device 
architecture works best with which type of cryptographic 
algorithms. We need both speed and efficiency for a wide variety 
of algorithm types. Some algorithms will use a very wide data 
path, while others will need many registers and flip flops. It is 
unclear which device architecture will perform adequately in an 
ATM type environment so we must design a methodology that 
will allow us to predict which one will. 
The task of assessing all cryptographic algorithm performances in 
all RC hardware is an extremely complex task. To overcome this 
problem, we decided to analyze the algorithms for their 
components (such as XOR,  ADD,  SHIFT,  etc.) and then run 
extensive tests on those components based on certain classes of 
hardware. Through this research: 

• We can derive general statements about cryptography 
on RC hardware. 

• Our findings can be extended to future algorithms, as 
they are proposed. 

• We could gain some insight into which architecture 
might work acceptably well in an ATM environment. 



There are many different branches of cryptographic algorithms, 
such as private-key ciphers, public-key ciphers and hash 
functions. For the purpose of ATM, we are only concerned with 
symmetric block ciphers, since they seem more promising for the 
use in the encryption unit. We start by explaining how symmetric 
encryption is accomplished. 
3.2 Methodology 
By studying existing algorithms see Table 3.1 we have 
determined that there is a small finite group of components that is 
common to all algorithms. Some of these components may have 
been discussed above regarding design theory, etc 
 

 
 
 
 
 
 
 
 
 
 
 
 

Algorithm Parameters Components 
DES 
MADRYGA 
NewDES 
FEAL 
REDOC II 
REDOC III 
LOKI 
KHUFU 
KHAFRE 
IDEA 
MMB 
GOST 
CAST 
BlowFish 
SAFER 
3-Way 
CRAB 

64 bit I/O, 56 bit key 
var I/O, var key 
64 bit I/O, 120 bit key 
64 bit I/O, 64 bit key 
80 bit I/O, 160 bit key 
var key up to 20 kbits 
64 bit I/O, 64 bit key 
64 bit I/O, 512 bit key 
64 bit I/O, 64-128 bit key 
64 bit I/O, 128 bit key 
128 bit I/O, 128 bit key 
64 bit I/O, 256 bit key 
64 bit I/O, 64 bit key 
64 bit I/O, 0-448 bit key 
64 bit I/O, 64 bit key 
96 bit I/O, 96 bit key 
1024 bytes I/O, 128 bit key 

P-BOX,XOR,SBOX,ROT 
XOR, SFT,ROT 
XOR, N/A f box 
XOR, ROT 
P-BOX,SBOX,XOR 
XOR,STOR 
XOR,SBOX,P-PBOX 
XOR,Dyn-SBOX 
XOR,SBOX 
XOR,ADDER,MULT 
XOR,MULT,STOR 
SBOX,ROT,ADDER 
XOR,SBOX 
XOR,SBOX,ADDER 
XOR, ADDER,ROT,GFMULT 
XOR , P-BOX, ROT 
P-BOX, XOR,AND, OR, NOT 

Table 3.1 The available algorithms and their component breakdown 
 
3.3 Component Breakdown 
 
Table3.2 summarizes what we found in the analysis. Each 
component must be mapped into hardware, but we need a method 
that will yield accurate results across all platforms. 
Component  Type  
XOR/AND/OR/NOT 
SBOX 
SFT/ROT 
STOR 
ADDER 
MULT 
PBOX 
GFMULT 

Boolean Logic 
Substitution Box 
Shift/ Rotate Element 
Storage Element 
Modulo Addition 
Modulo Multiplication 
Permutation Box 
GF(2n) MULT1 

Table 3.2 Component Description 
 
3.4 Implementation 
The next step is to build behavioral models using a hardware 
description language (HDL). Using these models we can map the 
given components into various architectures and record the 
results. HDLs were chosen for their portability across platforms. 
The advantage is that the differences in entry style can be factored 
out of the overall equations, because the resulting design is 
derived from the same source code. After the models are built, 
they were synthesized and mapped using the tools appropriate for 
the device. Various optimizations were selected over multiple 
runs to average the results. The most interesting results are the % 
resources consumed and the critical path delay. 
Device Selection 
In order to determine the final results of our experiments, two 
stages of processing were needed. The first is the synthesis stage, 

which compiles the HDL into device specific logic maps or 
netlists. The second is a place and route stage where the netlists 
are mapped into actual hardware entities. Because of the 
availability of these tools, we were only able to work with two 
vendors, namely Xilinx Corporation and Altera Corporation. 
Fortunately, these two vendors are the market leaders and also 
provide some of the largest devices for us to work with. 
Unless otherwise noted all implementations of the algorithms 
were performed on speed grades 3. Devices are selected based on 
their availability in the market place and their relative 
size/speed/price/package selection. For example, XILINX has a 
multitude of devices in various families. However, only the 
XC4000 family is large enough to accommodate the large scale 
design of a cryptographic algorithm (typically 20K- 60K gates), 
so it is the only one used here. The same holds for Altera, where 
only the FLEX10K devices can support the needs of our 
application. 
Initial research has revealed an average PAD delay for each 
device tested, which is always subtracted from the critical path 
delay in cases where clocking was not used to determine 
component speed. The results of this calculation are in Table 3.3 
 
Device  Input 

delay(ns) 
Output 
delay(ns) 

Total 

EPF10K70RC240-3 
XC4020EPG223-3 

5.6 
2.5 

5.3 
8.5 

10.9 
11.0 

Table 3.3 PAD delays in experimental hardware 
 
 
 
 



3.5 Component Description 
3.5.1 Permutation Boxes 
 
Permutation boxes are diffusion elements that are easily 
implemented in hardware. Because the operation is essentially a 

remaping of input pins to output pins, the synthesis of such a 
circuit utilizes very few resources in RC hardware if sufficient 
routing resources are available. In cases where drivers are not 
needed, the realization of such a circuit only changes the pin 
mapping of the components connected to it.  

 
 

Fig 3.1 Permutation Box 
 

Fig.3.2 Feistel Network 
 
3.5.1.1 Feistel Networks 
Many block ciphers use Feistel network architecture, named after 
the inventor, Horst Feistel, who made major contributions to the 
field in the 1960s and 1970s while working on ciphers for IBM 
Research. The Feistel network is simple in concept. One of its 
most attractive features is that it allows for particular algorithms 
to be used for both encryption and decryption due to its inversion 
properties. The basic architecture is as follows. The datapath is 
split into two halves, the right and left sides. The right half is 
operated on by function f which incorporates elements of 
confusion, diffusion and key material and produces an output of 
the same size. 
The output from the f function is XORed with the left half which 
is then stored into the right half. A copy of the original right half 
is swapped into the left half, thus completing the cycle (see Figure 
3.2). It should be noted that only the left part L[i-1] is encrypted 
in one round, whereas R[i-1] is passed through in the clear. 
3.5.2 Substitution Boxes 
Substitution-Permutation networks or SP networks are elements 
that add hybrid confusion-diffusion to the input data. F-functions 
in Feistel networks are often based on them. Substitution elements 
take a m bit input and provide an n bit output (see Figure 3.3). The 
elements can be implemented as look-up tables or as 
combinatorial logic, but both are rather expensive so to minimize 
the cost, m and n are often kept small. 
 

 
Fig 3.3  3x4 Substitution Box 

 

 
Implementing these components can be rather expensive in 
reconfigurable logic because they are not typically tuned to look-
up table type architecture. In fact, our studies have shown that s-
boxes are often the largest component in a synthesized design, 
requiring tens or hundreds of logic elements to implement even 
small tables, such as a 6 x 4 which has 64 four bit values (256 bits 
each). Hardware architectures that support RAM and ROM 
components faired extremely well in these tests. It should be 
noted that in both examples that use ROM architecture, special 
design parameters were used to utilize the special hardware. 
3.5.3 Shift-Rotate Registers 
Shift and Rotate registers are commonly found in cryptographic 
applications. They are commonly found in the key scheduling 
logic and there are various architectures which work with 
different types of ciphers. Combinatorial shifters are the simplest 
to map into hardware because they are essentially a permutation. 
As was pointed out earlier, these permutations take hardly any 
hardware resources. The more advanced shifters, such as decisive 
and sequential shifters require more logic and will therefore be 
analyzed below. 
Decisive shifters 
Decisive shifters are components that take in two inputs. The first 
is the data word to be shifted, and the other is a binary value, 
allows the shifter to decide when to shift or not. All processing is 
done combinatorially and therefore doesn’t require clocking or 
registered output. However, the decision circuitry requires a 
multiplexer so this unit is more than a simple permutation. 
Sequential Shifters 
Sequential shifters are components that register the input and shift 
based on a clock edge. They require the most amounts of 
hardware resources, but can offer the advantage of a register and a 
combinatorial shift in one component. For some designs this may 
offer the perfect element for key scheduling or round iteration 
processing. 
 

Design device Optimization LE Utilization Max Delay 
FLEX10K Speed 64 10.9ns Sequential  Area 64 10.4ns 
FLEX10K Speed 32 5.2ns 

 Area 32 5.2ns Decisive 
XC4000E Area 16 19.3ns 

Combinatorial N/A N/A N/A N/A 
Table 3.4.  32 Bit rotation box 



 
Observe that the performance was equal across the two devices 
for the sequential shifter implementation, but dropped off 
significantly in the FPGA for the multiplexer based design. 
3.5.4 Adders 
There are various types of standard adder architectures which 
have various speed/area properties and are well suited to different 

types of hardware architecture. Rather than try to model and 
analyze each one in each different piece of hardware, we just used 
the built-in functions provided with the hardware vendor. For 
Altera, we used the LPM Module LPMADDSUB and for Xilinx, 
we used the XBLOX module ADDSUB. The results are in Table 
3.5 
 

Device Size Optimization Utilization Max Delay 
32 bit Area 63 LEs 102.4ns EPF10K10TC144-3  Speed 110 LEs 43.1ns 
64bit Area 127 LEs 196.0ns EPF10K10TC356-3  Speed 240 LEs 73.2ns 
32 bit - 17 CLBs 24.1ns XC4020EPG223-3 64 bit - 33 CLBs 45.7ns 

Table 3.5 a Adder in various hardware 
 
3.6 Component Conclusion 
This section has presented a description of some of the 
components found in cryptographic algorithms. In addition, the 
results of our analysis accompanied each description. It was 
shown that neither architecture analyzed has a distinct advantage 
over that other. One may excel in one area, while the other will 
excel in an unrelated area. Making a choice for a particular vendor 
is a question of the specific cryptographic algorithm and the cost 
of each chip verses the efficiency of the component placement.  
 
3.7 The Data Encryption Standard 
3.7.1 Introduction 
The Data Encryption Standard (DES) is probably the most 
commonly used algorithm in the world for symmetric encryption 
of data. Especially important is the fact that the algorithm has 
been approved for use in ATM by the ATM Forum. For an 
explanation of DES,(see [6],[21, page 70]).We should be able to 
assess whether RC hardware is principally acceptable for use in 
high speed secure networks. 
3.7.2 Design 
DES uses Feistel Network architecture with 16 rounds. Each 
round can be implemented as separate hardware with pipe-line 
stages between each one for high throughput applications. 
However, this consumes major silicon real-estate and generally 
will not work in reconfigurable hardware because it is too large. 
For designs with less than 16 rounds of fixed hardware, some kind 
of feedback loop must be established. 
When we set out to implement DES in reconfigurable logic for 
high speed networks, there was a set of design criteria that we 
wanted to meet. 

• It must be targeted for high performance (as opposed to 
smallest size). 

• It must complete an operation (such as encrypt or 
decrypt) in the fewest possible cycles (which is 16 for a 
simple design). 

• It must fit into a commercially available chip (as opposed 
to one that is only in beta test). 

• It must provide for loop unrolling for future speed 
improvements. 

 
Figure 3.4 shows the layout of the components from a schematic 
point of view. Note the use of two 64bit registers: one on the 
inputs and another in the feedback loop. This design allows us to 
“steal” an extra clock cycle at the expense of 64 flip-flops and one 
gate more of complexity through the Feistel network (through the 
MUX). Without the secondary register at the data feed, we would 
be required to go to INIT state after the sixteenth round completed 
so that the outputs could stabilize to the correct data (DONE is 
asserted) before new data is read in, With this register in place, we 
can successfully read a new data set in at the conclusion of round 
16 thus producing the cycle chain INIT, R1, R2,…, R16, R2,…. 
Etc. Without it the state transition diagram must conclude to INIT 
every time before starting the next set. This addition saves a 
single pulse width of latency and increases system throughput by 
6.25%. 
In addition to designing the main data path for high speed, the key 
scheduler must also be designed to deliver data at the same rate 
and with correct framing with respect to the data path. In order to 
do this we placed a single register to sample data coming from a 
multiplexer. The multiplexer is fed by both the feedback and the 
outside key input. The output from the registers feeds a unit chain 
of schedulers, one for each unrolled loop in the path. Each key 
unit schedules the keys for one round, receiving control 
information from its respective command line (stkeyunit0, 
stkeyunit1, stkeyunit2, etc.). The output from each key unit is fed 
to its respective Feistel network and the next unit in the chain. The 
last unit in the chain feeds its Feistel network and then loops the 
output back into the master key scheduler for storage in the 
registers. This operation is displayed in Figure 3.5.  
 

  



 
Fig 3.4 Schematic map of DES algorithm 

 
Fig 3.5 Schematic map of key schedule logic 

 
3.8 Comparing the Results in Reconfigurable Hardware 
In our experiments we compared two high end devices 
(manufactured by Xilinx and Altera) in a series of tests that we 
hope show the relative performance of cryptographic algorithms. 
It may be unclear which device actually performs better, and in 
actuality, they were very close. It is difficult to estimate the actual 

resources consumed in a device since there are so many 
discrepancies in the way information is provided by the 
companies. Often times the transformation between logic 
elements (LEs) and typical gate counts is overestimated and can 
confuse the user.  
 

Component Type LEs REs LeW($) ReW($) % 
Resources Speed(ns) 

A 32 0 1.92 0 2.78 12.0 XOR B 16 16 8.16 8.16 2.04 10.4 
A 0 512 0 87.04 133.33 18.3 1 SBOX(ROM) B 80 64 40.80 40.80 10.20 15.8 
A 113 0 6.78 0 9.81 49.6 I SBOX(AREA) B 18 18 9.18 9.18 2.29 51.1 
A 119 0 7.14 0 10.22 31.0 1 SBOX(SPEED) B 89 89 45.39 45.39 11.35 36.3 
A 32 0 1.92 0 2.78 5.2 Shifter(DecArea) B 16 16 8.16 8.16 2.04 19.3 
A 63 0 3.78 0 5.47 102.4 Adder(32bitArea) B 17 17 6.67 6.67 2.17 24.1 
A 127 0 7.62 0 11.02 196.0 Adder(64bitArea) B 33 33 16.83 16.83 4.21 45.7 
A 0 256 0 43.52 66.67 9.5 Buffer(256x32) B 360 256 186.6 130.56 45.92 60.6 
Table 3.6Components Evaluated with Size Comparison 

 
3.9 DES Comparison 
After completing the design using VHDL modeling and synthesis 
tools, we realized an entire DES implementation.  We also 
determined the following performance ratings. The results are 
posted in Table 3.7. For a maximum throughput, we measured 
62.5Mb/s from the Xilinx device without a single loop unrolled. 
Close behind it was the Altera device which maxed out at 
57.60Mb/s. One important difference, however, is that the Altera 
device cannot be unrolled any more because the memory EABs 
have been exhausted. From this point on, we will consider the 
designs that are ROM mapped only in the Xilinx devices because 
of the limitations in the Altera chips. So this yields comparatively 
62.5Mb/s for Xilinx and 39.96Mb/s for Altera. Both of these 
designs support loop unrolling. We will now analyze these 
designs in the same manner as the individual components. 
 
 
 
 

 
 
4. Conclusion 
This research paper hopefully gave the reader some insight into 
ATM networks, the issues with providing security over those 
networks and an introduction to issues using reconfigurable logic 
for the main encryption hardware. We also provided data 
regarding the implementation of cryptographic algorithms in 
reconfigurable hardware in general, such as the cost vs. speed, and 
how to asses an algorithm for its size and delay characteristics 
before any design work begins. Although there has been 
substantial work done in the area of reconfigurable architectures, 
very little has been done in terms of cryptographic algorithms. We 
hope that this work will alert both potential developers of security 
devices and reconfigurable hardware vendors about the viability 
of cryptographic applications and the need for further study. Often 
times crypto algorithms exhibit patterns in there architecture that 
may be exploited by new hardware designs. With the recent 
interest in cryptographic technologies by mass market companies, 
the use of new hardware technologies will be of value.  



 
 

 

Device Opt. Floorplan Resources Delay(n
s) Clock(MHz) Tput.(Mb/s) 

Area-low 
Collapse=off 

Redundancy=off 
P/R=2.2 

Manual 448 154.9 7.00 27.99 

Same as above 
P/R=4.4 Automatic 646 115.0 9.10 36.40 

SBOX=RAM Manual 359 145.5 6.80 27.20 
SBOX=RAM 

P/R = 4.4 Automatic 549 76.0 14.10 56.40 

XC4020EPG223-3 

SBOX=RAM Auto w/o Bus 545 70.5 15.60 62.40 
Norm/Speed/Are

a Automatic 1319 112.7 9.99 39.96 
EPF10K30RC240-3 

SBOX=RAM Automatic 403+8EA
B 69.4 14.4 57.60 

Table 3.7 DES Performance 
 
In closing, there has been a lot of work done in the last few years 
regarding ATM security. I believe that the concept of using 
reconfigurables for this technology is a promising and interesting 
addition to the growing interest in the field of high speed secure 
networks. It is hoped that through the experiments performed in 
this study any designer can make an intelligent decision as to 
which hardware will meet the needs of their application.  
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