
Design of Secure Hardware for ATM Networks
Engr. JUNAID MAJEED

Faculty of Engineering Science and Technology
Hamdard University

Karachi Pakistan

Abstract:

Broadband networks based on the asynchronous transfer mode (ATM) are emerging rapidly. Both the technological
component in terms of ATM infrastructure, as well as the area of applications requiring Quality of Services (QoS) by the
means of bandwidth or delay constraints is covered by a variety of projects and products. However, given the increasing
interest in applications such as governmental communication, transmission of medical information, or commercial
applications, the necessity of providing secure means of delivering sensitive contents is apparent. In this paper, we focus on
security services in ATM network. .Data security plays an increasingly important role in today’s information technology.
Potential data rates in the gigabit ranges such as offered by ATM networks, put many constraints on the design of a secure,
but usable, network. In addition, the cell structure of ATM makes bulk data encryption as well as public key security
services challenging tasks. This paper deals with agility of cryptographic algorithms that is the capability of an encryption
device to change its algorithm. This feature appears to be very desirable for high speed networks because it facilitates
design flexibility and future protocol additions and changes. We propose the use of reconfigurable hardware since they
appear to be naturally suited for the task. The use of reconfigurable in cryptographic applications to our knowledge has not
been systematically analyzed before and appears to be a highly interesting area within high speed network security.

Introduction
Adding security through cryptography to any system is almost
never a trivial task. One must carefully weigh the issues when
deciding how much or how little security will be provided.
Obtaining security services through strong cryptography may
require so much bandwidth and processing overhead or such a
high production cost that the system would become infeasible for
real world applications. On the other hand, providing a lower
level of services may have better performance, but the security
may be too weak. The ideal is to find a middle ground which
satisfies security needs with a reasonable throughput cost/ ratio.
Today’s most relevant networking topics are high speed networks
and wireless technology, both of which have separate issues with
cryptography. On one hand, we need encryption rates fast enough
to sustain high speed data streams. On the other hand, we need
low bandwidth / low power consumption solutions for wireless
operations.
ATM falls into the high speed category. It is difficult to design a
universal solution to the ATM security problem, since so much of
the design depends on the through put requirements of the

network. ATM by nature does not specify the physical layer
which will be used to transfer ATM cells. We therefore need
some kind of scaleable architecture that can be implemented in
today’s ATM technology, but can adapt to tomorrow’s with little
effort or change in protocols. The mainstream developments with
ATM support 155Mb/s and 622 Mb/s. The question is what
cryptographic element is needed to support security services at
these speeds. Unfortunately, software is too slow. A software
implementation of a common private key block cipher (which are
relatively fast encryptors) allows throughputs of 1- 10Mb/s [19].
Hardware versions typically run 3-4 orders of magnitude faster.
1.1 Potential Threats
The first step to take when developing a secure system is to
identify the potential threats against the system. After the threat
analysis is complete, the security services used to thwart the
attack can be applied more effectively. Lane [9] describes a list of
threats in an ATM Network. They range from passive listening to
actively destroying network service. The complete list can be
found in Table 1.1.

Object Threat Example of Threat
Information Privacy Disclosure Passive Listening
Resource Availability Denial of Service Flooding Network

Integrity Insertion, removal, or
modification of data

Modifying ATM Headers to alter
channel definition(misrouting)

Attached workstations Intrusion Unauthorized login
Network or application provider
revenue Fraud Using false identity to obtain

resources
Table 1.1 Network Threats

1.2 Security Services
There are many security services that the use of cryptography
provides. Each one attempts to thwart one or more attacks from
Table 1.1. This section serves as an outline to some features
desirable in a secure ATM link.
1. Privacy

• Definition: The ability to send information in a manner
so that only the intended recipients have the ability to
“see” the data.

• Solution: Use an encryption algorithm. Issues of key
management will need to be resolved.

2. Integrity

• Definition: The process of verifying that a payload was
not tampered with in transit.

• Solution: Include a cryptographic checksum or Message
Authentication Code (MAC) with the payload or use
digital signatures.

3. Authentication
• Definition: Authentication is the process of one node

calculating the true identity of a remote node and
verifying that the payload has integrity.

• Solution: Use digital signatures and/or MAC codes.
4. Access Control

• Definition: The ability to control access to objects and
resources based upon the identity or the current level of
access granted to an entity.

• Solution: For simpler discretionary access control, a
password accessed system can be used. For mandatory
access control, higher level labeling and compartmenting
should be used. Access Control Lists (ACL) are usually
kept to govern the access privileges of entities and
objects.

5. Replay Prevention
• Definition: Preventing an opponent from resending a

once valid payload at a later time.
• Solution: Include a (secured) timestamp with the

payload. If the packet arrives at a time interval greater
than the local security policy allows, discard the cell
and/or update audit trail.

6. Non repudiation
• Definition: The ability to prove the absolute identity of a

payload.
• Solution: Use public key signatures, Private Key

signatures require that the two (or more) parties involved
share a secret. If party A sends a private key signed
packet to B. A can later cheat and claim that B sent the
packet. However, public key signatures would allow B
to prove that only A knows how to generate a given
signature.

2. Background
2.1 Encryption Hardware
What encryption hardware can support these >100Mb/s
throughput rates available in ATM links. There are currently two
major forms of hardware suitable for cryptography, custom
Application Specific Integrated Circuits (ASIC) or
Reconfigurable Hardware i.e. Erasable Programmable Logic
Devices / Field Programmable Gate Arrays (EPLD/ FPGA).

2.1.1 ASIC(s)
ASICs have some advantages over Reconfigurable (RC)
hardware. First, they are usually faster, since they were designed
specifically for the problem, whereas RCs are generic logic
devices that are programmed using variable switching matrices
and configurable logic elements. These switching matrices add
variable delay due to increased parasitic capacitance and
resistance of each switch, and the logic elements may sometimes
exhibit poorer performance when compared to the gate
implemented in custom silicon. Second, ASICs are usually
smaller and consume less power because RCs have overhead logic
for maintaining the reprogram able circuitry. However, ASICs
cannot offer the flexibility of a reconfigurable device.

2.1.2 Reconfigurable(s)
Aside from the points made above, Reconfigurables RC have
several major advantages over a custom ASIC design.

1. Algorithm Agility: Because the device can be
reconfigured, it allows a designer to simply reprogram
the device when a new algorithm is needed. With ASICs,
a separate device must standby until it is needed.

2. Shorter design time and verification: The development
time of RC hardware is significantly shorter that a full
custom solution because the designs can be verified
quickly without waiting for manufacturing delays.

3. Design changes are easily accommodated: If an
algorithm changes in the future, the binary image can be
distributed among the devices in the network allowing
“hardware” upgrades to be done without actually
changing any hardware.

Reconfigurables would appear to be the ideal choice for
implementing cryptographic elements. However, there are some
major problems. Aside from the points above regarding the
inherent delay/power-consumption/size problems, it is unclear
whether RC hardware can accommodate cryptographic
applications. Up until recently, these devices have been extremely
small and could only replace a few thousand equivalent gates. A
modern link encryptor may consume tens (or hundreds) of
thousands of gates. In addition the I/O resources required
supporting ATM cells and encryption is fairly significant and may
have problems mapping to a device. The speed problem could
become an issue as the link of the ATM network increases as
well. How many RC devices are needed? An array of RCs may
exhibit enough throughputs to sustain an OC-12(approx.
622Mb/s) rate, but how many chips must run in parallel to achieve
this. The most likely location for encryption will be in the ATM
layer itself, before the data leaves a node. This means that all the
encryption hardware must be on the local Network Interface Card
(NIC). The card itself has size restraints and power consumption-
cooling requirements. Will laptops using PCMCIA cards ever are
able to enjoy secure ATM? If they do, it will most likely be under
an ASIC control or an external device. These topics need further
evaluation.

2.2 Symmetric Algorithms
Lane and Cohen [10] acknowledge that there are many symmetric
algorithms that can be used effectively with ATM. A general set
of criteria can be established to test an algorithm for eligibility:

1. The algorithm block size should be able to divide evenly
into 384 bits the ATM (payload size). This allows for
greater efficiency.

2. The block size should be relatively large (>=64 bits) so
that small patterns in the plaintext do not generate cipher
text that is easy to perform “cipher text substitution”
attacks.

3. The combination of (1) and (2) limit the block sizes to be
 64, 96,128 or 384 bits.

4. The algorithm should have at least the strength of DES
[23], but preferably higher in order to provide long term
security. This includes both the key length, and level of
immunity to linear ([12],[13],[14])and differential
([2],[3]) cryptanalysis.

5. The algorithm should be easily implemented in hardware
with either direct support of ATM speeds (45-622 Mb/s)
or provisions for parallel execution to sustain these rates.

6. It should include provisions for key agility on a per-cell
basis.

7. Details of the algorithm should be publicly available.
Table 2.1 is a list of algorithms which meet the criteria. All items
have been derived from [10] , [19] and [22].

Algorithm Block size Key Length Security Speed
DES 64 56 Baseline Baseline

Triple DES[15]
DESX[18]
RC2[17]
RC5[16]
IDEA[8]
CA-1.1[7]
CAST[1]
SAFER[11]
LOKI[4]
3-Way[5]

64
64
64
variable
64
384
64
64
64
96

112
56+64
variable
variable
128
64+1024
64
64
64
96

>> DES
>DES
variable
variable
>>DES
unknown
>=DES
unknown
>=DES
Unknown

1/3 DES
=DES
>DES
variable
>DES

unknown
>DES
unknown
>DES

Table 2.1 Crypto algorithms suitable for ATM

Currently the ATM Forum is discussing which algorithm will
become the standard. One problem holding the decision back is
the US Government’s restriction on exporting cryptography. The
current law considers cryptography munitions and limits
exportable encryption devices to 40 bits. This restriction is a
matter of intense controversy. There are several policy proposals
pending which would either increase the allowed bit length, drop
the current restriction altogether, or would call for key
escrow/recovery mechanisms.

2.3 Mode of Operation
A cryptographic algorithm usually provides only the core
functionality of data encryption. Several methods or modes of
operation exist to allow the customization needed for a particular
application. For instance, one mode of operation, called Electronic
Code Book (ECB) may be used to simply encrypt/decrypt in
straight blocks without any feedback or additional operations.
This creates a one-to-one mapping between plaintext and
ciphertext. Other times, the previous input or output will actually
change the next output. These are referred to as feedback modes.
Feedback modes serve to randomize the output (thus producing a
more non-deterministic output) and to make it harder to modify
any given block of cipher text [19].

2.4 Interleaving
When the available hardware crypto chips are not fast enough to
sustain the desired rate (say 622Mb/s) they must be
interleaved (or run in parallel). For instance, if a given chip runs
with 64 bit blocks at 100Mb/s, and we want to encrypt at the
ATM layer would need

[(48/53*622Mb)/100] = [5.63] = 6
chips to sustain an OC-12 line. Note the ratio 48/53 in the formula
compensates for payload/cell-size differences.
There are implications involved when using chips in parallel
because it is necessary to generate new IVs for each chip in some
modes of operation.

2.5 Key Storage
A typical modern day cryptographic system uses two types of
cryptographic functions to establish a secure connection, public-
key and private key.
Public-key encryption allows users to publish a key, which any
node can obtain in order to send encrypted information to the
issuing party. Only the publisher of the key is able to decrypt the
encrypted message with a private-key which is mathematically
linked to the published key. Conversely, public-key signatures
allow a user to publish a verification key, which any node can

verify the signature of a block, but only the publisher can produce
a valid signature. The advantage of public-key is that information,
such as a private-key does not need to be shared among users.
The disadvantage is that the algorithms are inherently slow
compared to private-key algorithms and the keys need to be very
large (768-1024 bits are common)
Private Key algorithms require users to share a common key
between the two (or more) communicating nodes. The advantages
of private-key include: fast encryption and shorter key lengths.
The disadvantages include users must share a secret and keys
must be transferred over a secure channel.
 By using a combination of the two a designer can create a secure
channel using public-key cryptography, negotiate “session key”
with the remote party and continue the rest of the communications
with the speed and agility of private key algorithms. Also security
services such as data integrity and sender authentication are often
achieved through public key digital signatures. This is what is
known as a hybrid scheme, because it uses the advantages of
multiple types of algorithms to produce a robust security system
with good performance.

2.6 Key Agility
Key Agility defines the ability of a system to switch
cryptographic keys. A security device that uses a single key for all
communications would be considered non-key agile. A system
that can switch keys on a per connection basis would be
considered highly agile. In almost all scenarios, it is desirable to
enable a separate cryptographically isolated channel on each
virtual circuit. In a worst case scenario for a key agile system
every cell arriving would originate from a unique VC. An ATM
system that incorporates a technology with data rate x in the
physical layer must be able to handle 424 bits/cell/x if it is to
support a new key for every incoming cell. For instance if x is
derived from OC-12 SONET, the transmission speed is
622Mb/sec, yielding

424/622*106 = 681ns
This means that a new key (and initialization vector, if required)
must be referenced and loaded in less than 681ns (minus the
decryption time). This can have a significant impact on the overall
design of the crypto unit. Agility can be realized by limiting the
number of secure channels (thereby reducing the memory
requirements) and to pipeline the crypto unit so that keys may be
loaded before they are scheduled for decryption-encryption. [20]
uses an address hash table and limits the secure connections to
216.

Figure 2.1 The Key Agile Architecture

Figure 2.2 The General Security Architecture

The general layout of the components is given in Figure 2.1. The
idea is to use enough encryption hardware in parallel to sustain
the link speed.

2.7 Overall Layout
The module described in Figure 2.1 is the heart of the general
architecture presented in Figure 2.2 which demonstrates the
placement of the hardware with respect to the utopia bus. This
design allows traffic flowing through a bi-directional bus to use a
single bank of security hardware, rather than having separate
devices.
Often times the hardware modules will not be local to one device,
but rather spread out into separate modules. This allows larger
memory and faster encryption hardware to be integrated. The
layout may resemble Figure 2.3

2.8 Architecture Description
The Input Buffer
The input buffers job is to essential queue one single cell (424 bits
+ control information) while the memory unit is accessed. In the
event that the memory unit is fast enough, this step is
unnecessary. However, as we pointed out in earlier sections, as
the speed of the network increases, this stage will become more
and more important. If the network speed actually increases so
high that the single buffer is not enough delay to accommodate
the latency of the memory unit, additional units can be added as
long as the memory unit has additional I/O ports.
The Cipher Array
The cipher array is a simple parallel configuration of two main
components: The encryption block and a controlled bypass unit.
Each block accepts one cell plus control data and will process that
cell in a fixed time unit. The processing that occurs is essentially
encrypting (or decrypting) the user payload of the cell (in the case
of the encryption block) or simply passing the data through after
the fixed amount of time has expired (in the case of the controlled
bypass unit).

Figure 2.3 Model Layout

2.9 Algorithm Agility
Algorithm agility is the ability to switch cryptographic algorithms.
An implementation that has one algorithm in hardware would be
non agile. An implementation that could switch crypto routines on
 a per-cell basis would be highly agile. Algorithm agility is easy to
accomplish if encryption is performed in software. However,
ATM speeds dictate that hardware approaches must be used.
Hardware algorithm agility can either be realized through
providing all algorithms of interest on an ASIC, or to use
reprogrammable logic (FPGAs/ EPLDs). One problem with the
latter approach is that achievable data rates might be too slow for
ATM. With today’s technology, it is not possible to reprogram the
chip on a per cell basis. In fact, it takes orders of magnitude more
time to program the chip as compared to the cell arrival rate. The
FPGA method is good for allowing the flexibility of the protocol
design, without allowing algorithm agility per cell.
If the algorithms fit onto a feasible amount of ASIC chips, the
ASIC approach offers a fast throughput to size ratio and may offer
better overall performance in the ATM network.
The ATM Forum is designing the system to allow algorithm
type/version information to be exchanged at secure call setup
time. This allows the two remote hosts to guarantee that both
parties are using the same security devices.

3. Implementation
3.1 Introduction
The next step in our investigation is to determine which device
architecture works best with which type of cryptographic
algorithms. We need both speed and efficiency for a wide variety
of algorithm types. Some algorithms will use a very wide data
path, while others will need many registers and flip flops. It is
unclear which device architecture will perform adequately in an
ATM type environment so we must design a methodology that
will allow us to predict which one will.
The task of assessing all cryptographic algorithm performances in
all RC hardware is an extremely complex task. To overcome this
problem, we decided to analyze the algorithms for their
components (such as XOR, ADD, SHIFT, etc.) and then run
extensive tests on those components based on certain classes of
hardware. Through this research:

• We can derive general statements about cryptography
on RC hardware.

• Our findings can be extended to future algorithms, as
they are proposed.

• We could gain some insight into which architecture
might work acceptably well in an ATM environment.

There are many different branches of cryptographic algorithms,
such as private-key ciphers, public-key ciphers and hash
functions. For the purpose of ATM, we are only concerned with
symmetric block ciphers, since they seem more promising for the
use in the encryption unit. We start by explaining how symmetric
encryption is accomplished.
3.2 Methodology
By studying existing algorithms see Table 3.1 we have
determined that there is a small finite group of components that is
common to all algorithms. Some of these components may have
been discussed above regarding design theory, etc

Algorithm Parameters Components
DES
MADRYGA
NewDES
FEAL
REDOC II
REDOC III
LOKI
KHUFU
KHAFRE
IDEA
MMB
GOST
CAST
BlowFish
SAFER
3-Way
CRAB

64 bit I/O, 56 bit key
var I/O, var key
64 bit I/O, 120 bit key
64 bit I/O, 64 bit key
80 bit I/O, 160 bit key
var key up to 20 kbits
64 bit I/O, 64 bit key
64 bit I/O, 512 bit key
64 bit I/O, 64-128 bit key
64 bit I/O, 128 bit key
128 bit I/O, 128 bit key
64 bit I/O, 256 bit key
64 bit I/O, 64 bit key
64 bit I/O, 0-448 bit key
64 bit I/O, 64 bit key
96 bit I/O, 96 bit key
1024 bytes I/O, 128 bit key

P-BOX,XOR,SBOX,ROT
XOR, SFT,ROT
XOR, N/A f box
XOR, ROT
P-BOX,SBOX,XOR
XOR,STOR
XOR,SBOX,P-PBOX
XOR,Dyn-SBOX
XOR,SBOX
XOR,ADDER,MULT
XOR,MULT,STOR
SBOX,ROT,ADDER
XOR,SBOX
XOR,SBOX,ADDER
XOR, ADDER,ROT,GFMULT
XOR , P-BOX, ROT
P-BOX, XOR,AND, OR, NOT

Table 3.1 The available algorithms and their component breakdown

3.3 Component Breakdown

Table3.2 summarizes what we found in the analysis. Each
component must be mapped into hardware, but we need a method
that will yield accurate results across all platforms.
Component Type
XOR/AND/OR/NOT
SBOX
SFT/ROT
STOR
ADDER
MULT
PBOX
GFMULT

Boolean Logic
Substitution Box
Shift/ Rotate Element
Storage Element
Modulo Addition
Modulo Multiplication
Permutation Box
GF(2n) MULT1

Table 3.2 Component Description

3.4 Implementation
The next step is to build behavioral models using a hardware
description language (HDL). Using these models we can map the
given components into various architectures and record the
results. HDLs were chosen for their portability across platforms.
The advantage is that the differences in entry style can be factored
out of the overall equations, because the resulting design is
derived from the same source code. After the models are built,
they were synthesized and mapped using the tools appropriate for
the device. Various optimizations were selected over multiple
runs to average the results. The most interesting results are the %
resources consumed and the critical path delay.
Device Selection
In order to determine the final results of our experiments, two
stages of processing were needed. The first is the synthesis stage,

which compiles the HDL into device specific logic maps or
netlists. The second is a place and route stage where the netlists
are mapped into actual hardware entities. Because of the
availability of these tools, we were only able to work with two
vendors, namely Xilinx Corporation and Altera Corporation.
Fortunately, these two vendors are the market leaders and also
provide some of the largest devices for us to work with.
Unless otherwise noted all implementations of the algorithms
were performed on speed grades 3. Devices are selected based on
their availability in the market place and their relative
size/speed/price/package selection. For example, XILINX has a
multitude of devices in various families. However, only the
XC4000 family is large enough to accommodate the large scale
design of a cryptographic algorithm (typically 20K- 60K gates),
so it is the only one used here. The same holds for Altera, where
only the FLEX10K devices can support the needs of our
application.
Initial research has revealed an average PAD delay for each
device tested, which is always subtracted from the critical path
delay in cases where clocking was not used to determine
component speed. The results of this calculation are in Table 3.3

Device Input

delay(ns)
Output
delay(ns)

Total

EPF10K70RC240-3
XC4020EPG223-3

5.6
2.5

5.3
8.5

10.9
11.0

Table 3.3 PAD delays in experimental hardware

3.5 Component Description
3.5.1 Permutation Boxes

Permutation boxes are diffusion elements that are easily
implemented in hardware. Because the operation is essentially a

remaping of input pins to output pins, the synthesis of such a
circuit utilizes very few resources in RC hardware if sufficient
routing resources are available. In cases where drivers are not
needed, the realization of such a circuit only changes the pin
mapping of the components connected to it.

Fig 3.1 Permutation Box

Fig.3.2 Feistel Network

3.5.1.1 Feistel Networks
Many block ciphers use Feistel network architecture, named after
the inventor, Horst Feistel, who made major contributions to the
field in the 1960s and 1970s while working on ciphers for IBM
Research. The Feistel network is simple in concept. One of its
most attractive features is that it allows for particular algorithms
to be used for both encryption and decryption due to its inversion
properties. The basic architecture is as follows. The datapath is
split into two halves, the right and left sides. The right half is
operated on by function f which incorporates elements of
confusion, diffusion and key material and produces an output of
the same size.
The output from the f function is XORed with the left half which
is then stored into the right half. A copy of the original right half
is swapped into the left half, thus completing the cycle (see Figure
3.2). It should be noted that only the left part L[i-1] is encrypted
in one round, whereas R[i-1] is passed through in the clear.
3.5.2 Substitution Boxes
Substitution-Permutation networks or SP networks are elements
that add hybrid confusion-diffusion to the input data. F-functions
in Feistel networks are often based on them. Substitution elements
take a m bit input and provide an n bit output (see Figure 3.3). The
elements can be implemented as look-up tables or as
combinatorial logic, but both are rather expensive so to minimize
the cost, m and n are often kept small.

Fig 3.3 3x4 Substitution Box

Implementing these components can be rather expensive in
reconfigurable logic because they are not typically tuned to look-
up table type architecture. In fact, our studies have shown that s-
boxes are often the largest component in a synthesized design,
requiring tens or hundreds of logic elements to implement even
small tables, such as a 6 x 4 which has 64 four bit values (256 bits
each). Hardware architectures that support RAM and ROM
components faired extremely well in these tests. It should be
noted that in both examples that use ROM architecture, special
design parameters were used to utilize the special hardware.
3.5.3 Shift-Rotate Registers
Shift and Rotate registers are commonly found in cryptographic
applications. They are commonly found in the key scheduling
logic and there are various architectures which work with
different types of ciphers. Combinatorial shifters are the simplest
to map into hardware because they are essentially a permutation.
As was pointed out earlier, these permutations take hardly any
hardware resources. The more advanced shifters, such as decisive
and sequential shifters require more logic and will therefore be
analyzed below.
Decisive shifters
Decisive shifters are components that take in two inputs. The first
is the data word to be shifted, and the other is a binary value,
allows the shifter to decide when to shift or not. All processing is
done combinatorially and therefore doesn’t require clocking or
registered output. However, the decision circuitry requires a
multiplexer so this unit is more than a simple permutation.
Sequential Shifters
Sequential shifters are components that register the input and shift
based on a clock edge. They require the most amounts of
hardware resources, but can offer the advantage of a register and a
combinatorial shift in one component. For some designs this may
offer the perfect element for key scheduling or round iteration
processing.

Design device Optimization LE Utilization Max Delay
FLEX10K Speed 64 10.9ns Sequential Area 64 10.4ns
FLEX10K Speed 32 5.2ns

 Area 32 5.2ns Decisive
XC4000E Area 16 19.3ns

Combinatorial N/A N/A N/A N/A
Table 3.4. 32 Bit rotation box

Observe that the performance was equal across the two devices
for the sequential shifter implementation, but dropped off
significantly in the FPGA for the multiplexer based design.
3.5.4 Adders
There are various types of standard adder architectures which
have various speed/area properties and are well suited to different

types of hardware architecture. Rather than try to model and
analyze each one in each different piece of hardware, we just used
the built-in functions provided with the hardware vendor. For
Altera, we used the LPM Module LPMADDSUB and for Xilinx,
we used the XBLOX module ADDSUB. The results are in Table
3.5

Device Size Optimization Utilization Max Delay
32 bit Area 63 LEs 102.4ns EPF10K10TC144-3 Speed 110 LEs 43.1ns
64bit Area 127 LEs 196.0ns EPF10K10TC356-3 Speed 240 LEs 73.2ns
32 bit - 17 CLBs 24.1ns XC4020EPG223-3 64 bit - 33 CLBs 45.7ns

Table 3.5 a Adder in various hardware

3.6 Component Conclusion
This section has presented a description of some of the
components found in cryptographic algorithms. In addition, the
results of our analysis accompanied each description. It was
shown that neither architecture analyzed has a distinct advantage
over that other. One may excel in one area, while the other will
excel in an unrelated area. Making a choice for a particular vendor
is a question of the specific cryptographic algorithm and the cost
of each chip verses the efficiency of the component placement.

3.7 The Data Encryption Standard
3.7.1 Introduction
The Data Encryption Standard (DES) is probably the most
commonly used algorithm in the world for symmetric encryption
of data. Especially important is the fact that the algorithm has
been approved for use in ATM by the ATM Forum. For an
explanation of DES,(see [6],[21, page 70]).We should be able to
assess whether RC hardware is principally acceptable for use in
high speed secure networks.
3.7.2 Design
DES uses Feistel Network architecture with 16 rounds. Each
round can be implemented as separate hardware with pipe-line
stages between each one for high throughput applications.
However, this consumes major silicon real-estate and generally
will not work in reconfigurable hardware because it is too large.
For designs with less than 16 rounds of fixed hardware, some kind
of feedback loop must be established.
When we set out to implement DES in reconfigurable logic for
high speed networks, there was a set of design criteria that we
wanted to meet.

• It must be targeted for high performance (as opposed to
smallest size).

• It must complete an operation (such as encrypt or
decrypt) in the fewest possible cycles (which is 16 for a
simple design).

• It must fit into a commercially available chip (as opposed
to one that is only in beta test).

• It must provide for loop unrolling for future speed
improvements.

Figure 3.4 shows the layout of the components from a schematic
point of view. Note the use of two 64bit registers: one on the
inputs and another in the feedback loop. This design allows us to
“steal” an extra clock cycle at the expense of 64 flip-flops and one
gate more of complexity through the Feistel network (through the
MUX). Without the secondary register at the data feed, we would
be required to go to INIT state after the sixteenth round completed
so that the outputs could stabilize to the correct data (DONE is
asserted) before new data is read in, With this register in place, we
can successfully read a new data set in at the conclusion of round
16 thus producing the cycle chain INIT, R1, R2,…, R16, R2,….
Etc. Without it the state transition diagram must conclude to INIT
every time before starting the next set. This addition saves a
single pulse width of latency and increases system throughput by
6.25%.
In addition to designing the main data path for high speed, the key
scheduler must also be designed to deliver data at the same rate
and with correct framing with respect to the data path. In order to
do this we placed a single register to sample data coming from a
multiplexer. The multiplexer is fed by both the feedback and the
outside key input. The output from the registers feeds a unit chain
of schedulers, one for each unrolled loop in the path. Each key
unit schedules the keys for one round, receiving control
information from its respective command line (stkeyunit0,
stkeyunit1, stkeyunit2, etc.). The output from each key unit is fed
to its respective Feistel network and the next unit in the chain. The
last unit in the chain feeds its Feistel network and then loops the
output back into the master key scheduler for storage in the
registers. This operation is displayed in Figure 3.5.

Fig 3.4 Schematic map of DES algorithm

Fig 3.5 Schematic map of key schedule logic

3.8 Comparing the Results in Reconfigurable Hardware
In our experiments we compared two high end devices
(manufactured by Xilinx and Altera) in a series of tests that we
hope show the relative performance of cryptographic algorithms.
It may be unclear which device actually performs better, and in
actuality, they were very close. It is difficult to estimate the actual

resources consumed in a device since there are so many
discrepancies in the way information is provided by the
companies. Often times the transformation between logic
elements (LEs) and typical gate counts is overestimated and can
confuse the user.

Component Type LEs REs LeW($) ReW($) %
Resources Speed(ns)

A 32 0 1.92 0 2.78 12.0 XOR B 16 16 8.16 8.16 2.04 10.4
A 0 512 0 87.04 133.33 18.3 1 SBOX(ROM) B 80 64 40.80 40.80 10.20 15.8
A 113 0 6.78 0 9.81 49.6 I SBOX(AREA) B 18 18 9.18 9.18 2.29 51.1
A 119 0 7.14 0 10.22 31.0 1 SBOX(SPEED) B 89 89 45.39 45.39 11.35 36.3
A 32 0 1.92 0 2.78 5.2 Shifter(DecArea) B 16 16 8.16 8.16 2.04 19.3
A 63 0 3.78 0 5.47 102.4 Adder(32bitArea) B 17 17 6.67 6.67 2.17 24.1
A 127 0 7.62 0 11.02 196.0 Adder(64bitArea) B 33 33 16.83 16.83 4.21 45.7
A 0 256 0 43.52 66.67 9.5 Buffer(256x32) B 360 256 186.6 130.56 45.92 60.6
Table 3.6Components Evaluated with Size Comparison

3.9 DES Comparison
After completing the design using VHDL modeling and synthesis
tools, we realized an entire DES implementation. We also
determined the following performance ratings. The results are
posted in Table 3.7. For a maximum throughput, we measured
62.5Mb/s from the Xilinx device without a single loop unrolled.
Close behind it was the Altera device which maxed out at
57.60Mb/s. One important difference, however, is that the Altera
device cannot be unrolled any more because the memory EABs
have been exhausted. From this point on, we will consider the
designs that are ROM mapped only in the Xilinx devices because
of the limitations in the Altera chips. So this yields comparatively
62.5Mb/s for Xilinx and 39.96Mb/s for Altera. Both of these
designs support loop unrolling. We will now analyze these
designs in the same manner as the individual components.

4. Conclusion
This research paper hopefully gave the reader some insight into
ATM networks, the issues with providing security over those
networks and an introduction to issues using reconfigurable logic
for the main encryption hardware. We also provided data
regarding the implementation of cryptographic algorithms in
reconfigurable hardware in general, such as the cost vs. speed, and
how to asses an algorithm for its size and delay characteristics
before any design work begins. Although there has been
substantial work done in the area of reconfigurable architectures,
very little has been done in terms of cryptographic algorithms. We
hope that this work will alert both potential developers of security
devices and reconfigurable hardware vendors about the viability
of cryptographic applications and the need for further study. Often
times crypto algorithms exhibit patterns in there architecture that
may be exploited by new hardware designs. With the recent
interest in cryptographic technologies by mass market companies,
the use of new hardware technologies will be of value.

Device Opt. Floorplan Resources Delay(n
s) Clock(MHz) Tput.(Mb/s)

Area-low
Collapse=off

Redundancy=off
P/R=2.2

Manual 448 154.9 7.00 27.99

Same as above
P/R=4.4 Automatic 646 115.0 9.10 36.40

SBOX=RAM Manual 359 145.5 6.80 27.20
SBOX=RAM

P/R = 4.4 Automatic 549 76.0 14.10 56.40

XC4020EPG223-3

SBOX=RAM Auto w/o Bus 545 70.5 15.60 62.40
Norm/Speed/Are

a Automatic 1319 112.7 9.99 39.96
EPF10K30RC240-3

SBOX=RAM Automatic 403+8EA
B 69.4 14.4 57.60

Table 3.7 DES Performance

In closing, there has been a lot of work done in the last few years
regarding ATM security. I believe that the concept of using
reconfigurables for this technology is a promising and interesting
addition to the growing interest in the field of high speed secure
networks. It is hoped that through the experiments performed in
this study any designer can make an intelligent decision as to
which hardware will meet the needs of their application.

5. Bibliography
[1] C.M. Adams and S.E. Tavares, Designing S-Boxes for ciphers
resistant to differential cryptanalysis. Proceedings of the 3rd
Symposium on State and Progress of Research in Cryptography,
pages181-190, Feb1993.
[2] E. Bilham and A. Shamir, Differential cryptanalysis of DES
 like cryptosystems.
In Advances in Cryptology CRYPTO ‘90 Proceedings,
pages 2-21 Springer Verlag, 1991.
[3] E. Bilham and A. Shamir, Differential cryptanalysis of DES-
like cryptosystems. In Journal of Cryptology, volume 4 pages 2-
21,1991
 [4] L. Brown, J. Pieprzyk, and J. Seberry, LOKI: a cryptographic
primitive for authentication and secrecy applications. In Advances
in Cryptology – AUSCRYPT’90 Proceedings, pages229-236
Springer-Verlag 1990.
 [5] J. Daemen, R. Govaerts, and J. Vandewalle. A new approach
to block cipher design. In Fast Software Encryption, pages 18-32.
Cambridge Security Workshop Proceedings, Springer-
Verlag,1994.
[6] W.F. Ehrsam, C.H.W. Meyer, R.L. Powers, J.L. Smith, and
W.L. Tuchman. Product block ciphers for data security. U.S.
Patent Number 3,962,539 June 1976.
[7]H.Gutowitz. Cryptography with dynamical systems. Cellular
Automata and Cooperative Phenomenon,1993.
[8] X. Lai and J. Massey. A proposal for a new block encryption
standard. In Advances in Cryptology-EUROCRYPT ’90
Proceedings, pages 389-404. Springer-Verlag, 1991.
[9] S. Lane. Security issues in moving from private to public
ATM service. In ITU Americas Telecom 96, Technology Summit,
Rio de Janeiro, Brazil, June 1996. ITU.
[10] S. Lane and G. Cohen. Security in ATM networks.
Proceedings of the Technical Conference on Telecommunications
RD in Massachusetts, pages 23-32, 1995.

[11] J.L. Massey. SAFER K-64: a byte oriented block-ciphering
algorithm. In Fast Software Encryption, pages 1-17. Cambridge
Security Workshop Proceedings, Springer-Verlag, 1994.
[12] M. Matsui. Linear cryptanalysis method for DES cipher. In
Advances in Cryptology-EUROCRYPT ‘93 Proceedings, pages
386-397. Springer-Verlag,1993.
[13] M. Matsui. Linear cryptanalysis of DES cipher (I). In
Proceedings of the 1993 Symposium on Cryptography and
Information Security (SCIS 93), pages 3C.1-14, Shuzenji, Japan,
Jan 1993.(In Japanese).
[14] M. Matsui. Linear cryptanalysis method for DES cipher(III).
In Proceedings of the 1994 Symposium on Cryptography and
Information Security (SCIS 94), pages 4A.1-11, Lake Biwa,
Japan, 27-29 Jan 1994. (In Japanese).
[15] R.C. Merkle and M. Hellman. On the security of multiple
encryption. Communications of the ACM, 24:465-467, 1981.
[16] R.L. Rivest. The RC5 encryption algorithm. Dr. Dobb’s
Journal, 20:146-148 Jan 1995.
[17] M.J.B. Robshaw. Block ciphers. Technical report, RSA
Laboratories, Jul 1994.
[18] M.J.B. Robshaw. Personal communication, 1995.
[19] Bruce Schneier. Applied Cryptography Protocols:
Algorithms, and Source Code in C. Wiley 2nd edition, 1996.
[20] Daniel Stevenson, Nathan Hillery, and Greg Byrd. Secure
communications in ATM networks. Technical report, MCNC
1995.
[21] Doug Stinson. Cryptography: Theory and Practice. CRC
Press, 1995.
[22] Douglas R. Stinson. Cryptography: Theory and Practice.
CRC Press, 1st edition, 1995.
[23] ANSI X3.92. American national standard for data encryption
algorithm (DEA).American National Standards Institute, 1981.

