
An e-Learning Environment based on Open-Source Software

SEBASTIANO PIZZUTILO, FILIPPO TANGORRA and BERNARDINA DE CAROLIS,
Dipartimento di Informatica

Università di Bari
via Orabona 4, 70126 Bari

ITALY

Abstract: - The system we have built is aimed at supporting learning activities of the degree course in computer
science. The defined learning environment is based on ATutor, a freeware and multiplatform Learning Component
Management System developed by the University of Toronto. Among the present courses, the attention is pointed
out on the computer architecture course, which also integrates a processor simulation within the courseware.

Key Words: - Educational software, Courseware, Computer architecture simulation

1. Introduction
The computer aided learning is suitable in particular to
study computer science for many reasons: for the well
recognized potentiality of the multimedia
communication in improving the learning process, for
the flexibility of the computer environment which
allows the teacher to adapt contents and didactic tools
to new learning needs and for the “autoreference” of
teaching this particular topic using just the technology
subject of the study.

The objective of the implementation of the present
learning environment consists into encouraging and
supporting teachers to apply e-learning techniques in
addition to the progression of the regular course. In
fact, e-learning approach is suitable for some peculiar
conditions of our degree course regarding the high
number of student (the annual enrolment is
approximately 500 students) and the need to supply
courses by teleconferencing to several University sites
in the region. The e-learning environment, which do
not substitutes the traditional course, aids the teachers
into didactic activities that are impossible to give for
the previously said conditions in order to follow each
student in the learning process, to suggest individual
training path for reinforce concepts of lectures, to
verify with opportune tests the course effectiveness
and so on.

The courses supported by the e-learning
environment have been implemented on ATutor, an
open-source Learning Component Management
System (LCMS), developed by the University of
Toronto [1].

The choice of the e-learning platform has been
determined by the need to change an older release of
the system, developed using Toolbook and composed
by only one course in a prototype version.

The old system was organized in different modules
(or components) devoted to the following functions:
- Management of theoretical contents and exercises

(for teachers),
- obtaining statistics of the use (for teachers) ,
- evaluation of student learning process (for

teachers),
- management of the learning tracks (for teachers

and students),
- studying of theoretical hypermedia lectures (for

students),
- making exercises (for students),
- self-evaluation (for students).

In this paper we present the new e-learning
environment that provides these same characteristics
and in addition new functions, like the following :
i) a more dynamic and efficient management of
components, ii) allowing the use of the system on
different operating systems, on the network and iii)
maintaining low the costs of hw/sw resources of the
clients and the server. For this aims, we have decided
to use a freeware LCMS platform, compatible with
standards and usable on different systems (Windows,
Linux,…).

Moreover, in the paper we present an example of a
computer architecture course (ARCHO2), that
provides and integrates two different sub-components:
ARCAL, to support the study of theoretical concepts
and to verify lectures and APE, to support the
laboratory activity by using a computer architecture
simulator.

2. The LCMS Open-Source platforms
The LCMS platforms have acquired growing
popularity in the e-learning field and constitute the

evolution of the Learning Management Systems
(LMS). In addition to the usual functionalities of LMS
systems to manage e-learning courses, the LCMS
emphasizes the organization of the e-learning course
by a content point of view, as composed of basic
reusable and independent learning units, called
Learning Objects (LO).

We have considered the more popular available
LCMS open-source platform, taking in account the
following characteristics:
− easy management and maintenance of the LCMS,
− usability and accessibility of courses supplied by

LCMS,
− documentation and technical support availability,
− IMS and SCORM standard conformity,
− multiplatform support,
− self-learning functionalities,
− cooperative working functions.

Therefore, we have evaluated many LCMS
platforms [1-5]:
 ATutor
 SPAGHETTI LEARNING
 MOODLE
 ILIAS
 CLAROLINE

The ATutor system has emerged as the tool that

better met project requirements. In fact ATutor has the
following features: 1) a specific interface for the
course management; 2) a very easy building and
navigation among courses; 3) an import and export of
learning contents, according the IMS/SCORM
standard; 4) the availability of the integration of e-mail
functions to contact all students of a particular course;
5) the management of forum and chat functions; 6) the
user tracing by access storing; 7) producing statistics
on courses access and test results; 8) context help; 9)
the glossary; 10) the server multiplatform (Windows,
Linux e Unix) support.

The ATutor architecture has been developed by the
Adaptive Technology Resource Centre (ATRC) of the
University of Toronto. The figure 1 shows the
standards used to manage the learning objects used to
organize and manage the independent cells of a course
and to allow its use by teachers and student. It has been
written using PHP, Apache and MySQL, which are
useful standard to resolve our system requirements.

DATABASE
ATUTOR

File .php

File .html

File .gz
File .zipRecordset

SQL

APACHE

MYSQL
SERVER

PHP

PHP-
MYSQL

PHP-
ZLIB

DATABASE
ATUTOR

File .php

File .html

File .gz
File .zipRecordset

SQL

APACHE

MYSQL
SERVER

PHP

PHP-
MYSQL

PHP-
ZLIB

Fig. 1 Architecture of ATutor

3. The structure of the e-courses
The system offer the possibility to define on-line
courses, taking in account the typical learning needs of
a student user, as:
− the choice of personalized learning path, in order to

acquire theoretical knowledge taking account of the
more appropriate learning times for everyone. The
course contents are organized in didactic units and
are activated and shown progressively, following the
sequence of teacher’s lectures, to avoid the complete
substitution of lectures with a virtual interaction with
the on-line course. In fact, in our approach the aim
of e-course is to reinforce the learning process,
focusing it on the interaction with the teacher and
not with a computer. Moreover, the navigation
trough contents of the course happens at different
level of granularity. At a lower level, the student can
consult the material of the teacher to support the
study phase. At a higher level, the system shows the
same contents in a synthetic form (eventually storing
the slide used by the teacher in his lectures) in order
to support the phase of revision. Links from the
synthetic level to the corresponding argument in the
detailed level assure the deepening of not clear
contents. The complete didactic material at the end
of the lecture cycle provides an e-course for not
attending students.

− Testing the knowledge of contents of didactic units
for a self evaluation of the obtained progress in the
learning process. In case of negative results of tests,
the system suggests to the student specific
arguments to re-examine. In fact, tests are correlated
to the arguments at the end of every didactic unit;.
The results of the tests are stored in a database and
they are shown a) in individual report of each
student in order to follow the learning process of the
single student or b) in statistical report to control the
classroom trend. Moreover, the system is able to
store the student’s learning path (the visited units,

the results of exercises and tests), so that it is
possible to recall the learning process starting from
the break point.

− Developing exercises on the visited didactic units for
proving the re-elaborative ability of the students to
apply the just learned concepts to new situations.
Solutions, links to analogous carried-out exercises
and suggestions to correlated theoretical arguments
aid the student in this applicative activity.

The other main user of the course is the teacher or

the on-line tutor. The system allows the teacher to
support both main aspects of its institutional role : the
capacity of transfer knowledge, by arranging didactic
material, and the possibility to verify the learning
process of the students. Therefore, the systems permits
tasks for:
− creating, updating and managing didactic unit

contents (at different granularity level), tests and
exercises. It is also possible to establish the path of
the various arguments and eventually links among
them.

− Verifying tests and exercises made by students
analysing their results both in individual or
aggregate form. It offer the possibility to download
the traceable data to control the study path of
students and statistical parameters on accessed
didactic units.

The course considers also a skilled technical user
providing functionalities of management of aspects
like as, for example, the authorizing process for the
access to the course, the coordinating and monitoring
of its use and so on. This type of user is identified as
the learning administrator.

The overall view of the user of course is modelled
in figure 2 and it includes both the functions and the
quality parameters of system.

Fig. 2. The e-course structure

The model follows a top down approach, therefore
the figure 3 reports the function’s refinement of the
lesson management.

Fig. 3. The functions associated to the lesson.

The course we have implemented provides the

access and the navigation for three distinct users: the
student, the teacher and the learning administrator
using the “ATutor” platform.

4. ARCHO2: an example of e-course
Among the courses realized in the described platform,
we illustrate the ARCHO2 course, while it shows
peculiar characteristics.

 The ARCHO2 course presents contents (in
Italian) corresponding to didactical units of the course
of “Computer Architecture”. In addition, the basic
concepts of theoretical lectures can be reinforced with
laboratory activities, that allow the student to be
familiar with the internal format of data types and the
assembly language level [6]. Therefore, this course
includes the possibility for the students to perform
laboratory activities.

The motivations of the laboratory activities in a
computer architecture course are the following: a) high
costs of the hardware equipment which increase with
the number of workstations; b) problems to keep the
laboratory up-to-date with the constant technological
innovations (important for processor architecture
studies); c) high costs of equipment maintenance d)
the difficult to acquire on the market commercial
assembly compiler, however not always compatible
with current new processors.

On the other side, there are difficulties to follow
pedagogical objectives of the course, as follows: a) to
introducing progressively the complexity of the
modern computer instruction set; b) to observe the

relationship between assembly/machine level
languages and the architecture; c) to compare the
instruction set and performance of different computer
type (RISC/CISC), because laboratory components are
not so rich and refer to a specific hardware system [7].

At last, if the course must be used in addition to
the normal laboratory time and considering that the
course is made in teleconferencing, it can’t provide to
use specific hardware.

In order to overcome the previous limitations, we
use a dynamic computer architecture simulation
environment, suitable for the pedagogical aims of
laboratory activities [8,9].

The course of computer architecture provides and
integrates two different tools: the ARCHO course to
support the study of theoretical concepts and exercises
and the ARCHO laboratory to support laboratory
activities using a processor simulator.

4.1 The ARCHO2 course
The contents of the lectures cover topics according
suggestions of ACM/CS [10] guidelines for
architecture courses and using the popular textbook by
A. Tannenbaum [11].

The didactic material have been organized
according to course structure examined in the previous
Section and following the methodological choice to
apply the same learning strategy between the lectures
in classroom and the course. So the student can
retrieve in the course the same guidelines of the
presentations used by the teacher in the lessons. In
addition, the navigation in the item of didactic units is
organized by opportune links to other items or didactic
units that are related to current items or exercises.

Fig. 4 the structure of the didactic units of ARCHO2

 The course is accessible by a general index and
presented to the student in a suggested logical order to
avoid the getting lost in hyperspace [12] (each unit has
a root document, where the student any time can go
back)

In figure 4 the structure of the didactic units of
ARCHO2 course is reported.

The system is able to store the student’s learning
path (the visited units, the results of exercises and
tests), so that it is possible to recall the learning
process starting from the break point. It uses a data
base of general information about students, linked with
information about the learning progress of each
student (tracks on already read didactical units,
exercise results and so on…) so as to permit a self
evaluation of the obtained learning progress.

Figure 5 shows an example of interaction of the
ARCHO2 course.

Fig.5 Main dialog window of ARCHO course

4.2 The ARCHO2 laboratory
The laboratory activities are performed by APE
system, a computer architecture simulator.
The design aim for APE system was to provide the
teachers with a tool that allows easily the rapid
prototyping of processor simulators, to use in the
laboratory activities. For this purpose, the system
supports the processor simulator development

providing two steps: the architecture definition step
and the architecture test step.
The object oriented approach has been used to
describe the computer architecture: the set of the
objects corresponds to the computer structure and their
methods implement instructions and addressing
methods [8,9]. This approach permits to proceed in an
iterative way for developing the processor simulator
trough an approach similar to the rapid prototyping

The teacher establishes the processor requirements
and, at the definition step, chooses the components of
the architecture to simulate (as the type and the
number of registers, the attributes of the processor and
the memory…) and defines their parameters. The
system then constructs a simulator that is the
representation of the defined architecture including
only those objects necessary to meet the teacher
requirements. It serves, in the test step, as a work
version of the architecture simulator in order to verify
the result of the design activity. During the test step,
the teacher evaluates, by running assembly programs,
the simulator's actual behaviour respect of its expected
behaviour. If the simulator fails the execution, the
teacher identifies the problems and establishes
adjustments to the requirements for the architecture
definition step repetition.

The APE system builds the desired simulator that
students run with assembly programs and displays
results of the execution in terms of the processor
status.

Fig. 6 The APE architecture

The overall structure of APE provides two main

subsystems (figure 6), which support the two different
user-interaction phases: the Architecture Definition
Subsystem (APE-ADS) and the Architecture Test
Subsystem (APE-ATS).

Helped by a graphical interface, the user can
perform activities as: writing and translating of
programs in assembly language or in symbolic
language Micro Assembly Language (MAL), a
didactic language for a microprogramming level
[11,13]; running and debugging of machine programs
and microprograms; displaying of the architecture
status both at ISA level and at the microprogramming
level; simulation of the performances of the designed
architecture at both same levels.

The student interacts with the simulator defined
from the teacher at the instruction set level or/and at
the microprogramming level. On the basis of the
chosen architecture level, the program has to be
written in assembly language (ISA level) or in
microcode (microprogramming level). In the simulated
run time, the simulator displays results of the
execution in terms of the architecture component’s
status (figure 6).

The interaction can be performed from the student
in two different ways:
a) through a single instruction: the user initialises the
components (register, memory, etc.) and writes the
instruction to be executed.
b) through a program: the user loads a previously
saved program into the memory, or edits a new one.
The execution of the program can be performed step
by step to control the status of the architecture after
each instruction.

In both cases, the simulator controls the program
syntactically and semantically. The syntactic analysis
is aimed at discovering the editing errors. In the
semantic analysis, the simulator verifies that the
program can be executed with the defined architecture
and discovers if some of the program instructions refer
to components that the user did not select.

Fig 7. Status Simulation of a CISC architecture

During the execution, the student examines both

architectural levels the ISA level and the
microprogramming level, as shown in figure 7. In this
way it is possible to have a complete control over the
execution of the program. In fact, in the step by step
program execution, the user could analyse the status of
the defined architecture at the end of the execution of
each instruction. By switching to the microarchitecture
level, the user can perform a step by step execution of
the microcode associated to the current assembly
instruction.

5. Conclusions
 In this paper we have presented an experience of
implementation of courses of computer science on a
freeware and multiplatform Learning Component
Management System developed by the University of
Toronto. The example of the presented course
integrates a processor simulation within the
courseware. In particular it has been profitably used by
students of the first year of a degree course in
computer science at the University of Bari .

The first results of the system evaluation by
student are evidencing some rigidity in the use and in
the structure of the exercises and the need of a better
support in the use of all the functionalities of the
system for each type of potential users. For these
reasons we are planning further development in
direction of supplying the previously reported limits.

In particular, we will study the possibility to
implement information agents simulating on-line
tutors which adapt the exercise type to the student
learning level.

References:
[1] www.atutor.ca
[2] www.bigwebmaster.com
[3] www.moodle.com
[4] www.ilias.uni-koeln.de
[5] www.claroline.net
[6] D.H. Jonassen, Designing structured hypertext
and structuring access to hypertext, Educational
Technology, vol. 28, no. 1, 1998.
[7] M. De Blasi, and F. Tangorra, Prolog simulation
of computer architecture in laboratory activities, IEEE
Transactions on Education, vol. 35, no. 4, 1992, pp.
331-337.
[8] S. Pizzutilo and F. Tangorra, An Object
Oriented Tool to Simulate Multi-Level Computer
Architectures, International Journal of Modelling and
Simulation , vol. 23, no. 1, 2003, pp13-21.
[9] S. Pizzutilo and F. Tangorra, A rapid
prototyping environment for designing and simulating
multilevel computer architectures, Simulation, Vol. 78,
no 8, 2002, pp 512-525.
[10] ACM/IEEE Computer Society, Computing
Curricula,1992.
[11] A.S. Tannenbaum, Structured computer
organization. Prentice-Hall International, Inc., third
edition, Englewood Cliffs, NJ, 1990.
[12] D.M. Edwards and L. Hardman, Lost in
Hyperspace: cognitive mapping and navigation in a
hypertext environment, Hypertext: theory into
practice, Ablex Publishing Corporation, 1989.
[13] J. Donaldson, A Microprogram Simulator and
Compiler for an Enhanced Version of Tannenbaum's
Mic1 Machine, 26th SIGCSE Techn. Symp. on Comp.
Science Education, ACM SIGCSE Bulletin, 27 (1),
1995, pp. 238- 242.

