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Abstract: A new generation of the fuel management avionic system is introduced. The idea comes from a 
European Community project. It implements a distributed control system using CAN bus as communication 
channel between components. The research proposal is to build smart components and to confirm the viability-
reliability for real implementation. The paper describes the applied distributed control concepts, the experimental 
development and the results obtained in our laboratory prototype system. 
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1   Introduction 
Present Fuel Management avionic systems have a 
central control, which consists of a point-to-point link 
between components of the fuel system and a central 
computer. The components are sensors and actuators. 
This communication scheme involves a lot of wiring 
and connectors, which increases the weight and 
causes many possible connection problems. Our 
proposal is try to replace this present scheme for 
another one that is simpler, through the use of the 
fieldbus as communication channel between 
components. A fielbus consists in several nodes 
connected to a bus, which has few wires. Like we 
will see later, we chosed the CAN bus to make this 
communication. 
   Our research is part of an European Community 
Project. Three universities and six companies are 
working together to obtain a final product. The main 
activity of the universities is give scientific support to 
the companies. 
   Much information was consulted to contribute to 
the experimental research development. The 
fieldbuses documentation was very important [1], and 
also the knowledge of the actual CAN bus 
applications, [2] and[3], were necessary to introduce 
us into the CAN-bus development world and its 
possible application to avionics.  
   This paper presents the experimental development 
of a new generation of fuel management control for 
helicopters and airplanes. The idea of Distributed 
Control is a main protagonist along the research 
development. The main problem to solve is how to 
devise this distributed control. 
 
 

   In the first part, the paper shows how the distributed 
control was designed; we present the idea of the 
automata, the elimination of the central computer, the 
notion of common code for each component and an 
example to understand the functional distribution 
concept. Then we present how the distributed control 
was implemented, what we wanted to test, and the 
building of smart components. Then, we explain the 
experimental development, with our laboratory 
simulators. Finally, we show the obtained results; we 
compare our testing prototype results with the real 
system, and give some conclusions of the work. 
   Aircraft fuel management systems have some 
interconnected tanks, were the fuel flows. Main 
operations of the fuel management systems are 
refueling, engine supply and aircraft balancing and/or 
trimming. The fuel transfers from tank to tank, or 
from/to external fuel supply or engines, are controlled 
with on/off devices such valves and pumps. From the 
control point of view this kind of systems is of hybrid 
nature, combining continuous time processes with 
discrete-event processes. The main aspects of the fuel 
system operations can be represented as sequences of 
states. Thus, it is natural to use finite state machines, 
automata, for the functions representation and control 
development.  
   A main concept to be presented in this paper is the 
decomposition of the general system operations into 
interacting local automata. Each system smart 
component works according with its local automaton. 
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   2   Distributed Control 
We got to distribute the control eliminating the 
central computer, which controlled centrally the 
previous fuel system. We shared out the control 
designing smart components with common code 
software; necessary for certification in avionics. 
 
2.1 Fuel System Operations 
There are two basic operations on the aircraft fuel 
systems. We will present shortly these operations to 
introduce the working environment. They are: 
 
2.1.1   Pressure Refuelling 
It consists in filling the fuel tanks through valves. 
When the tanks reach the desired level, the valves 
will have to be closed, and so, the operation finish. 
 
2.1.2   Engine Supply 
It consists in supplying fuel from the tanks to the 
aircraft engines. This operation needs pumps to push 
the fuel toward the engines. The pump will not start if 
the fuel level is not appropriate. 
 
2.2 Formalization of Automata 
The new fuel management system uses a set of smart 
components: smart valves, smart pumps, etc. Inside a 
smart component is a conventional valve, pump, 
whatever, and a microcontroller giving the smartness. 
The microcontroller itself is a node of the CANbus 
distributed system. 
  A simple analysis of the system functions, suggests 
the use of automata. The general work of the system 
can be described with an automaton: The command 
of operations can also be described by an automaton. 
And the behaviour of each smart component, 
according with the operation in course, obeys to a 
local automaton. 
   Following this control design scheme, we have 
three kinds of automata: 
 

• Global Automaton: Fuel System. 
• Specific Automaton: Fuel Operation Modes. 
• Local Automaton: Component Nodes. 

    
   Figure 1 shows the global automaton. It is just the 
system making initial tasks and waiting for an 
operation to start. Figure 2 shows the specific 
automaton, with transitions from one to another 
system operation mode. 
 
 
. 
 

 

Fig. 1. Global automaton: Fuel system 
 

 
 

Fig. 2. Specific automaton: System operation modes. 
 
   Figure 3 shows an example of local automaton. It 
corresponds to the a refueling valve. 
   

  

Fig. 3. Local automaton: Refuelling valve. 
 
 
 



2.3 Local Automata 
Local automata are the main idea of the distributed 
control. We must think it as several automata 
cooperating with a global automaton for the system. 
Every local automaton will take action according to 
the global system state. We could say that the system 
behavior emerges form cooperation of local 
automata. 
   The local automaton broadcast the information of 
its states to the other local automata of the system by 
a data packet; this concept is showed in figure 4. 
After a local automaton changes its state, all the rest 
of the nodes will be informed of this change through 
the communication channel. Of course, we defined a 
formated data packet by an array of bytes. In this 
array each smart component is assigned a place to 
inform about its state. Each component knows where 
to look in the packet for the pertinent information (to 
decide a local automaton transition), and where to put 
the information on its state change. 
 

 
 

Fig. 4.  Communication of the State components. 
 
2.4 Example: Helicopter 
For the case of the helicopter fuel system, we have 
six actuators; two refuelling valves, two supply 
pumps, one balance valve, and one balance pump. 
Also, there are two kinds of sensors that give the 
level tanks. This is how the system work: 
 
§ The refuelling valve state diagram showed in 

figure 3 has four states; if we suppose that the 
valve initially is closed and the system is in 
pressure refuelling mode; the condition 
“System Tank level is below upper 
threshold” produces a transition to the next 
state called opening. It means the valve goes 
to open to allow the fuel fills the tanks. We 
defined this inter-middle state because there 
is a time of opening. When the valve is open 

physically, it takes the open state. Then, 
when the “system tank exceeds upper 
threshold”, occurs a transition to the closing 
state, and finally when the valve is closed 
physically, it gets the initial state; closed. 

§ The supply pump state diagram showed in 
figure 5 has two states; if we suppose that the 
valve initially is stopped and the system is in 
engine supply mode, it provokes a change of 
state to start the pump in direction A. When 
the mode operation is suspended, the pump 
will stop and takes the initial stopped state. 

§ The balance valve state diagram showed in 
figure 6 has four states; it has the similar 
states than the refuelling valves but it 
changes the transition conditions. 

§ The balance pump state diagram showed in 
figure 7 has three states; it has similar states 
than the supply pumps but it changes the 
transition conditions and the direction to 
pump the fuel according to the way of the 
transfer. 
 

The transfer operation mode is automatic; it will be 
activated in direction A or B, according to the 
occurred failures in the components. 
 

 
 

Fig. 5. Local Automaton: Supply Pumps. 
 

 

Fig. 6. Local Automaton: Balance Valve. 



  
 

Fig. 7. Local Automaton: Balance Pump 
 
2.5 Common Code 
The idea is that all the smart components have the 
same software code. According to their identification 
numbers (ID’s); detected by hardware, they will 
follow different processing flow inside the 
microcontroller.  
   Figure 8 shows a code switch done for the selection 
of the code part to be executed by each node-
component, according to its ID. 
   An important objective of the Project is to have 
common software for all components. This is for an 
easier certification. 
 

 
 

Fig.. 8.  State machine processing. 

3   Experimental Development 
 
3.1 General Development Strategy 
We made a laboratory simulator of the fuel system 
with conventional components. A microprocessor has 
been associated to each component. There are as 
many microcontrollers as components. In this way, 
the equivalent to the future smart components has 
been made. It represents a scaled model of the real 
fuel system.  
   The common code, to be put in every 
microcontroller, is developed using transportable C 
software.  
   CANbus has been selected as the fieldbus to be 
used by the distributed system. The bandwidth of the 
CANbus 1 megabit per second in distances shorter 
than forty meters. 
   With this entire working scheme, there are two 
important aspects to see. The first one is message 
collisions and the other one is the message overload 
on the CAN bus. 
 
3.2 Fuel Systems Considered in the Research 
We have considered two fuel systems. The helicopter 
and the airplane fuel systems. See figure 9 and figure 
10 to see the physical distribution of the fuel tanks 
inside airborne vehicles.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Top-view schematic of the  
helicopter fuel system. 
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Fig. 10.  Top-view schematic of the  

airplane fuel system. 
 
   The helicopter has two subsystems called 
subsystem 1 and subsystem 2. See figure 11. The 
same happens with the airplane, it has two wings, but 
with a third subsystem at the tail. 
    

 
Fig. 11. Details of the helicopter fuel system 
 
 
We can find some problems in the different operation 
modes.  
   For example, during the pressure refueling, one of 
refueling valves (RV) might fail; we have to solve 
this bad operation activating the transfer operation 

automatically to compensate this blocked fuel input. 
It will transfer fuel from a fuel subsystem to the other 
one through the Balance Valve (BV) and the Balance 
Pump (BP). The sensors are represented by FGT’s 
and FLS’s and for redundancy, some of them are 
repeated. 
   The direction to transfer has two ways called 
direction A and direction B respectively. The first one 
is to transfer fuel from subsystem 2 to subsystem 1. 
The other one is to transfer fuel from subsystem 1 to 
subsystem 2. 
 
3.3 Node Architecture 
Figure 12 shows the internal architecture of a smart 
component., and the layers considered by the 
software development. There are three layers, the 
component layer corresponds to the physical 
component (valve, pump, sensor), the software layer 
is the common code, which runs on the 
microcontrollers, and the hardware layer corresponds 
to the electronic circuit (CANbus enabled 
microcontroller and interfaces) associated to the 
component. 

. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

          (a)                                    (b) 
 

Fig. 12.  (a) Architecture layers. (b)  Block diagram 
of a smart component. 

 
 

3.4 Fuel System Blocks Architecture 
Figure 13 shows how the smart components, the 
CAN Modules, interact with the fuel system physical 
plant (formed by tanks and pipes). This is the 
fundamental architecture of the laboratory simulators 
we built for the helicopter and the airplane. 

 
 
 
 
 

Subsystem 1 Subsystem 2 

Subsystem 3 

 
Hardware 

 
Components 

 
Software 

Sensor or 
Actuator 

CAN Bus 

CCC 
SW and HW 

FGT 2A

FGT 1A

FGT 4

FGT 1A

FGT 1B

FGT3

HLSLLS

Supply Pump 2

Supply Pump 1

P

P

RV2 RV1
Inlet 

of fuel

Subsystem 1

BP 2-1

BP 1-2

BV 1
BV 2

Subsystem 2



 
Fig. 13. Block diagram of the laboratory system. 

 
3.5 Fuel System Prototypes 
Figure 14 shows a photograph of the helicopter 
laboratory system and figure 15 shows a photograph 
of the airplane laboratory system. 
 

 
Fig. 14: Helicopter laboratory system. 

 

 
 

Fig. 15: Airplane laboratory system. 
 

4   Experimental Results 
 
The laboratory simulators have been used for testing 
the software development. After some tests and 
modifications, an operational version of the common 
code has been obtained. This common code is put in 
every microcontroller of the simulator (as many as 
components). In particular, the following 
experimental results were obtained:  
 

• We saw that our fuel prototype system 
follows the sequence of the scheduled 
control. 

• The time constants of the laboratory system 
are faster than the time constants in the real 
system. So the laboratory conditions for 
sequences, for instance in terms of CANbus 
overload,  are more difficult than in reality. A 
good behaviour in the laboratory means a 
good, better, behaviour in reality. 

• We monitored the system doing a trace of 
CANbus data; we could see no collision of 
messages and no overload of messages on the 
bus. The trace showed us the packet of data 
from each smart component when it was sent. 

 
 
5   Conclusion 
A new distributed system, using smart components, 
has been developed. It is the target of an European 
Research Project. For certification purposes, all smart 
components have the same common code 
   In this paper the main ideas to obtain the control 
distribution with smart components having the same 
internal code, have been presented. It is a matter of 
cooperating local automata. 
   The ideas for distribution have been implemented 
and tested in laboratory simulators we made. 
   In the future, more powerful functionality is 
intended to be embedded into the smart components, 
so the universe of local automata will increase, 
requiring more developments and laboratory testing. 
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