
Experimental Development of the Fuel Management
Distributed Control for Aircraft

J. M. GIRON-SIERRA, C. C. INSAURRALDE, M. A. SEMINARIO, J. F. JIMENEZ

Dep. Arquitectura de Computadoras y Automática
Universidad Complutense de Madrid
Av. Complutense S/N, 28040 Madrid

SPAIN
gironsi@dacya.ucm.es http://www.ucm.es/info/dacya

Abstract: A new generation of the fuel management avionic system is introduced. The idea comes from a
European Community project. It implements a distributed control system using CAN bus as communication
channel between components. The research proposal is to build smart components and to confirm the viability-
reliability for real implementation. The paper describes the applied distributed control concepts, the experimental
development and the results obtained in our laboratory prototype system.

Key-Words: Avionics, CAN Bus, Distributed Control, Fieldbus, Fuel Management System, Smart Devices.

1 Introduction
Present Fuel Management avionic systems have a
central control, which consists of a point-to-point link
between components of the fuel system and a central
computer. The components are sensors and actuators.
This communication scheme involves a lot of wiring
and connectors, which increases the weight and
causes many possible connection problems. Our
proposal is try to replace this present scheme for
another one that is simpler, through the use of the
fieldbus as communication channel between
components. A fielbus consists in several nodes
connected to a bus, which has few wires. Like we
will see later, we chosed the CAN bus to make this
communication.
 Our research is part of an European Community
Project. Three universities and six companies are
working together to obtain a final product. The main
activity of the universities is give scientific support to
the companies.
 Much information was consulted to contribute to
the experimental research development. The
fieldbuses documentation was very important [1], and
also the knowledge of the actual CAN bus
applications, [2] and[3], were necessary to introduce
us into the CAN-bus development world and its
possible application to avionics.
 This paper presents the experimental development
of a new generation of fuel management control for
helicopters and airplanes. The idea of Distributed
Control is a main protagonist along the research
development. The main problem to solve is how to
devise this distributed control.

 In the first part, the paper shows how the distributed
control was designed; we present the idea of the
automata, the elimination of the central computer, the
notion of common code for each component and an
example to understand the functional distribution
concept. Then we present how the distributed control
was implemented, what we wanted to test, and the
building of smart components. Then, we explain the
experimental development, with our laboratory
simulators. Finally, we show the obtained results; we
compare our testing prototype results with the real
system, and give some conclusions of the work.
 Aircraft fuel management systems have some
interconnected tanks, were the fuel flows. Main
operations of the fuel management systems are
refueling, engine supply and aircraft balancing and/or
trimming. The fuel transfers from tank to tank, or
from/to external fuel supply or engines, are controlled
with on/off devices such valves and pumps. From the
control point of view this kind of systems is of hybrid
nature, combining continuous time processes with
discrete-event processes. The main aspects of the fuel
system operations can be represented as sequences of
states. Thus, it is natural to use finite state machines,
automata, for the functions representation and control
development.
 A main concept to be presented in this paper is the
decomposition of the general system operations into
interacting local automata. Each system smart
component works according with its local automaton.

mailto:gironsi@dacya.ucm.es
http://www.ucm.es/info/dacya

 2 Distributed Control
We got to distribute the control eliminating the
central computer, which controlled centrally the
previous fuel system. We shared out the control
designing smart components with common code
software; necessary for certification in avionics.

2.1 Fuel System Operations
There are two basic operations on the aircraft fuel
systems. We will present shortly these operations to
introduce the working environment. They are:

2.1.1 Pressure Refuelling
It consists in filling the fuel tanks through valves.
When the tanks reach the desired level, the valves
will have to be closed, and so, the operation finish.

2.1.2 Engine Supply
It consists in supplying fuel from the tanks to the
aircraft engines. This operation needs pumps to push
the fuel toward the engines. The pump will not start if
the fuel level is not appropriate.

2.2 Formalization of Automata
The new fuel management system uses a set of smart
components: smart valves, smart pumps, etc. Inside a
smart component is a conventional valve, pump,
whatever, and a microcontroller giving the smartness.
The microcontroller itself is a node of the CANbus
distributed system.
 A simple analysis of the system functions, suggests
the use of automata. The general work of the system
can be described with an automaton: The command
of operations can also be described by an automaton.
And the behaviour of each smart component,
according with the operation in course, obeys to a
local automaton.
 Following this control design scheme, we have
three kinds of automata:

• Global Automaton: Fuel System.
• Specific Automaton: Fuel Operation Modes.
• Local Automaton: Component Nodes.

 Figure 1 shows the global automaton. It is just the
system making initial tasks and waiting for an
operation to start. Figure 2 shows the specific
automaton, with transitions from one to another
system operation mode.

.

Fig. 1. Global automaton: Fuel system

Fig. 2. Specific automaton: System operation modes.

 Figure 3 shows an example of local automaton. It
corresponds to the a refueling valve.

Fig. 3. Local automaton: Refuelling valve.

2.3 Local Automata
Local automata are the main idea of the distributed
control. We must think it as several automata
cooperating with a global automaton for the system.
Every local automaton will take action according to
the global system state. We could say that the system
behavior emerges form cooperation of local
automata.
 The local automaton broadcast the information of
its states to the other local automata of the system by
a data packet; this concept is showed in figure 4.
After a local automaton changes its state, all the rest
of the nodes will be informed of this change through
the communication channel. Of course, we defined a
formated data packet by an array of bytes. In this
array each smart component is assigned a place to
inform about its state. Each component knows where
to look in the packet for the pertinent information (to
decide a local automaton transition), and where to put
the information on its state change.

Fig. 4. Communication of the State components.

2.4 Example: Helicopter
For the case of the helicopter fuel system, we have
six actuators; two refuelling valves, two supply
pumps, one balance valve, and one balance pump.
Also, there are two kinds of sensors that give the
level tanks. This is how the system work:

§ The refuelling valve state diagram showed in

figure 3 has four states; if we suppose that the
valve initially is closed and the system is in
pressure refuelling mode; the condition
“System Tank level is below upper
threshold” produces a transition to the next
state called opening. It means the valve goes
to open to allow the fuel fills the tanks. We
defined this inter-middle state because there
is a time of opening. When the valve is open

physically, it takes the open state. Then,
when the “system tank exceeds upper
threshold”, occurs a transition to the closing
state, and finally when the valve is closed
physically, it gets the initial state; closed.

§ The supply pump state diagram showed in
figure 5 has two states; if we suppose that the
valve initially is stopped and the system is in
engine supply mode, it provokes a change of
state to start the pump in direction A. When
the mode operation is suspended, the pump
will stop and takes the initial stopped state.

§ The balance valve state diagram showed in
figure 6 has four states; it has the similar
states than the refuelling valves but it
changes the transition conditions.

§ The balance pump state diagram showed in
figure 7 has three states; it has similar states
than the supply pumps but it changes the
transition conditions and the direction to
pump the fuel according to the way of the
transfer.

The transfer operation mode is automatic; it will be
activated in direction A or B, according to the
occurred failures in the components.

Fig. 5. Local Automaton: Supply Pumps.

Fig. 6. Local Automaton: Balance Valve.

Fig. 7. Local Automaton: Balance Pump

2.5 Common Code
The idea is that all the smart components have the
same software code. According to their identification
numbers (ID’s); detected by hardware, they will
follow different processing flow inside the
microcontroller.
 Figure 8 shows a code switch done for the selection
of the code part to be executed by each node-
component, according to its ID.
 An important objective of the Project is to have
common software for all components. This is for an
easier certification.

Fig.. 8. State machine processing.

3 Experimental Development

3.1 General Development Strategy
We made a laboratory simulator of the fuel system
with conventional components. A microprocessor has
been associated to each component. There are as
many microcontrollers as components. In this way,
the equivalent to the future smart components has
been made. It represents a scaled model of the real
fuel system.
 The common code, to be put in every
microcontroller, is developed using transportable C
software.
 CANbus has been selected as the fieldbus to be
used by the distributed system. The bandwidth of the
CANbus 1 megabit per second in distances shorter
than forty meters.
 With this entire working scheme, there are two
important aspects to see. The first one is message
collisions and the other one is the message overload
on the CAN bus.

3.2 Fuel Systems Considered in the Research
We have considered two fuel systems. The helicopter
and the airplane fuel systems. See figure 9 and figure
10 to see the physical distribution of the fuel tanks
inside airborne vehicles.

Fig. 9. Top-view schematic of the
helicopter fuel system.

Subsystem 1

Subsystem 2

Fig. 10. Top-view schematic of the

airplane fuel system.

 The helicopter has two subsystems called
subsystem 1 and subsystem 2. See figure 11. The
same happens with the airplane, it has two wings, but
with a third subsystem at the tail.

Fig. 11. Details of the helicopter fuel system

We can find some problems in the different operation
modes.
 For example, during the pressure refueling, one of
refueling valves (RV) might fail; we have to solve
this bad operation activating the transfer operation

automatically to compensate this blocked fuel input.
It will transfer fuel from a fuel subsystem to the other
one through the Balance Valve (BV) and the Balance
Pump (BP). The sensors are represented by FGT’s
and FLS’s and for redundancy, some of them are
repeated.
 The direction to transfer has two ways called
direction A and direction B respectively. The first one
is to transfer fuel from subsystem 2 to subsystem 1.
The other one is to transfer fuel from subsystem 1 to
subsystem 2.

3.3 Node Architecture
Figure 12 shows the internal architecture of a smart
component., and the layers considered by the
software development. There are three layers, the
component layer corresponds to the physical
component (valve, pump, sensor), the software layer
is the common code, which runs on the
microcontrollers, and the hardware layer corresponds
to the electronic circuit (CANbus enabled
microcontroller and interfaces) associated to the
component.

.

 (a) (b)

Fig. 12. (a) Architecture layers. (b) Block diagram
of a smart component.

3.4 Fuel System Blocks Architecture
Figure 13 shows how the smart components, the
CAN Modules, interact with the fuel system physical
plant (formed by tanks and pipes). This is the
fundamental architecture of the laboratory simulators
we built for the helicopter and the airplane.

Subsystem 1 Subsystem 2

Subsystem 3

Hardware

Components

Software

Sensor or
Actuator

CAN Bus

CCC
SW and HW

FGT 2A

FGT 1A

FGT 4

FGT 1A

FGT 1B

FGT3

HLSLLS

Supply Pump 2

Supply Pump 1

P

P

RV2 RV1
Inlet

of fuel

Subsystem 1

BP 2-1

BP 1-2

BV 1
BV 2

Subsystem 2

Fig. 13. Block diagram of the laboratory system.

3.5 Fuel System Prototypes
Figure 14 shows a photograph of the helicopter
laboratory system and figure 15 shows a photograph
of the airplane laboratory system.

Fig. 14: Helicopter laboratory system.

Fig. 15: Airplane laboratory system.

4 Experimental Results

The laboratory simulators have been used for testing
the software development. After some tests and
modifications, an operational version of the common
code has been obtained. This common code is put in
every microcontroller of the simulator (as many as
components). In particular, the following
experimental results were obtained:

• We saw that our fuel prototype system
follows the sequence of the scheduled
control.

• The time constants of the laboratory system
are faster than the time constants in the real
system. So the laboratory conditions for
sequences, for instance in terms of CANbus
overload, are more difficult than in reality. A
good behaviour in the laboratory means a
good, better, behaviour in reality.

• We monitored the system doing a trace of
CANbus data; we could see no collision of
messages and no overload of messages on the
bus. The trace showed us the packet of data
from each smart component when it was sent.

5 Conclusion
A new distributed system, using smart components,
has been developed. It is the target of an European
Research Project. For certification purposes, all smart
components have the same common code
 In this paper the main ideas to obtain the control
distribution with smart components having the same
internal code, have been presented. It is a matter of
cooperating local automata.
 The ideas for distribution have been implemented
and tested in laboratory simulators we made.
 In the future, more powerful functionality is
intended to be embedded into the smart components,
so the universe of local automata will increase,
requiring more developments and laboratory testing.
 Acknowledgments: The authors thank to the
European Community support, through the Research
Project “Smartfuel”. Likewise, the authors thank the
collaboration of the research partners.

References:
[1] J. R. Jordan, Serial Networked Field

Instrumentation, Wiley, 1995.
[2] Wolfhard Lawrenz, CAN System Engineering,

Springer, 1997.
[3] CAN in Automation (www.can-cia.com).

Physical Plant
(tanks, valves, sensors, etc.)

CAN bus

CAN
Module

CAN
Module

CAN
Module

Physical Plant
(tanks, valves, sensors, etc.)

CAN bus

CAN
Module

CAN
Module

CAN
Module

CAN
Module

CAN
Module

CAN
Module

http://www.can-cia.com

