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Abstract: - Fairness is an important aspect of any rate allocation strategy. Many fairness criteria have been 
proposed by different researchers. Mo and Walrand have introduced the notion of (Ω,α)-fairness in their 
pioneering work in 2000. Different fairness criteria such as proportional, minimum potential delay and max-
min fairness are derived as special cases of (Ω,α)-fairness. In the current paper, a fast second-order rate 
allocation algorithm is proposed that can improve the convergence speed of conventional methods. Under 
certain (and almost) practical premises about the network topology, an end-to-end implementation of well-
known proportional and minimum potential delay fair rate allocation algorithms is introduced. The proposed 
algorithm has been compared with the conventional method and TCP using simulation. The simulation results 
show that the proposed method, outperforms the conventional ones in convergence rate.      
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1  Introduction 
There are plenty of fairness criteria such as max-
min,[1] proportional [2] and minimum potential 
delay fairness [3]. Selecting a fairness criterion 
depends on the network’s designer strategy.  For 
example in the max-min criterion, the attention is 
strictly to users with lowest rates whereas in the 
Kelly's proportional criterion the objective is 
maximizing the overall throughput and we pay less 
attention to lower rate users and more penalize users 
who use long routes in network. In minimum 
potential delay criterion L. Massoulie et al. define a 
delay measure  in terms of user throughputs and try 
to minimize that delay.   

In the current paper we assume that the network 
traffic is of ‘elastic’ type which was introduced by 
S. Shenker in [4]. As well-known examples of such 
traffic type we can mention FTP traffic in the 
current Internet and ABR traffic in the ATM 
networks. 
    The paper is organized as follows. In §2 we 
review some related works and specially the work of 
Walrand et al. in [5]. In §3 we introduce the 
algorithm. §4 is devoted to simulation results and 
finally we conclude in §5 our paper with conclusion. 
 
 
 

2  Background 
Consider a network with a set J of resources or links 
and a set ℜ of users and let Cj denotes the finite 
capacity of link j∈J. Let Ω=(ωr , r∈ℜ) be the vector, 
representing users' ω parameters and assume that α 
is a positive number which is greater or equal to 
unity. Each user r has a fixed route Rr, which is a 
nonempty subset of J. Then Walrand’s formulation 
of the (Ω,α)-fair rate allocation would be: 
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Parameter kr controls the speed of convergence in 
equation (1). Penalty function pj(y) is the amount 
that link ‘j’ penalizes its aggregate traffic ‘y’ and is 
a non-negative, continuous increasing function and 
tends to infinity as aggregate rate 'y' tends to link 
capacity Cj [2]. Given λr, user r selects an amount 
that is willing to pay per unit time, rω , and finally 
receives a rate xr = ( rω / λr )1/α. 



One of the interpretations is that using (1), the 
system tries to equalize ωr with (xr[n])α .∑

∈ rRj
j[n]p  

by adjusting xr[n] value. System (1)-(2) show that 
the unique equilibrium x*r is the solution of the 
following equation: 
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It must be noted that α=1,2 are related to 
proportional and minimum potential delay fairness 
respectively and as α tends to infinity system (1)-(2) 
approach to the max-min fairness criterion [5]. 
 
 
3  Proposed Algorithm 
The high-speed algorithm is composed of a two-
level hierarchical structure. First look at an example. 
Consider the Fig.1. Let’s assume that the network is 
consisted of 11 elastic sources that are included in 
four source virtual users. Dotted lines show the 
boundaries of the virtual users and thick lines show 
the aggregate flow of each virtual user that is 
traversing through the links that belong to backbone 
(these links are denoted by letters L6, L7 and L8). 
Each source (destination) of information is denoted 
by‘s’ (‘d’) and as mentioned before, the rate 
associated with each (source, destination) pair is 
denoted by ‘x’. Links are unidirectional and in 
Fig.1, links 6, 7 and 8 constitute the backbone. 
As Walrand et al. have shown in [5], stabilized rates 
of users are: 
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Since it is assumed that the congestion may only 
occur in the links which belong to backbone, we 
may consider that λ*

r is only affected by backbone 
links and is approximated by: 
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For example, for users ‘s1’ and ‘s2’ in Fig.1, we 
would have: 
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where *
1Λ  is the aggregate penalty of users ‘s1’ and 

‘s2’ ( λ*
1 and λ*

2 ) in backbone of the network ( link 
‘6’ in this case). 
Then, at the equilibrium point, the aggregate rate of 
virtual user 1 is: 
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If we denote the aggregate rate of virtual user 1 with 

1χ , at the equilibrium point we have: 
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By considering equations (5) and (7) and the 
assumption that *

1
*
1 Λ≅λ , then: 
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Now, in the mathematical terms [6]. let S {Si | 

i=1,2,…,Q} and D {Di | i=1,2,…,Q} be the sets 
that represent the virtual sources and virtual 
destinations . Where, Q represents the number of 
virtual sources (destinations).  For example, in Fig.1 
we have Q=4 and S3={s6,s7}, D3={d6,d7}. 
If the rate associated with virtual user ‘i’ at iteration 
‘n’ is denoted by ‘ [n]χ i ’, and the rate of end users 
(as mentioned before) are denoted by small ‘x’ 
letter, algorithm behaves in the following manner: 
At the beginning, algorithm works in the first level 
of hierarchy and allocates rates to the virtual sources 
using some high-speed algorithm (such as Jacobi 
method). Then, each virtual user assigns some 
proportions of its rate to each end-user within the 
virtual user.  
 If the assumption in equation (4) is true, when the 
system is in the vicinity of equilibrium point, users’ 
rates are close to the optimal values. The rate 



assignment  by virtual user ‘i’ to a user ‘u’ located 
within virtual user ‘i’ is: 
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Where notation ‘u∈i’, means that user ‘u’ is located 
within virtual user ‘i’ and: 
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By the notion of (Ω,α)-fairness, the Ωi associated 
with the virtual user 'i' would be:  
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Evolving [n]χ i in the equation (9) is as Jacobi 
iteration [1] (i=1,2,…,Q): 
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Where i,   0ε[0]χ i ∀≅= and also: 
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Equation (11) is in fact a form of the projected 
Jacobi method, as Bertsekas et al. have defined 
in[1]. 
 
 
4   Simulation Results 
Consider the network topology of Fig.2 which is 
composed of 87 elastic users and 94 links. Gray 
nodes are the network's backbone boundary.  
We have adopted a similar approach as that of  
Walrand[5] and Başar[7] for simulating the rates 
allocated to the users with different propagation 
delays. We have used the OPNET discrete-event 
simulator. The bottleneck links are in the backbone, 
and all of the backbone links have the capacity 
equal to 150kBps, other link capacities are selected 
100MBps. All backbone links' propagation delays is 
set to 5 ms and we assume that propagation delay of 
the other links to be negligible. We have assumed 

that sources have data for sending at all times 
(greedy sources). All backbone links' buffer sizes 
are set to 100 packets.  
We have used go back n method [8] for re-sending 
the packets that are double acknowledged. Links' 
scheduling discipline is FIFO. As in TCP, Slow-
Start method is used for initializing the rate 
allocation. 
Receivers' window sizes are set to unity. Sender 
window size in Walrand method is updated 
according to the following relations: 
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And also:                                            
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In Jacobi hierarchical method, sender congestion 
window evolves as follows: 
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Where, ( )ir dd is the user (virtual user) 'r'('i') propag-
ation delay and its round trip time is RTTr(RTTi). 
The final rate that is allocated to each end user in 
the hierarchical method is based on the equation (9). 
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We have used  kr=Ki=0.0003 in Walrand and 
hierarchical method. 
It is important that as congestion occurs only in the 
bottleneck links located in the backbone, the rate 
allocation algorithm is only consisted of equations 
(9) and (11). This relations reach the users' rates to 
the optimal ones as in (3).  
The simulation results for 4 users in Fig. 2 are 
depicted in Figs.3 to 6. We have compared in these 
Figures, the proposed second order method with the 
Walrand's method and TCP for two values of α=1,2 
which correspond to proportional and minimum 
potential delay fairness respectively. It can be 
verified that the proposed method, outperforms that 
of Walrand in convergence speed. In the simulated 
figures, MPDF, PF, TCP, HMPDF and HPF 
symbols stand for minimum potential delay fairness, 
proportional fairness, TCP, hierarchical minimum 
potential delay fairness and hierarchical 
proportional fairness respectively.    
On the other hand, another outstanding feature of 
our rate allocation strategy is that the user rates in 
the proposed method and that of Walrand, have less 
fluctuations with respect to TCP.  
As equations (12) to (19) use only the RTT and 
propagation delay of the connection, they can be 
implemented in an end-to-end manner. 

 
 

5   Conclusion 
In the current paper, we have compared the 
performance of a high-speed second-order algorithm 
with the conventional Walrand's algorithm in the 
proportional and minimum potential delay fairness 
criteria. Simulation results show that the proposed 
method, outperforms that of Walrand in the 
convergence speed.  

As an outline for future work, the interested 
readers can focus on other fairness criteria such as 
max-min fairness and compare their performance 
against that of Walrand. 
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Fig.1 A sample network with two levels of hierarchy 

 



 
Fig.2 Simulated network topology 

 
Fig.3 Rate allocated to user 38 

 
Fig.4 Rate allocated to user 57 

 
Fig.5 Rate allocated to user 65 

 
Fig.6 Rate allocated to user 77 


