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Abstract - Modulo arithmetic operations especially modulo multiplication have extensive applications in 

elliptic curve cryptanalysis, error control coding and linear recurring sequences. These operations have 

steadily grown in the word size in the past. Current designs and approaches may not be the most efficient 

for such high word sizes. Also usually, most approaches optimize for either area or speed, not both. 

In this paper, we examine certain properties and elucidate certain alternative strategies of and on the Itoh-

Tsujii algorithm[1] that will make it suitable for this emerging scenario. These strategies take a holistic 

approach to the problem, and aims at optimizing both speed and area for a given word length. These claims 

are supported by mathematical analysis, simulation and synthesis of a prototype of the suggested strategy. 

We also examine various enhancements that cam be effected in the given architecture. 
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1. Introduction 
Modulo arithmetic units especially modulo 

multiplication operation plays an important role in a 

number of applications. These applications range 

from linear recurring sequences to elliptic curve 

cryptanalysis[2]. With the development of 

technology, the need for high bit size modulo 

multipliers became inevitable. 

 A number of present architectures give 

importance to either speed or area. But most of 

them fail to provide an optimization of both speed 

and area. In this paper we explore the possibilities 

of designing a modulo multiplication unit which 

can provide a good operating speed with 

sufficiently lesser area. 

 

 

2. Mathematical Preliminaries 
Several operations are defined at byte level, with 

bytes representing elements in the finite field 

GF(2
8
). Other operations are defined in terms of 4-

byte words. In this section we introduce the basic 

mathematical concepts needed in the following of 

the document. 

 

 

2.1 The field GF(2
8
) 

The elements of a finite field can be represented in 

several different ways. For any prime power there 

is a single finite field, hence all representations of 

GF(2
8
) are isomorphic. Despite this equivalence, 

the representation has an impact on the 

implementation complexity. We have chosen for 

the classical polynomial representation. 

A byte b, consisting of bits b7 b6 b5 b4 b3 b2 b1 b0, is 
considered as a polynomial with coefficient in 

{0,1}: 

b7 x
7
 + b6 x

6
 + b5 x

5
 + b4 x

4
 + b3 x

3
 +  

b2 x
2
 + b1 x

1
 + b0    …(1) 

Example: the byte with hexadecimal value ‘57’ 

(binary 01010111) corresponds with polynomial x
6
 

+ x
4
 + x

2
 + x

1
 + 1. 

 

2.1.1 Addition 
In the polynomial representation, the sum of two 

elements is the polynomial with coefficients that 

are given by the sum modulo 2  (i.e., 1 + 1 = 0 (xor 

operation – denoted by “+”)) of the coefficients of 

the two terms. 

Example: ‘57’ + ‘83’ = ‘D4’, or with the 

polynomial notation: 

(x
6
 + x

4
 + x

2
 + x

1
 + 1) + (x

7
 + x

1
 + 1) 

 = x
7
 + x

6
 + x

4
 + x

2
    …(2) 



In binary notation we have: “01010111” + 

“10000011” = “11010100”. Clearly, the addition 

corresponds with the simple bit-wise EXOR 

(denoted by +) at the byte level. 

All necessary conditions are fulfilled to have an 

Abelian group: internal, associative, neutral 

element (‘00’), inverse element (every element is 

its own additive inverse) and commutative. As 

every element is its own additive inverse, 

subtraction and addition are the same. 

 

2.1.2 Multiplication 
In the polynomial representation, multiplication in 

GF (28) corresponds with multiplication of 

polynomials modulo an irreducible binary 

polynomial of degree 8. A polynomial is irreducible 

if it has no divisors other than 1 and itself. This 

polynomial is called m(x) and for GF(2
8
) can be 

given as 

m(x) = x
8
 + x

4
 + x

3
 + x + 1    …(3) 

Or ‘11B’ in hexadecimal representation. 

 

 

          p(x)    c(x)   

    

 

 

 

Fig 1: Block Diagram of modulo multiplier 

 

Example: ‘57’ · ‘83’ = ‘C1’, or: 

(x
6
 + x

4
 + x

2
 + x

1
 + 1) (x

7
 + x

1
 + 1)  

=  x
13
 + x

11
 + x

9
 + x

8
 + x

7
 + x

7
 + x

6
 + x

3
 + x

2
 + x

1
 + 

x
6
 + x

4
 + x

2
 + x

1
 + 1     …(4) 

 

= x
13
 + x

11
 + x

9
 + x

8
 + x

6
 + x

5 
+ x

4
 + x

3
 + 1 

 

= x
13
 + x

11
 + x

9
 + x

8
 + x

6
 + x

6 
+ x

4
 + x

3
 + 1 modulo 

x
8
 + x

4
 + x

3
 + x

1
 + 1        …(5) 

 

Hence, 

(x
6
 + x

4
 + x

2
 + x

1
 + 1) *(x

7
 + x

1
 + 1)  

=  x
7
 + x

6
 + 1              …(6) 

 

Clearly, the result will be a binary polynomial of 

degree below 8. Unlike for addition, there is no 

simple operation at byte level. The multiplication 

defined above is associative and there is a neutral 

element (‘01’). For any binary polynomial b(x) of 

degree below 8, the extended algorithm of Euclid 

can be used to compute polynomials a(x), c(x) such 

that b(x). a(x) + m(x). c(x) = 1. Hence, a(x) · b(x) 

mod m(x)= 1 or b-1(x) = a(x) mod m(x). 

Moreover, it holds that   

a(x) · ( b(x) + c(x)) = a(x) · b(x) + a(x) · c(x).   

             …(7)  

It follows that the set of 256 possible byte values, 

with the EXOR as addition and the multiplication 

defined as above has the structure of the finite field 

GF(2
8
). 

 It is noted that the modulo operation is the most 

binding constraint in the implementation of the 

modulo arithmetic unit in a number of 

application[5]. 

 

 

3. Itoh-Tsujii Algorithm Based 

Multiplier[3] 
Suppose input is y in GF(2

8
) , y-1 has to be 

calculated. In GF(2
8
) , 

 y
255
 = 1 

is satisfied then,    y
-1 
= y

-1 
* y

255 
= y

254
. 

Consequently, y
254
 is equivalent to y

-1
. Figure 1 

shows an Inversion circuit based on Itoh and 

Tsujii's algorithm[4]. 

 
Fig 2: Inversion circuit based on Itoh-Tsujii 

 

Example: Consider the multiplication of two 8-bit 

value A= (a7, a6, a5, a4, a3, a2, a1, a0), B=(b7, b6,b5,b4, 

b3, b2, b1, b0). Since those 8 bit value can be 

expressed in polynomials in Galois Field such as
  

 
A(x) = a7x

7
+a6x

6
+a5x

5
+a4x

4
+a3x

3
+a2x

2
+a1x+a0  …(7) 

B(x) = b7x
7
+b6x

6
+b5x

5
+b4x

4
+b3x

3
+b2x

2
+b1x+b0 …(8) 

Then C(x) = A(x)*B(x) is given by 

C(x) = c14x
14
+c13x

13
+c12x

12
+c11x

11
+c10x

10
+c9x

9
+c8

8
 

+c7x
7
+c6x

6
+c5x

5
+c4x

4
+c3x

3
+c2x

2
+c1x+c0  …(9) 

The result is 14
th
 order polynomials. To bring the 

result back to the GF(2
8
), perform the modulo 

operation using the irreducible polynomial. The 

Itoh-Tsujii algorithm simplifies the modulo 

operation as shown below: 

 

a(x) 

b(x) 

X m



m(x) = x
8
 + x

4
 + x

3
 +x +1 = 0       …(10) 

x
8 
 = x

4
 + x

3
 + x + 1          …(11) 

x
9  
 =  x

5
 + x

4
 + x

2
 + x         …(12) 

x
10
  = x

6
 + x

5
 + x

3
 + x

2         
…(13) 

x
11
  = x

7
 + x6 + x

4
 + x

3 
        …(14) 

x
12
  = x

8
 +x

7
 + x

5
 + x

4
 = x

7
 + x

5
 + x

3
 + x + 1 (15)    

x
13
  = x

8
 + x

6
+ x

4
 + x

2
 + x = x

6
 + x

3 
+ x

2
 + 1 (16) 

x
14
  = x

7
 + x

4
 + x

3
 + x         …(17) 

Now the result of the modulo operation is given 

below: 

 

D(x) = d7x
7
+d6x

6
+d5x

5
+d4x

4
+d3x

3
+d2x

2
+d1x+d0 …(18) 

 

d7=c7 ⊕ c12 ⊕ c14           …(19) 

 

d6=c6 ⊕ c10 ⊕ c11 ⊕ c13         …(20) 

  

d5=c5 ⊕ c9 ⊕ c10 ⊕ c12         …(21) 

 

d4=c4 ⊕ c8 ⊕ c9 ⊕ c11 ⊕ c14       …(22) 

 

d3=c3 ⊕ c8⊕ c10 ⊕ c11 ⊕ c12 ⊕ c13 ⊕c14   …(23) 

 

d2=c2 ⊕ c9⊕ c10 ⊕ c11          …(24) 

 

d1=c1 ⊕ c 8⊕ c9 ⊕ c12 ⊕ c14       …(25) 

 

d0=c0 ⊕ c8 ⊕ c12 ⊕ c13         …(26) 

 

Since D(x) expresses GF(2
8
) , the multiplication 

result of two numbers in GF(2
8
) A= (a7, a6, a5, a4, 

a3, a2, a1, a0) B=(b7, b6, b5, b4, b3, b2, b1, b0) will be 

D=(d7, d6, d5, d4, d3, d2, d1, d0) . 

In another words, multiplication in GF(2
8
) can be 

implemented using AND and EXOR logics. 

 

3.1 Mathematical Analysis 
Let the operands be in the GF(2

m
) field and let n be 

the order of multiplication. The results will have 

{dm-1, ….  d6, d5, d4, d3, d2, d1, d0} as the coefficient. 

Further the work done depends on m(x). Let m(x) 

be {mm, ….  m6, m5, m4, m3, m2, m1, m0}. 

 

In general, 

dk = Σmj (Σci)            …(27) 

 

where j = 0 to m-1  

and i = k-j, m+k-j, 2m+k-j, …….  

        

The computational complexity can be approximated 

to O(n/m), which is a very good factor. 

 

3.2 Synthesis report: 
 

The synthesis of the Galois multiplier for word 

lengths 8, 16 and 32 using Xilinx Virtex600e are 

shown. 

 

 
 

Fig 3: RTL Schematic of 8-bit GALOIS 

multiplier 
 

 

 
Fig 4: RTL-Schematic of a 16-bit GALOIS 

multiplier 



 
 

Fig 5: RTL Schematic of a 32-bit GALOIS 

multiplier 
 

3.2.1 Resource Utilization Summary: 
Number 

of bits 

Number 

of slices 

Number 

of 4 input 

LUTs 

Number 

of Bonded 

IOBs 

8 30 52 24 

16 114 198 48 

32 471 819 96 

Table 1: Resource utilization 

 

3.2.2 Timing Report: 
 

Number 

of bits 

 

Logic 

Delay (ns) 

 

Route 

Delay (ns) 

Maximum 

Combinational 

Path Delay 

(ns) 

8 7.407 6.640 14.047 

16 7.407 7.144 14.551 

32 8.203 9.088 17.291 

Table 2: Timing report  

 

 

4. Suggested Enhancements: 
 

First, the multiplier can be made scalable to take 

into consideration arbitrary values of the word 

length. This means the unit must be designed to 

compute the product in Galois field over a range of 

word lengths and different irreducible polynomial. 

The choice of the upper limit on the word size bears 

a constraint on both the speed and the area the 

multiplier occupies. Thus the maximum order ‘m’ 

of the GF(2
m
)  multiplier is decided based on the 

sacrifice that can be made on the speed. This also 

has to take into account the suitable irreducible 

polynomial of a given order that can be employed 

to cut down the number of IO buffers. An 

irreducible polynomial with a fewer non-zero 

coefficients will serve to reduce fan-in of the XOR 

gates.  

Next, the multiplier can be enhanced using 

pipelining. Tomasulo`s model for pipelining can be 

exploited here. The computation of the product can 

be fragmented into simpler operations and 

incorporating pipeline registers for storing the 

result of the individual process.  

A number of architectures have been proposed 

that concentrate either on the speed maximization 

[5][6] or on the area optimization [7]. Focusing on 

the aforesaid dependencies, an efficient Galois 

multiplier can be realized that will produce an 

optimal speed-area ratio. 

 
 

5. Conclusion: 
Itoh-Tsujii based Modulo-Multiplier is a good 

solution for application requiring high bit sizes. 

Further scalability and pipelining provides a 

multifold increase in its performance.  
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