
An alternative approach to modulo-multiplication for Finite Fields

using the Itoh-Tsujii Algorithm
BHARATHWAJ SANKARA VISWANATHAN

 (1)
,

KISHORE LAKSHMI NARASIMHAN
 (2)
.

Department of Electronics and Communications Engineering,

Sri Venkateswara College of Engineering,

Pennalur, Sriperumbudur – 602105.

INDIA

Abstract - Modulo arithmetic operations especially modulo multiplication have extensive applications in

elliptic curve cryptanalysis, error control coding and linear recurring sequences. These operations have

steadily grown in the word size in the past. Current designs and approaches may not be the most efficient

for such high word sizes. Also usually, most approaches optimize for either area or speed, not both.

In this paper, we examine certain properties and elucidate certain alternative strategies of and on the Itoh-

Tsujii algorithm[1] that will make it suitable for this emerging scenario. These strategies take a holistic

approach to the problem, and aims at optimizing both speed and area for a given word length. These claims

are supported by mathematical analysis, simulation and synthesis of a prototype of the suggested strategy.

We also examine various enhancements that cam be effected in the given architecture.

Key Words – Modulo multiplier, high word size, Itoh Tsuji, scalability and pipelining.

1. Introduction
Modulo arithmetic units especially modulo

multiplication operation plays an important role in a

number of applications. These applications range

from linear recurring sequences to elliptic curve

cryptanalysis[2]. With the development of

technology, the need for high bit size modulo

multipliers became inevitable.

 A number of present architectures give

importance to either speed or area. But most of

them fail to provide an optimization of both speed

and area. In this paper we explore the possibilities

of designing a modulo multiplication unit which

can provide a good operating speed with

sufficiently lesser area.

2. Mathematical Preliminaries
Several operations are defined at byte level, with

bytes representing elements in the finite field

GF(2
8
). Other operations are defined in terms of 4-

byte words. In this section we introduce the basic

mathematical concepts needed in the following of

the document.

2.1 The field GF(2
8
)

The elements of a finite field can be represented in

several different ways. For any prime power there

is a single finite field, hence all representations of

GF(2
8
) are isomorphic. Despite this equivalence,

the representation has an impact on the

implementation complexity. We have chosen for

the classical polynomial representation.

A byte b, consisting of bits b7 b6 b5 b4 b3 b2 b1 b0, is
considered as a polynomial with coefficient in

{0,1}:

b7 x
7
 + b6 x

6
 + b5 x

5
 + b4 x

4
 + b3 x

3
 +

b2 x
2
 + b1 x

1
 + b0 …(1)

Example: the byte with hexadecimal value ‘57’

(binary 01010111) corresponds with polynomial x
6

+ x
4
 + x

2
 + x

1
 + 1.

2.1.1 Addition
In the polynomial representation, the sum of two

elements is the polynomial with coefficients that

are given by the sum modulo 2 (i.e., 1 + 1 = 0 (xor

operation – denoted by “+”)) of the coefficients of

the two terms.

Example: ‘57’ + ‘83’ = ‘D4’, or with the

polynomial notation:

(x
6
 + x

4
 + x

2
 + x

1
 + 1) + (x

7
 + x

1
 + 1)

 = x
7
 + x

6
 + x

4
 + x

2
 …(2)

In binary notation we have: “01010111” +

“10000011” = “11010100”. Clearly, the addition

corresponds with the simple bit-wise EXOR

(denoted by +) at the byte level.

All necessary conditions are fulfilled to have an

Abelian group: internal, associative, neutral

element (‘00’), inverse element (every element is

its own additive inverse) and commutative. As

every element is its own additive inverse,

subtraction and addition are the same.

2.1.2 Multiplication
In the polynomial representation, multiplication in

GF (28) corresponds with multiplication of

polynomials modulo an irreducible binary

polynomial of degree 8. A polynomial is irreducible

if it has no divisors other than 1 and itself. This

polynomial is called m(x) and for GF(2
8
) can be

given as

m(x) = x
8
 + x

4
 + x

3
 + x + 1 …(3)

Or ‘11B’ in hexadecimal representation.

 p(x) c(x)

Fig 1: Block Diagram of modulo multiplier

Example: ‘57’ · ‘83’ = ‘C1’, or:

(x
6
 + x

4
 + x

2
 + x

1
 + 1) (x

7
 + x

1
 + 1)

= x
13
 + x

11
 + x

9
 + x

8
 + x

7
 + x

7
 + x

6
 + x

3
 + x

2
 + x

1
 +

x
6
 + x

4
 + x

2
 + x

1
 + 1 …(4)

= x
13
 + x

11
 + x

9
 + x

8
 + x

6
 + x

5
+ x

4
 + x

3
 + 1

= x
13
 + x

11
 + x

9
 + x

8
 + x

6
 + x

6
+ x

4
 + x

3
 + 1 modulo

x
8
 + x

4
 + x

3
 + x

1
 + 1 …(5)

Hence,

(x
6
 + x

4
 + x

2
 + x

1
 + 1) *(x

7
 + x

1
 + 1)

= x
7
 + x

6
 + 1 …(6)

Clearly, the result will be a binary polynomial of

degree below 8. Unlike for addition, there is no

simple operation at byte level. The multiplication

defined above is associative and there is a neutral

element (‘01’). For any binary polynomial b(x) of

degree below 8, the extended algorithm of Euclid

can be used to compute polynomials a(x), c(x) such

that b(x). a(x) + m(x). c(x) = 1. Hence, a(x) · b(x)

mod m(x)= 1 or b-1(x) = a(x) mod m(x).

Moreover, it holds that

a(x) · (b(x) + c(x)) = a(x) · b(x) + a(x) · c(x).

 …(7)

It follows that the set of 256 possible byte values,

with the EXOR as addition and the multiplication

defined as above has the structure of the finite field

GF(2
8
).

 It is noted that the modulo operation is the most

binding constraint in the implementation of the

modulo arithmetic unit in a number of

application[5].

3. Itoh-Tsujii Algorithm Based

Multiplier[3]
Suppose input is y in GF(2

8
) , y-1 has to be

calculated. In GF(2
8
) ,

 y
255
 = 1

is satisfied then, y
-1
= y

-1
* y

255
= y

254
.

Consequently, y
254
 is equivalent to y

-1
. Figure 1

shows an Inversion circuit based on Itoh and

Tsujii's algorithm[4].

Fig 2: Inversion circuit based on Itoh-Tsujii

Example: Consider the multiplication of two 8-bit

value A= (a7, a6, a5, a4, a3, a2, a1, a0), B=(b7, b6,b5,b4,

b3, b2, b1, b0). Since those 8 bit value can be

expressed in polynomials in Galois Field such as

A(x) = a7x

7
+a6x

6
+a5x

5
+a4x

4
+a3x

3
+a2x

2
+a1x+a0 …(7)

B(x) = b7x
7
+b6x

6
+b5x

5
+b4x

4
+b3x

3
+b2x

2
+b1x+b0 …(8)

Then C(x) = A(x)*B(x) is given by

C(x) = c14x
14
+c13x

13
+c12x

12
+c11x

11
+c10x

10
+c9x

9
+c8

8

+c7x
7
+c6x

6
+c5x

5
+c4x

4
+c3x

3
+c2x

2
+c1x+c0 …(9)

The result is 14
th
 order polynomials. To bring the

result back to the GF(2
8
), perform the modulo

operation using the irreducible polynomial. The

Itoh-Tsujii algorithm simplifies the modulo

operation as shown below:

a(x)

b(x)

X m

m(x) = x
8
 + x

4
 + x

3
 +x +1 = 0 …(10)

x
8
 = x

4
 + x

3
 + x + 1 …(11)

x
9
 = x

5
 + x

4
 + x

2
 + x …(12)

x
10
 = x

6
 + x

5
 + x

3
 + x

2
…(13)

x
11
 = x

7
 + x6 + x

4
 + x

3
 …(14)

x
12
 = x

8
 +x

7
 + x

5
 + x

4
 = x

7
 + x

5
 + x

3
 + x + 1 (15)

x
13
 = x

8
 + x

6
+ x

4
 + x

2
 + x = x

6
 + x

3
+ x

2
 + 1 (16)

x
14
 = x

7
 + x

4
 + x

3
 + x …(17)

Now the result of the modulo operation is given

below:

D(x) = d7x
7
+d6x

6
+d5x

5
+d4x

4
+d3x

3
+d2x

2
+d1x+d0 …(18)

d7=c7 ⊕ c12 ⊕ c14 …(19)

d6=c6 ⊕ c10 ⊕ c11 ⊕ c13 …(20)

d5=c5 ⊕ c9 ⊕ c10 ⊕ c12 …(21)

d4=c4 ⊕ c8 ⊕ c9 ⊕ c11 ⊕ c14 …(22)

d3=c3 ⊕ c8⊕ c10 ⊕ c11 ⊕ c12 ⊕ c13 ⊕c14 …(23)

d2=c2 ⊕ c9⊕ c10 ⊕ c11 …(24)

d1=c1 ⊕ c 8⊕ c9 ⊕ c12 ⊕ c14 …(25)

d0=c0 ⊕ c8 ⊕ c12 ⊕ c13 …(26)

Since D(x) expresses GF(2
8
) , the multiplication

result of two numbers in GF(2
8
) A= (a7, a6, a5, a4,

a3, a2, a1, a0) B=(b7, b6, b5, b4, b3, b2, b1, b0) will be

D=(d7, d6, d5, d4, d3, d2, d1, d0) .

In another words, multiplication in GF(2
8
) can be

implemented using AND and EXOR logics.

3.1 Mathematical Analysis
Let the operands be in the GF(2

m
) field and let n be

the order of multiplication. The results will have

{dm-1, …. d6, d5, d4, d3, d2, d1, d0} as the coefficient.

Further the work done depends on m(x). Let m(x)

be {mm, …. m6, m5, m4, m3, m2, m1, m0}.

In general,

dk = Σmj (Σci) …(27)

where j = 0 to m-1

and i = k-j, m+k-j, 2m+k-j, …….

The computational complexity can be approximated

to O(n/m), which is a very good factor.

3.2 Synthesis report:

The synthesis of the Galois multiplier for word

lengths 8, 16 and 32 using Xilinx Virtex600e are

shown.

Fig 3: RTL Schematic of 8-bit GALOIS

multiplier

Fig 4: RTL-Schematic of a 16-bit GALOIS

multiplier

Fig 5: RTL Schematic of a 32-bit GALOIS

multiplier

3.2.1 Resource Utilization Summary:
Number

of bits

Number

of slices

Number

of 4 input

LUTs

Number

of Bonded

IOBs

8 30 52 24

16 114 198 48

32 471 819 96

Table 1: Resource utilization

3.2.2 Timing Report:

Number

of bits

Logic

Delay (ns)

Route

Delay (ns)

Maximum

Combinational

Path Delay

(ns)

8 7.407 6.640 14.047

16 7.407 7.144 14.551

32 8.203 9.088 17.291

Table 2: Timing report

4. Suggested Enhancements:

First, the multiplier can be made scalable to take

into consideration arbitrary values of the word

length. This means the unit must be designed to

compute the product in Galois field over a range of

word lengths and different irreducible polynomial.

The choice of the upper limit on the word size bears

a constraint on both the speed and the area the

multiplier occupies. Thus the maximum order ‘m’

of the GF(2
m
) multiplier is decided based on the

sacrifice that can be made on the speed. This also

has to take into account the suitable irreducible

polynomial of a given order that can be employed

to cut down the number of IO buffers. An

irreducible polynomial with a fewer non-zero

coefficients will serve to reduce fan-in of the XOR

gates.

Next, the multiplier can be enhanced using

pipelining. Tomasulo`s model for pipelining can be

exploited here. The computation of the product can

be fragmented into simpler operations and

incorporating pipeline registers for storing the

result of the individual process.

A number of architectures have been proposed

that concentrate either on the speed maximization

[5][6] or on the area optimization [7]. Focusing on

the aforesaid dependencies, an efficient Galois

multiplier can be realized that will produce an

optimal speed-area ratio.

5. Conclusion:
Itoh-Tsujii based Modulo-Multiplier is a good

solution for application requiring high bit sizes.

Further scalability and pipelining provides a

multifold increase in its performance.

6. References
[1] J. Guajardo and C. Paar. Itoh-Tsujii Inversion in

Standard Basis and Its Application in

Cryptography. Design, Codes, and Cryptography,

(25): 207–216, 2002

[2] Advanced Encryption Standard (AES), Federal

Information Processing Standards Publication 197,

November 26, 2001.

[3] [1] H. Brunner, A. Curiger, M. Hofstetter, On

computing multiplicative inverses in GF(2m), IEEE

Transactions on Computers, Vol. 42, No. 8, August

1993, pp. 1010-1015.

[4] T. Itoh and S. Tsujii. ‘A Fast Algorithm for

Computing Multiplicative Inverses in GF(2m)

Using Normal Bases’. Information and

Computation, 78: 171-177, 1988.

[5] E. D. Mastrovito. VLSI Architectures for

Computations in Galois Fields. Dept. Electrical

Engg., Linkoping, Sweden, 1991.

[6] J. L. Massey and J. K. Omura. Computational

method and apparatus for finite field arithmetic.

U.S. Patent Application, 1981.

[7] M. A. Hasan and V. K. Bhargava. Bit-serial

systolic divider and multiplier for finite fields

GF(2
m
). IEEE Transactions on Computers, 41(8):

972-980, Aug 1992.

