Expansion Bus for Modular Embedded Systems
MARIUS OTESTEANU

Faculty of Electronics and Telecommunications

„Politehnica” University of Timisoara

Bv. Vasile Parvan 2, 300223 Timisoara

ROMANIA

http://www.etc.utt.ro
Abstract: The paper proposes a method to adapt the modular structure of an embedded system to the application’s necessities. An expansion bus, with a small number of signals, is designed in order to widen the input and output features of the system and to allow digital control of analog or general purpose modules. To this end, particular acquisition and generation methods are implemented and the I2C-bus is used to control an undefined number of extension modules, added to the system.
Key–Words: Adaptive software, Digital acquisition, Digital generation, Embedded system, Flexible architecture, I2C-bus.
1 Embedded systems design problem
Industrial applications often use dedicated embedded systems. Depending on the type of the application and on the necessary features of the application, the architecture of the system might have big variations and changes.
For a group of applications, a group of embedded systems should be developed, with different parameters, as number and level of digital input channels, number and driving current of digital output channels, number and range of analog channels, etc. [1].
The design of new hardware architecture and software functions, for each new type or version of the applications, results inefficient, costly and long time to market. These important limitations and disadvantages can be eliminated by using a different design concept.

2 The Proposed Modular Solution
The paper proposes a flexible approach to such applications:
· modular design of the embedded system, with a basic system and a family of particular modules, physical independent, for digital acquisition, digital generation, analog interface, etc.;
· appropriate architecture definition, for each new application design, by selecting and using just the corresponding modules;
· interconnect the needed modules, in a particular embedded system, controlled by an adaptive software, running on the basic unit.
The interconnection of different modules usually generates a high number of wires and connectors, growing with the number of modules involved.
In order to efficiently implement the modular method, the interconnection of all modules must be achieved by a bus, minimizing wires and connections.

The proposed expansion bus, represented in figure 1, must have the following features:

· open structure, allowing the connection of any number and any type of extension modules,

· minimum number of signal lines, able to perform all necessary interface functions, as digital acquisition, digital generation, analog interface, etc.
[image: image1.bmp]
Fig. 1. Modular embedded system.
3 The Digital Acquisition Method

In order to develop the efficient expansion bus, the acquisition method must involve a minimum number of signals, even when tens of input signals have to be processed.

The solution uses exclusively latches, as external hardware, and a few number of software generated control signals. The main advantage is the use of a single data pin for the serial acquisition of any number of digital input signals [2].
The proposed acquisition method, shown in figure 2, follows the next steps:

· parallel acquisition in shift register, at SAMPLE (load) signal,

· serial shifting of sampled inputs, synchronized by the CLOCK signal,

· loading, through a single microcontroller pin, DATA IN, an internal RAM mapped register.

The two control signals, SAMPLE and CLOCK, are software generated. At each CLOCK pulse, one DATA IN bit, corresponding to an input channel, is read by the microcontroller, starting with IN 1.

Fig. 2. Digital signals acquisition method.
Using cascaded 8-bit shift registers (through SERIN pin), with parallel loading (as 74HCT165), acquisition of unlimited digital input signals becomes possible, according to figure 3.
Some registers can be part of the basic embedded system (ACQ-1 and ACQ-2, for 16 digital signals: IN 1 ÷ IN 16), while others can be added as expansion modules (ACQ-3, for 8 signals: IN 17 ÷ IN 24).

The interface between the basic module and cascaded digital acquisition modules uses just 3 signals. So, the digital input expansion bus is limited to two control signals (SAMPLE and CLOCK) and one serial acquisition signal (SERIN).
Even if the particular acquisition solution implemented on the basic module uses parallel transfer (8 bits), the input bus still has 3 lines, because of the serial cascading of the registers.

Fig. 3. Digital input expansion bus.
4 The Digital Generation Method

The same condition, using a minimum of control signals, when generating tens of digital signals, implies a particular method, similar to the acquisition one.

The solution uses two levels of latches, as external hardware, and software generated control signals. The proposed method, represented in figure 4, follows the next steps:

· the first level of latches is serially loaded through the DATA OUT pin,
· the serial shifting of the samples for the generated signals are synchronized by the CLOCK signal,

· the second level of latches is parallel loaded, at the STROBE (load) signal.
The two control signals, STROBE and CLOCK, are software generated. At each CLOCK pulse, one DATA OUT bit, corresponding to an output channel, is transmitted by the microcontroller, starting with O 8.

Fig. 4. Digital signals generation method.

Fig. 5. Digital output expansion bus.
Using cascaded 8-bit serial-input (through SEROUT pin), with latched source drivers (as UCN5891), the generation of unlimited digital signals can be performed as represented in figure 5.
GEN-1 and GEN-2 registers can be part of the basic embedded system, while GEN-3 and others can be cascaded expansion modules.

The interface, representing the digital output expansion bus, is limited to two control signals (STROBE and CLOCK) and one serial transfer signal (SEROUT), even if the parallel transfer (8 bits) is used by the microcontroller.
5 The Module Identification Method
Using the proposed methods for acquisition and generation of digital signals, the modular structure of the embedded systems (fig. 1) becomes possible:
· for small applications, the designer can use just the basic module, with microcontroller and dedicated software;
· for extended applications, the designer can add m digital input modules and n digital output modules, as extra peripherals; the appropriate software, depending on m and n values, is run on the microcontroller of the basic module.
So, for any change (e.g. adding 16 input channels or removing one output module), different software versions should be used. Such a solution would keep the disadvantages, being inefficient, costly and long time to market.

The proposed solution avoids the designer’s interference, by using adaptive software, for any m and n values. The user can have the freedom to decide on field the number of channels to be used.

In such a case, the system must know, by itself, the type and the number of the expansion modules connected to the bus.
For this reason, a communication system, between the intelligent basic module and the extra modules, must be added to the expansion bus. In order to keep low the signals number, a serial communication has to be implemented.
The I2C bus was chosen for its capacity of inter-IC control through a bidirectional 2-wire bus: a serial data line (SDA) and a serial clock line (SCL). The I2C-bus compatible devices, software addressable by a unique address, communicate in different modes, including the master – slave mode, needed in this application [3].
Master is the microcontroller of the basic module, as Microchip’s PIC 16F87X, which is I2C compatible, thanks to its MSSP (Master Synchronous Serial Port), a serial interface used for communications with peripheral devices, as serial EEPROMs [4].
Slave is an I2C-bus compatible circuit, as Microchip’s 24C01C, a 1k serial EEPROM with I/O control block, which allows to define a particular address of the memory chip, through 3 external pins, A0, A1 and A2 [5].

Figure 6 shows a master-slave communication between the basic module, containing the microcontroller, and the additional module, containing the serial EEPROM.

The clock (SCL) is generated by the MSSP of the master, while the bidirectional synchronous data transfer is performed through the data line (SDA). The master can check a module connected on the bus by sending its address, using the SDA signal. If the last 3 bits match the particular setting for A2 A1 A0, the addressed slave generates an acknowledge signal, on the same SDA line.
Each module has a particular wired address, set by connecting the 3 bits to “1” or “0”. After a sequence of addressing all 8 possible modules, the master’s software knows exactly the hardware structure: number and type of expansion modules.

The resulting general architecture, with up to 8 additional modules, different in type and size, is generous for any embedded systems application.

Fig. 6. I2C expansion bus.
6 Analog and General Modules
An extended embedded system might need, beside digital input and digital output extra modules, according to the methods presented, analog and general purpose extra modules, as:

· digital to analog conversion, with analog output on the extra module,
· analog to digital conversion (extra channels to the microcontroller’s analog inputs, on the basic module), with analog input on the extra module,

· analog signals multiplexing or demultiplexing, digitally controlled by the microcontroller, with both inputs and outputs on the extra module,

· general purpose modules, digitally controlled by the basic module, etc.
The use of such modules needs no additional bus signals, widening the features of the proposed expansion bus. The existing bus offers 2 solutions for such modules:
· serial transfer of data from a slave module to the master, cascaded with the input modules, through the SERIN line, and from the master to a slave module, cascaded with the output modules, through the SEROUT line;
· data transfer, independent to other modules, using the serial data line SDA of the I2C-bus.
The first solution needs just a serial-parallel register to be connected on the bus.

The second solution needs an I2C-bus interface for data transfer, as PCF8574, a remote 8-bit I/O expander, represented in figure 7 [6].
The device has a personal address, set with the 3 bits A0, A1 and A2, which can be the same with module address, because the 2 integrated circuits (the EEPROM, used for module identification, and the 8-bit I/O expander, used for data transfer) have different built-in address bits: A3 ÷ A6.

After module identification, the software on the microcontroller can perform data transfers, by selecting the 8-bit quasi-bidirectional port and using the I2C-bus signals, SCL and SDA. The interrupt output informs the microcontroller, without using the I2C-bus, that incoming data is ready to transmit.

This second solution, independent to other extra modules (input or output), can be implemented on any general purpose module, with no extra signals.
Fig.7. Data interface on the I2C-bus.
7 The General Expansion Bus

Summarizing the methods used to interconnect, by an expansion bus, additional modules to a basic embedded system, 3 already defined buses have to be put together:

· digital input expansion bus (figure 3), using 3 signals: CLOCK, SAMPLE and SERIN;
· digital output expansion bus (figure 5), using 3 signals: CLOCK, STROBE and SEROUT;

· serial communications I2C expansion bus, using 2 signals: SCL and SDA.
One can see that a clock signal is used in all module types, so one single line is enough for CLOCK and SCL signals. So, the proposed expansion bus consists just of 6 signals. The active signals, in each module type, are marked in Table 1.
Table 1
	Bus signal
	 Additional module type

	
	 Input
	 Output
	 Analog

	CLOCK
	·
	·
	·

	SDA
	
	
	·

	SAMPLE
	·
	
	

	STROBE
	
	·
	

	SERIN
	·
	
	

	SEROUT
	
	·
	

Obviously, the checking procedure for modules identification is common to all module types. During this procedure, in all cases, CLOCK and SDA signals are active.

The general bus may include 2 lines for supply voltage and ground, useful for low power modules. For other applications, because of the limited power supply of the basic module, individual power supply has to be designed on the additional module.

The design was developed as a master – slave system, but the general expansion bus also allows multi-master systems, with intelligent modules in a multiprocessing architecture.
8 Software Implementation
The software runs on the microcontroller of the basic module. It contains all subroutines handling the additional modules activity. The subroutines are active only for the module types connected in the system. For each type, the parameters of the subroutines depend on the number of modules.
The software follows the next steps:

· polling all 8 addresses to identify the connected modules: type and number of each type;

· activate the subroutines corresponding to each module type: input, output, digital to analog, analog multiplex, digital control, etc.;

· set the appropriate parameters for cascaded types: input and output channel number.

In this way, the original software, designed for all functions, is self adapting to the particular architecture, defined by the up to 8 additional modules connected, at the time, to the expansion bus. So, the actual software changes at each new connection or removal of a module.
9 Expansion Bus Implementation

The modular embedded system uses the 6 lines expansion bus (table 1) and, optionally, power supply lines or other communication lines.

Each additional module has to be connected to the bus and to allow additional modules to be connected. So, 2 connectors are designed on each module in order:
· to use the needed signals by the particular circuit and

· to transfer all signals to the next module.

As represented in figure 8, each module is connected, with a flat cable, to the next one. The bus signals:

· CLOCK, SDA, SAMPLE and STROBE are directly transferred, non interrupted, and used by the module, if necessary, and
· SERIN and SEROUT are transferred, after interruption for cascaded operations.
The implementation minimizes the connections, is independent to the modules number and assures an efficient PCB design.
10 Conclusions

The paper presents efficient solutions for increasing the features of an embedded system by an expansion bus, with as few as 6 lines. The main advantage is the connection, in any order, of any unit type, up to 8 modules at a time.

The adaptive software uses the bus features to automatically identify the actual architecture of the expanded embedded system and to run the appropriate subroutines. No software redesign and no operator intervention after connecting the particular modules are needed.
The proposed solutions for digital input and digital output expansion can be implemented on any microcontroller. But, the use of I2C-bus compatible circuits adds new advantages, as modules identification and further expansions with digital control.
References:

[1] Otesteanu, M., Gontean, A., Microcontroller Applications Reconfiguration Method and Development System, Proceedings of IFAC workshop on Programmable Devices and Systems, Cracow, Poland, 2004, pp. 284 – 287

[2] Otesteanu, M., Embedded System for Air-Cushion Transporter Control, Proceedings of IFAC workshop on Programmable Devices and Systems, Cracow, Poland, 2004, pp. 304 – 309

[3] * * * The I2C–bus Specification, Version 2.1, Philips Semiconductors, 2000

[4] * * * PIC 16F87X, 8-bit CMOS FLASH Microcontrollers, Microchip Technology Inc., 2001
[5] * * * 24C01C 1K, 5.0 V, I2C™ Serial EEPROM, DS21201C, Microchip Technology Inc., 1999

[6] * * * PCF8574 Remote 8-bit I/O expander for I2C-bus, Philips Semiconductors, 2002

 ACQ-3 	 ACQ-2 ACQ-1

 module basic basic

DATA OUT

 O 1 ÷ O 8 O 9 ÷ O 16 O 17 ÷ O 24

SEROUT

MICROCONTROLLER

STROBE

INT

GEN.

MODULEEE

INPUT

MODULEEE

ANALOG

MODULEEE

ANALOG

MODULEEE

INPUT

MODULEEE

OUTPUT

MODULEEE

INPUT

MODULEEE

BASIC EMBEDDED SYSTEM

CLOCK

SDA

SAMPLE

STROBE

SERIN

SEROUT

A2 A1 A0

EXPANSION

COMMUNICATIONS BUS

SCL

SDA

MSSP

Micro

controller

I/O Control

Memory Control

&

EEPROM Array

BASIC

EMBEDDED

SYSTEM

 Analog Additional

 interface

 module module

 Digital Digital Digital Digital

 input input output output

 module module module module

EXPANSION BUS

 GEN-1 GEN-2 GEN-3

 basic basic module

EXPANSION OUTPUT BUS

EXPANSION INPUT BUS

DATA IN

IN 24 ÷ IN 17 IN 16 ÷ IN 9 IN 8 ÷ IN 1

SERIN

MICROCONTROLLER

SAMPLE

CLOCK

DATA IN

SERIN

IN8 IN7 IN6 IN5 IN4 IN3 IN2 IN1

MICROCONTROLLER

SAMPLE

CLOCK

CLOCK

DATA OUT

SEROUT

O1 O2 O3 O4 O5 O6 O7 O8

 MICROCONTROLLER

STROBE

CLOCK

Fig. 8. Physical implementation of the modular embedded system with expansion bus.

8

Shift Reg.

P0

P1

P2

P3

P4

P5

P6

P7

 A2 A1 A0

I/O Control

SCL

SDA

I/O Port

