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Abstract: – The paper gives the answer to the question, whether calculating the cell loss ratio gives us
information about the statistical structure of losses caused by the buffer overflow. In other words, can
two queueing systems having exactly the same cell loss ratio have quite different consecutive cell loss
probabilities? The answer to this question is studied for a variety of queueing systems with different
buffer capacities, traffic intensities and the distributions of the service time.
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1 Problem formulation

If we want to estimate the performance of some
queueing system with a view towards packet
telecommunication, we usually think first of calcu-
lating the cell loss ratio. This coefficient is equal to
the percentage of cells (packets) lost in the system
due to the buffer overflow in a long time interval.
Obviously, we want this ratio to be as small as pos-
sible, but it almost never (excluding some special
cases) can be zero in real systems, in which the ca-
pacity of the buffer is finite.

The natural question that arises regarding the
cell loss ratio is whether this coefficient tells us
something about the ”statistical structure” of losses
caused by the buffer overflow or not. By the statisti-
cal structure of losses we mean just the distribution
of the number of cells lost during one buffer overflow
period. This distribution may be especially impor-
tant in these applications, in which we cannot afford
losing groups of consecutive arrivals. The question
presented above may be formulated also in the fol-
lowing manner: Can two queueing systems with the
same cell loss ratio have significantly different dis-

tributions of consecutive losses?
Apparently, it is possible. Moreover, the differ-

ence can be really great. In Example 4, Section 3
the probability of losing 10 cells in a row is almost
107 times greater in the second system than in the
first one, although they have the same loss ratio.

What is even more interesting, this effect can be
observed even if these two systems have a common
buffer capacity, traffic intensity (ρ) or the distribu-
tion of the service time.

To prove all of this, four examples of pairs of
queues with detailed calculations are presented in
Section 3. Carrying out these calculations was pos-
sible thanks to recent results devoted to duration of
the buffer overflow period [3]. Clearly, the distrib-
ution of the length of the buffer overflow period is
the basis for the calculation of consecutive cell loss
probabilities (see formula (1)).

The buffer overflow period (or, equivalently, the
remaining service time) may be defined in the fol-
lowing manner (see, for instance [3]).

Let X(t) denote the queue length at the mo-
ment, t of a single-server queue with a buffer of
some finite size b. Let the initial queue size be
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X(0) = n and let τ+(n, b) denotes the first moment
in which the buffer is overflowed: τ+(n, b) = inf{t >
0 : X(t) = b}. If ζ(n, b) stands for the first depar-
ture moment after τ+(n, b) then the buffer overflow
period is defined to be β(n, b) = ζ(n, b)− τ+(n, b).

In this paper we deal only with the case n =
b − 1. This is due to the fact, that in queueing
systems with the Poisson input stream only the dis-
tribution of the first buffer overflow period depends
on initial queue length n. For every other the initial
queue length is b− 1. Thus β(b− 1, b) will be called
subsequent buffer overflow period and the probabil-
ity density function of β(b−1, b) will be denoted by
h(z). The following model of the queue is consid-
ered: cells (packets) arrive according to the Poisson
process with intensity ν. The service time is dis-
tributed according to a distribution function F (x).
The capacity of the buffer is finite and equal to b
(including service position). In Kendall’s notation
such a model is called M/G/1/b.

Results connected with the distribution of the
remaining service time are presented in articles
[1, 2, 3, 4, 5, 6, 7]. Chronologically, the equilibrium
distributions of past and remaining service times
upon reaching a given level in an M/G/1 queue
were shown in [1]. The properties of mean remain-
ing service time in a G/G/1 queue were investigated
in [6]. In [7] the formula for the mean remaining ser-
vice time for a queue with a constant service rate
and the Poisson input stream was obtained. A lim-
iting formula (as b → ∞) for the remaining service
time in the M/G/1/b model was given in [2]. An
explicit form of the distribution of the remaining
service time in the M/G/1/b system was presented
in [3]. Finally, the properties of the remaining ser-
vice time in a batch arrival queue were studied in
[4, 5].

2 Notation

Throughout the article the following notation will
be used:

ν – the intensity of the input stream

F (z) – the distribution function of service
time, z > 0.

b – the capacity of the buffer (including service
position)

ρ = ν
∫∞
0 xdF (x) – the offered load (traffic

intensity) of the system

h(z) – the probability density function for the
duration of the subsequent buffer overflow pe-
riod

rn – the probability of n consecutive losses
during the subsequent buffer overflow period

Pb – the cell loss ratio (blocking probability)

δi,j - the Kronecker symbol (δi,j = 1 if i = j
and 0 otherwise)

I(x > y) =
{

1 if x > y,
0 otherwise

3 Problem solution

The basic characteristic we are interested in is rn

– the probability of n consecutive losses during the
subsequent buffer overflow period. It is easy to see
that

rn =
∫ ∞

0

e−νu(νu)n

n!
h(u)du, (1)

and now we need an effective way for finding h(u).
The formula for the tail of the distribution of the
subsequent buffer overflow period was proven in [3].
Thus differentiating (14) in [3] we get:

h(z) =
∑b−1

k=1 ak(z)(Rb−k −Rb−1−k)∑b−1
k=0 qk(Rb−k −Rb−1−k)

, (2)

where

ak(z) =
∫ ∞

0
ν

e−νu(νu)k−1

(k − 1)!
dFu(z), Fu(z) = F (u+z),

qk =
∫ ∞

0

e−νu(νu)k

k!
dF (u),

R0 = 0,

Rk+1 =
1
q0

(
δ0,k + Rk −

k∑

n=0

qn+1Rk−n

)
, k ≥ 0.

As the basic assumption is that the cell loss ratio
(blocking probability) is the same in both queueing
systems, we also have to control this characteristic.
Its value can be calculated in the following manner
(see [8], p. 202, formula (1.18b)):

Pb = 1− 1
π0 + ρ

, π0 =

(
b−1∑

k=0

π′k

)−1

,
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π′0 = 1, π′k+1 =
1
q0


π′k −

k∑

j=1

π′jqk−j+1 − qk


 .

Now we are in a position to carry out all neces-
sary calculations. P

3.1 Example 1

In the first example we consider System A with con-
stant service time (= 1) and System B with expo-
nential one. This reduces the necessary calculations,
as in the second system h(z) is also exponential.
The capacity of the buffer is the same in both sys-
tems. Namely, we put:
System A:

ν = 0.2, b = 5,

F (z) = I(z > 1).

System B:

ν = 9.82711 · 10−2, b = 5,

F (z) = 1− e−z.

The value of the input stream intensity in Sys-
tem B was adjusted for giving the same cell loss
ratio in both systems. Its common value is equal
to:

Pb = 8.2643 · 10−6.

Shapes of distributions of the subsequent buffer
overflow periods for this input data are presented
in Figure 1. Consecutive cell loss probabilities are
gathered in the following table:

n rn (System A) rn (System B)
1 5.5024 · 10−2 8.1471 · 10−2

2 2.6790 · 10−3 7.2899 · 10−3

3 1.0987 · 10−4 6.5229 · 10−4

4 3.8484 · 10−6 5.8365 · 10−5

5 1.1684 · 10−7 5.2224 · 10−6

6 3.1173 · 10−9 4.6729 · 10−7

7 7.3984 · 10−11 4.1812 · 10−8

8 1.5787 · 10−12 3.7413 · 10−9

9 3.0565 · 10−14 3.3476 · 10−10

10 5.4120 · 10−16 2.9954 · 10−11

We see that losing two cells in row is three times
more probable in the second system than in the first
one and this difference increases with n. Losing five
cells in row is 50 times more probable in the second
system than in the first one, etc.

3.2 Example 2

In the second example we want the input stream in-
tensity to be common. To get this we have to adjust
its value and the buffer sizes. They may be set, for
instance:
System A:

ν = 0.5217976, b = 10,

F (z) = I(z > 1).

System B:

ν = 0.5217976, b = 17,

F (z) = 1− e−z.

The cell loss ratio is then

Pb = 7.5362 · 10−6

in both systems.
The densities h(z) are presented in Figure 2,

while consecutive cell loss probabilities have the fol-
lowing values:

n rn (System A) rn (System B)
1 0.1556 · 10−1 2.2531 · 10−1

2 2.2858 · 10−2 7.7256 · 10−2

3 2.6918 · 10−3 2.6490 · 10−2

4 2.6248 · 10−4 9.0829 · 10−3

5 2.1757 · 10−5 3.1144 · 10−3

6 1.5651 · 10−6 1.0679 · 10−3

7 9.9321 · 10−8 3.6615 · 10−4

8 5.6347 · 10−9 1.2555 · 10−4

9 2.8888 · 10−10 4.3048 · 10−5

10 1.3506 · 10−11 1.4760 · 10−5

Again, the difference is significant and increases
with n. Pay attention to the fact that the offered
load is also common:

ρA = ρB = 0.5217976.
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3.3 Example 3

The previous result may suggest the question
whether it is possible to find an example in which
three parameters: ν, b, and ρ are common in both
systems. Apparently, a construction of such exam-
ple is possible.
System A:

ν = 1, b = 30,

F (z) = I(z > 2).

System B:
ν = 1, b = 30,

F (z) = 1− e−0.5z.

In both systems we have:

Pb = 0.5, ρ = 2.

The shapes of h(z) are presented in Figure 3. The
values o rn are the following:

n rn (System A) rn (System B)
1 3.1138 · 10−1 2.2222 · 10−1

2 2.0038 · 10−1 1.4815 · 10−1

3 9.8083 · 10−2 9.8765 · 10−2

4 3.8683 · 10−2 6.5844 · 10−2

5 1.2765 · 10−2 4.3896 · 10−2

6 3.6199 · 10−3 2.9264 · 10−2

7 8.9971 · 10−4 1.9509 · 10−2

8 1.9901 · 10−4 1.3006 · 10−2

9 3.9650 · 10−5 8.6708 · 10−3

10 7.1863 · 10−6 5.7805 · 10−3

3.4 Example 4

In the final example we will answer the question, if
it is possible to construct an example in which ser-
vice time distributions are equal in both systems.
The following settings will solve the problem:
System A:

ν = 0.2, b = 5,

F (z) = I(z > 1).

System B:

ν = 0.9085966, b = 50,

F (z) = I(z > 1).

We have got the same constant service time and
the cell loss ratio is in both cases:

Pb = 8.2643 · 10−6.

Shapes of distributions for this input data are
presented in Figure 1. The consecutive cell loss
probabilities have the following values:

n rn (System A) rn (System B)
1 5.5024 · 10−2 2.4840 · 10−1

2 2.6790 · 10−3 6.7906 · 10−2

3 1.0987 · 10−4 1.4501 · 10−2

4 3.8484 · 10−6 2.5294 · 10−3

5 1.1684 · 10−7 3.7207 · 10−4

6 3.1173 · 10−9 4.7261 · 10−5

7 7.3984 · 10−11 5.2787 · 10−6

8 1.5787 · 10−12 5.2588 · 10−7

9 3.0565 · 10−14 4.7267 · 10−8

10 5.4120 · 10−16 3.8694 · 10−9

We see, that in this example the differences are
even greater than in the previous three examples.

4 Conclusions

This article gives the answer to the question,
whether calculating the cell loss ratio gives us in-
formation about the statistical structure of losses
caused by the buffer overflow or not. The answer
is negative. This means that two queueing systems
having exactly the same cell loss ratios may have
quite different consecutive cell loss probabilities.

This effect can be quite strong (Example 4). Pay
attention to the fact that all presented examples are
rather simple. Introducing more sophisticated dis-
tributions of service time (heavy-tailed) would likely
intensify the effect.

What is interesting, this effect can be observed
even if the buffer capacities, traffic intensities or the
distributions of the service time are equal in both
systems.
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Figure 1: Density functions for the duration of the subsequent buffer overflow period in systems A and
B (Example 1).
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Figure 2: Density functions for the duration of the subsequent buffer overflow period in systems A and
B (Example 2).
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Figure 3: Density functions for the duration of the subsequent buffer overflow period in systems A and
B (Example 3).
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Figure 4: Density functions for the duration of the subsequent buffer overflow period in systems A and
B (Example 4).
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