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Abstract: - A method to detect and manage collision situations of the concurrent operations made by two robot 
arms in a shared work space is presented. Two different strategies, collision avoidance and in-turns operation are 
considered. The operation of a dual-armed assembly robot is modeled using Petri nets. The model is then tested 
by the means of an animated virtual assembly system. By observing the operation of the virtual robot, the 
observer can verify that the robot arms work correctly and that the possible deadlock situations are avoided 
successfully. Finally, the performance of the collision avoidance method and that of the in-turn operation mode 
are compared. 
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1 Introduction 
      Robotic assembling is used widely in today's 
highly automated production lines. In these 
environments, the cost of production, quality of 
products and operational flexibility are the key factors 
having an influence on the joint economy of the 
production. Improving the assembly performance is 
one possible method when aiming at reduced 
production costs. The kind of assembly robots is 
tightly tied to the needs of the production process and 
universal robots are becoming common due to their 
flexibility in situations where the lifecycle of products 
is short. Electronics industry is one of the most 
emerging fields utilizing automated production lines. 
The machines on the lines have been traditionally 
specialized to rather restricted tasks, like inserting of 
electronic components of certain size and feeder type. 
A recent trend has been the increased popularity of 
general purpose precision robots using one or two 
arms and allowing several possible packaging types 
for the electronic components. The idea behind their 
use seems to be their flexibility especially in 
high-mix-low-volume production. 
      In cases where the two robot arms can physically 
access the same area or space, the topic of collision 
avoidance has to be discussed and solved. The 
measures for collision avoidance apparently influence 
the performance of the robot system significantly. The 
prediction of potential collisions is difficult in general 
cases when the two arms are used independently from 

each other in a fully concurrent manner. There are 
numerous articles and research results proving that 
common variants of the problem are so complex that 
mathematical solutions are hard to find or are not yet 
known [4, 5]. Because of this, heuristics or other 
approximate methods are needed. In the present work 
we apply simulation to evaluate the different heuristic 
ideas. Hereby, a discrete event modeling method 
called Petri net [7, 2] will be used and demonstrated. 
In particular, the operation of a dual-handed robotic 
systems is modeled, simulated and visualized. The 
performance of the systems is then evaluated when 
assuming two different modes of operation:  
1) concurrent operation with collision detection and 
avoidance and  
2) in-turn operation of the same robot making the 
same assembly task. 
      In addition to the many basic questions concerning 
the overall performance of different robot design 
alternatives, we have an acute practical problem of 
controlling a dual-handed assembly robot equipped 
with a real time collision avoidance system. In order to 
reach a favorable division of the component 
placements for each arm, we need a simulator for the 
robot. The present study is a first step towards 
implementing  this kind of generic software. 
      Actions of the robot are visualized by using 
animation on the computer screen.  The animated 
model is intended to verify the functioning of the Petri 
model to a human observer. The actual Petri net 
execution and its visualization are made using a simple 



scripting language, which interprets the human made 
Petri net model into a computer understandable form. 
      The plan of the rest of the paper is as follows. In 
section 2, we shortly describe some known simulation 
models of dual-handed assembly robots. We restrict 
ourselves to the use of Petri nets only. In section 3, we 
present a more advanced Petri net model having an 
autonomous in-fly collision avoidance system instead 
of the mutual exclusion based systems described in 
section 2. In section 4, an animated model of a virtual 
dual-handed assembly robot is presented. Further, four 
different assembly strategies to be simulated are 
described and some results of the simulation with 
these strategies are presented. In section 5, some 
conclusions over this work are drawn. 
 
 
2 Previous work 
      There seems to be only few models for 
dual-handed assembly robots using Petri nets in open 
literature [1, 2]. The robotic assembly system modeled 
by Zhou and Leu [2] has two arms. The robot repeats a 
cycle of picking-moving-inserting-moving operations 
by both of its hands. However, since the arms operate 
on the same PCB and obtain components from the 
same feeder area, avoidance of arm collisions has to be 
considered. Collision avoidance is achieved by the 
mutual exclusion technique implemented using tokens 
(as semaphores) in the Petri model. Thus, when one 
arm is operating above the PCB area, the other is 
prohibited from moving into the same area. Because 
the arms use a common feeder, collision may also 
occur in the feeder area. For this reason mutual 
exclusion is applied for this area, too. 
      Originally the Petri nets consist only of the four 
original primitives presented by Carl A. Petri. These 
include two types of nodes, places (denoted by circles) 
and transitions (denoted by bars), edges called arcs 
(denoted by edges and arrow heads on the edges 
indicating the direction) and tokens (denoted by black 
dots). A Petri net is a bipartite directed graph, so an 
edge can connect only two nodes that belong to 
different types. Starting (or triggering) a Petri net 
transition is called by convention firing. A transition 
must be enabled before it can fire. To be enabled 
means that all input places of a transition contain one 
token. Effects of firing are: all enabling tokens are 
destroyed and, after selected transition times, new 
tokens are created in output places by the multiplicity 
of the output arcs. The initial state of a Petri net model 
is denoted by placing tokens on the initial places. This 
is called the initial  marking.  
      By convention, when bars are used, it is supposed 
that all transitions will take place in an infinitely short 

time. In the real world, however, they last certain time, 
which can be expressed by a timed net and the 
transitions are then denoted by rectangles. Operations 
like moving from the feeder to PCB are influenced by 
the position of the feeder and the destination of 
component insertion on the PCB. However, because 
all the movements are between the feeder and PCB 
areas, an average movement time can be calculated. 
The variation in time of the different movements can 
then be represented as a kind of noise. On this coarse 
modeling level, the operation times are modeled as a 
fixed time added with a small variation drawn from a 
negative exponential distribution.  
 
 
3 Modeling a dual-handed assembly 
robot 
      We next specify a virtual robot having concurrent 
operation of two robot arms and study a Petri net 
model capable of simulating and controlling the 
virtual robot or even real robots. The virtual robot with 
two hands is schematized in Fig. 1. On the top of the 
figure is the feeder bank having four feeders. The 
unpopulated printed circuit board (PCB) is fixed in the 
middle of the working table. When all placements 
have been done, the PCB is ejected, moved to the left 
and a new unpopulated PCB is fed from the right of the 
robot. A feeder bank is located over the working table 
and the electronic components are stored in the slots of 
the feeder bank. The two arms operate independently 
in cycles of component pickup-and-placement 
operations. The arms can be moved in the y-direction 
and reached out in the x-direction by independent 
(total of four) virtual stepper motors. 
 
 
3.1 Petri net model 
      When the two arms are used concurrently to rise 
the performance of the placement operations, one must 
face the risk for collisions, especially if shared 
resources or work spaces are in use. The two arms 
form moving obstacles to each other. To avoid 
collisions and robot breakdowns, collision avoidance 
must be arranged. Solving a general collision 
avoidance problem is difficult and costly [4, 5].  
Therefore, in many cases, the operations are restricted 
to be not fully concurrent, which changes the 
operation mode more or less to "in turn" type. This 
means that there are waiting time periods when one 
arm waits until the other arm has completed its task 
and is away from the critical space. However, the 
waiting reduces the overall performance of the robot. 
Fully concurrent operation without waiting times 
would be a better solution. In Fig. 3.1, a Petri net 



model of a dual-handed assembly robot having fully 
concurrent operation is shown.  
      In order to be able to model the operation control 
of the dual-handed assembly robot described above, 
we need three extensions to the common Petri nets [9]. 
First, inhibitor arcs are used to disable transitions in 
certain situations. Inhibitor arcs are denoted as arcs 
with circular heads instead of arrow heads. An 
inhibitor arc can join only places to transitions. If there 
is a token in the place having an inhibitor arc pointing 
to a transition, the transition is disabled as long as the 
token is there. Secondly, in order to avoid the Petri net 
model to become all too complex, an abstraction 
mechanism, hierarchical structuring, is used. The 
hierarchy construct is called a subnet. A subnet is an 
aggregate of a number of places, transitions, arcs and 
other subnets. Subnets make constructing, reviewing 
and modifying of large models easier. Third, we show 
explicitly the connections to outside of the control 
logic. Hollow arrows point places, where tokens are 
coming from the outside of the Petri net, e.g. from a 
computer manipulating the simulation data. Petri nets 
are not commonly used to make arithmetic operations, 
because they are not capable to read or write physical 
data files. Therefore, a computer is needed to run the 
actual Petri net and to perform file and arithmetic 
operations. 
      The Petri net model for a two-handed assembly 
robot in Fig 1 consists of three main functional parts:  
      1) the upper part of the model forms the PCB 
feeding and assembly controller. The initial marking 
for this functional part of the net is one token in the 
place OK_TO_ASSEMBLY. During the robot's 
assembly operations nothing happens here until the 
END_ OF_ FILE (EOF) of the list of components is 
encountered, then a token in the place END_OF_FILE 
fires the transition EJECTING_PCB and inhibits 
component data readings of the both arms by means of 
inhibitor arcs. Only the data reading is inhibited, both 
of the arms are continuing their operation until their 
cycles are completed. After this, the completed PCB is 
ejected and, if there are more PCBs to assembly, 
(which is denoted by a token in the place 
MORE_TO_DO), the feeding of a new, unpopulated 
PCB is started. This transition consumes also the 
initial token from the place OK_TO_ASSEMBLY. 
When a new PCB is fed and fixed on the work table, 
the file pointer is reset and the token causing the data 
readings to disappear is consumed by the transition 
RESETTING_FILE_POINTER. Now, both robot arms 
are free again to continue their component assembly 
operations.  
      2) The left side of the lower part of the model in 
Fig 1 controls the pick and place operations of the 
arm_1. The initial marking is a token in the place 
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Figure 1  The virtual dual-handed robot to be modeled. 
 
COMPLETED. This is also the place where the arm 
control waits after the EOF is reached and the 
assembly of the current PCB is completed. In that case 
the assembly controller disables the reading of data by 
means of an inhibitor arc. If the reading of data is not 
disabled and the pick-and-place cycle is completed, 
the next record of the data file is read.  
      The record contains the pick and place addresses 
for the next component placement. The transition 
READING_DATA then consumes the token from the 
place CYCLE_COMPLETED and creates tokens in the 
places READY_TO_PICK and READY_TO_MOVE. 
The token in the place READY_TO_PICK disables the 
transition PLACING. Therefore, after the arm 
movement has been completed, only the pick-up 
operation can be performed. One token in the place 
READY_TO_MOVE fires the transition MOVING.  
      Transition moving is a subnet and the details of the 
actual movement are defined and controlled in a 
subnet called "Motion control subnet", see Fig 1. 
While the arm performs two different kinds of 
movements, move-to-feeder and move-to-PCB, there 
is only one transition MOVING in the net. The motion 
is here always from the current position to the target 
position. Reaching the target position is notified by 
creating one token in the place MOTION_READY.  
      The alternation between the two kinds of 
movements is achieved by the use of exhibition arcs. If 
the transition PLACING is disabled by the inhibitor arc 
(as is the case at the beginning of a pickup-placement 
step), the next transition is PICKING. The transition 
PICKING consumes the tokens from the places 
READY_TO_PICK and MOTION_READY, and 



creates one token in the place READY_TO_MOVE. 
      After the movement to the feeder is completed, 
there is again one token in the place MOTION_READY 
and the movement is from the feeder position to the 
placement position. This time, the transition 
PLACING is no longer disabled and PICKING is not 
enabled because there is no token in the place 
READY_TO_PICK. The next transition is therefore 
PLACING. After the component has been placed there 
is again one token in the initial place 
CYCLE_COMPLETED. 
       3) The right side of the lower part of the model in 
Fig 1 controls the pick and place operations of arm_2. 
The description of the model is analogous to that of 
arm_1. Note that both arms have their own motion 
control subnets. 
      Both arms operate independently; the only 
controls between them are the inhibitor arcs pointing 
to the transitions READING DATA. These two 
inhibitor arcs function only as on/off switches to 
enable and disable data readings, there is no other 
control for the arms at this main level. Further, there is 
not any mutual exclusion or other explicit collision 
detection or collision avoidance features in Fig. 1. It 
may seem that a robot controlled by the presented Petri 
net would collide and have a breakdown immediately, 
but this is not the case.  
      The explanation for this is that a hierarchical Petri 
net model has been used to model the robot. A more 
detailed description of the motion transitions, 
MOVING, is given in a subnet called "motion 
controller" in Fig. 2. The Petri net performs all 
movements in the x- and y-directions by taking small, 
user-defined steps towards the target position. The 
host net of the motion controller has only two places 
related to the motion: READY TO MOVE and 
MOTION READY. The host does not even know how 
the movement is actually performed. 
      The Petri net of the motion controller (Fig. 2) is 
almost symmetrical; the left side controls the 
x-movement and the right side the y-movement. Both 
directions are controlled concurrently and 
independently, so one direction may become READY 
while the other direction is still unfinished. 
      The collision manager operates as follows. 
Initially, after separating the x- and y-motions, there 
are tokens in the places X-MOTION and Y-MOTION. 
We follow here up only the x-movement because the 
y-motion is analogical. There are three possible 
situations: first, the target position may be reached and 
the motion is ready, otherwise (secondly), the robot 
hand has to move towards the target. The movement 
can be HOMEWARD (smaller reach-out) or 
OUTWARD (more reach-out). The third situation is, 
that the collision manager (described below) has 

detected a collision and takes partly over the motion 
control of both directions x and y. This "taking over" is 
performed by the means of placing tokens into the 
places HOMEWARD, HALT_X or HALT_Y according 
to the current collision situation. Other motions (not 
halted or forced to be HOMEWARD) continue under 
the control of the motion controller towards the target 
position. After each motion step, the token is delivered 
back to the place X-MOTION until the target position 
is reached. 
      The motion controller performs collision free 
movements. Collision freeness is achieved by using a 
subnet "collision manager". Both robot arms have 
their own copies of the motion controller, but only one 
common collision manager. 
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Figure .2  Motion controller. 
 
 
3.2 Handling of the collision situations 
      Collision avoidance of concurrent, conflicting 
systems can be managed prior to the actual processing 
by issuing the proper scheduling and sequencing tasks 
for both arms. Optimal collision avoidance is, 
however difficult, indeed it belongs mathematically to 
the set of NP-complete problems [4, 5]. By 
“optimality” we mean in this case a plan with minimal 
operation time. Another, much easier way is to omit 
the collision avoidance calculations and instead of that 
to detect and manage collision situations on-line in 
real time. 
      In the case of an insertion machine for electronic 
components the prior planning for motions is 
impossible for several reasons. Some of these are: 
handling of erroneous components, some unexpected 
situation like run-out of some component type etc. We 
therefore consider in this subsection models for 



collision management from the point of view of our 
virtual machine. Our interest is in the formulation of a 
Petri net model, which can be used for the timing 
analysis of a real target machine with similar 
operations. 
      In particular, we suppose that the robot includes 
some system for determining in real-time distances 
from each arm to the other or a common control 
system for both arms, which has real-time knowledge 
of the arm distances. 
 
 
3.2.1 Assumptions 
      In order to simplify the simulator design we make 
three simplifications regarding the organization of the 
virtual robot. 
      1) Only the 2D case is concerned. In PCB 
assembly, most collision problems are in (x,y)-space. 
There are, however, some important exceptions, which 
should be kept in mind here. If the layout of the PCB is 
very tight, the order of insertions may be critical: a 
small component must sometimes be inserted prior to 
a large component in its vicinity. These types of 
constraints may cause problems for a two-handed 
robot, in particular if the precedence constraints deal 
with components placed with different arms. We 
suppose that a proper component-to-arm mapping and 
sequencing of the placements have solved these kinds 
of difficulties. 
      2)  2D linear/cartesian robots are used. Instead of 
scara or other more complex robot types, we suppose a 
robot with two linear arms. This excludes the 
possibility for hooking of the both arms together and 
largely simplifies the determining of the colliding 
parts and the time of collisions. Further, we can avoid 
a detected collision simply by stepping back, towards 
the home position, which is reducing the arms reach 
out. The home position is the minimum reach out 
position and it is supposed to be outside the maximum 
reach out of the other robot arm. 
      A linear robot arm here consists of two standard 
linear movement units connected together. The base 
arm is fixed to a robot body and cannot move. The 
moving arm is riding on the base carrier arm 
(y-direction) and it can move (reach out) orthogonal to 
the base arm (x-direction). A gripper or a nozzle to 
pick up components is fixed to one end (opposite to the 
driving unit end) of the linear unit. 
      3) The arms cover the components during the 
movement. All components to be picked and placed 
are supposed to be small enough to be inside of the 
arms borders. Thus, a component cannot collide 
against the component in the other arms gripper or 
against the other arm during arm movement. 
 

 
3.2.2 Collision detection for the virtual assembly 
robot 
      The collision detection is easy for linear/cartesian 
robots, because the possible collision points are 
obvious. After a safe distance is defined, it is only 
necessary to continuously check the x- and 
y-directions (or radius for a round safety area) whether 
or not the physical borders of the arms violate the 
safety distance. This can be done by the test: if (DX > 
SafetyDistance) or (DY > SafetyDistance) then no 
collision else collision. 
      Here DX and DY stand for the distances between 
the arms in the x- and y-directions, as shown in Fig. 3. 
SafetyDistance is a user-defined distance between the 
borders of the arms. It has to be defined so that the 
movements of both arms can be slowed down and 
stopped before a physical collision damages the robot 
arms. The above collision detection decision can be 
performed step-by-step when advancing from a 
current position to the target position. The length of 
each step has not to be the same as that of the stepper 
motor but then one has to select the SafetyDistance so 
that it corresponds to the step size, velocity and 
deceleration capabilities of the robot arms. 
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Figure 3  Possible collisions by a 2D cartesian robot. 
 
 
3.2.3 Procedure to manage the collision situations 
      Procedure "blind courier" mimics the actions taken 
by a blind human delivering packets from one address 
to an other (a similar procedure is described in the 
artificial intelligence literature under the notion 
stimulus-response agent [3]).  Because the courier 
cannot see, the person has to use hands or a stick to 
find by touching possible obstacles on the route. 
Before a step towards to the target address is taken, a 
check should made whether there is an obstacle (at the 
length of a hand or of the stick) on the route or not. If 
not  then a step forward is taken. If an obstacle is 
found, side steps are made until the courier feels that 
there is no more an obstacle in the direction of the 
target. After this, stepping proceeds towards to the 
original destination. Because of the side steps the 
courier will be further from the original path, and a 



new shortest path to the target position should be 
recalculated. In the dual-handed robot case, the only 
obstacle is the other arm (i.e. the other "Blind 
courier"). Both couriers behave the same; they take 
side steps towards home in case of an obstacle. The 
only difference comes from that the homes of the first 
and second couriers are on the left and right sides of 
the working area, respectively. Thus one courier 
side-steps to the left and the other to the right. The 
procedure is illustrated in Fig. 4, where Arm 1 (2) will 
be moved from A1 (A2) to B1 (B2). 
      While the procedure described above may work 
for some time, it is not sufficient for controlling the 
robot because it is not deadlock free. A deadlock 
happens when both couriers want to pick up or deliver 
at the same address at exactly same time. Both of them 
are then forced to make side steps but they cannot 
reach the target. Introducing priorities to the arms can 
solve this situation. The courier who is already closest 
to the target has priority to complete his task first. 
Now, after this addition the procedure may work some 
time longer but it still has a problem: should it happen 
that the both couriers are at exactly same distance from 
the target, then the deadlock is there again. This 
problem can be solved for example by saying that in 
such situation the courier_1 has the priority and the 
courier_2 has to wait until the courier_1 finishes his 
task. 
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Figure 4  Collision avoidance by sidestepping. 
 
      The collision management procedure described 
above is modeled as a Petri net for the dual-handed 
robot control in Fig. 5. The upper part of the figure, of 
inside  the square, is the collision manager Petri net. 
The lower part of the figure, outside of the square, 
shows the places of the motion controllers of the both 
arms, in which the collision manager generates tokens. 
 
      The collision management starts its operation by 
testing: if (DX > SafetyDistance) or (DY > 
SafetyDistance) then no collision else collision. 
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   Figure 5  Collision manager subnet. 
 
      If there is a collision situation, a further test is 
made to decide between a x-collision and an 
y-collision. In a x-collision, a movement of the one 
arm in x-direction or the movements of both arms in 
opposite x-directions would cause a collision. The 
case of y-collision is analogous. If DX = 
SafetyDistance, (Fig. 3.b), there is a x-collision, 
otherwise if DX < SafetyDistance, (Fig. 3.a), there is 
an y-collision. 
      Let us consider the collision management in case 
of a x-collision; see the left side of Fig. 5. The 
operation of this net contains already plenty of 
functionality which is, however, relatively easy to 
interpret. There are two different situations. First, as 
long as both arms are moving in the y-direction, 
parallel in the same directions or in opposite direction, 
x-movements are restricted (no x-movement or no 
more reach out) until there is no more x-collision. This 
is achieved by sending the tokens, HALT_X1 and 
HALT_X2, into the corresponding places of the 
motion controllers of both arms. This is the right side 
arc under the place X-COLLISION. If both arms are 
moving in parallel in the same y-direction, it can 
happen that one arm completes its y-movement and 
stops while the other arm continues its y-movement 
and the x-collision situation is solved in this case.  
      But secondly, if both arms complete their 
y-movements in a x-collision situation, there might be 
a deadlock situation. This is the left side arc under the 
place X-COLLISION.  If both arms have not 
completed their x-movement ( because of the x-halts 
forced by the collision manager) and, if the left arm 
wants to move to the right and the right arm wants to 
move to the left, then one of the arms has to step 
homeward to allow the other arm to complete its 
x-movement. The rule here is that the arm closest to its 
target position has the priority and the other arm has to 



take steps homewards. The deadlock, where both arms 
are exactly at the same distance from their targets, is 
solved by defining that the left arm has the priority. 
The homeward steppings are performed by sending 
tokens, ARM_1 HOMEWARD or ARM_2 
HOMEWARD, into the corresponding place of the 
motion controller of the corresponding arm. The other 
arm continues at the same time its scheduled 
movement towards the target position. 
      Next, we follow the y-collision situations on the 
right side of Fig. 5. First we consider the left side arc 
under the place Y-COLLISION, see Fig. 4 for this case. 
The collision is solved by sending repeatedly the 
tokens ARM_1 HOMEWARD, HALT_Y1, ARM_2 
HOMEWARD and HALT_Y2 to the corresponding 
places of the corresponding motion controllers until 
the collision situation is over. Second, consider the 
right side arc under the place Y-COLLISION. Here the 
foremost arm has completed its y-movement and it 
stops, and the other arm is still continuing its 
y-movement. To avoid the threatening collision, the 
collision manager send a token HALT_Y1 or HALT_Y2 
into the corresponding place of the corresponding 
motion controller to halt and to force the other arm to 
wait. So, the foremost arm can complete its task 
without collision 
 

    . 
Figure 6  Overview of the complete Petri net model for 
robot control. 
 
      To sum up, the Petri net model of the dual-handed 
assembly robot consists of the main net, two instances 
of the subnet motion controller and the subnet 
collision manager serving both motion controllers. An 
overview of the complete Petri net is presented in 
Fig 6. 
 
 
4. Animation of the Petri Net model 
      A software system was constructed to test, 
simulate and animate the function and the collision 
avoidance method of the robot. The system visualizes 

of assembly instructions read from a file (list of 
components to be assembled with pick and place 
position addresses).  
 

the operation of the virtual robot (Fig. 7 left) for a set 
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Figure 7  Virtual assembly system with a Petri net 
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      To create a complete
we have congregated the animated virtual robot (on 
the left), the Petri net model (in the middle) and a 
computer together (on the right) as in Fig. 7. The 
computer is needed to simulate the Petri net and to 
perform the arithmetic arm position and distance 
calculations and file operations. The large hollow 
arrows present information flows between the 
component systems.  
      To realize the Petri net control system (parallel 
operations) on a standard computer (one processor and 
serial operations) it was necessary to define a serial 
order for the parallel operations. The serial processing 
of this Petri net control system a continuous loop. The 
processing begins by the PCB feeding and assembly 
instructions. After this the control of Arm_1 and then 
the control of Arm_2 follows. Finally, the control goes 
back to the beginning and the execution of the loop 
starts again. This serial operation does not harm the 
simulation and animation results in this kind of 
mechanical operations, where the physical actions are 
very slow compared to some microseconds the 
computer needs to make the calculations. The 
refreshing of the computer screen is not made until the 
control loop has been completed. Therefore, an 
observer sees the robot animation as if it were 
processed in parallel and all the motions were 
happening at the same time. 
      We fix the dimensions of
the speeds of the arm movements as follows: The 
length unit of the model is a pixel on a 1024 x 768 
display. The shared work space (PCB and the picking 
zone of the feeder block having 38 feeders) is x = 420 
and y = 280 pixels. The total movable area (shared 
area and private home area) is x = 500 and y = 280. 
Thickness of the robot arm is y = 60 pixels. The length 
of one step of the arm movement ( in x- and 
y-directions) is chosen to be 10 pixels. The speed is 
then the number of steps in a time unit. The 
performance of the robotic assembly system was 
measured by counting the number of steps needed to 
complete the assembly task. Therefore, the actual 
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speed of the arms on the screen is not important for the 
performance calculation. The speed was chosen to suit 
observer's eyes in the animation. The SafetyDistance 
can be chosen freely as a given number of steps. The 
influence of the length of the SafetyDistance to 
assembly performance was studied in the simulations 
by varying this distance from 0 to 7 steps. The pixel 
values used here, can be converted to the 
corresponding real world values by using some scaling 
factor. 
 
 
4.1 Simulated strategies 

ts three different robots 

basis 

h
en one hand has 

t operation of the two hands 

, also data sets (list of 

.2 Results of the Simulation and Performance 

ults of the simulations are presented in Fig. 

      The simulator implemen
having three different behavioral strategies: one 
handed operation, two-handed in-turns operation 
mode and two- handed with real-time collision 
avoidance operation mode. 
      Robot 1: To set a for the working 
performance comparisons, the operation of one arm is 
switched off. So, the robot 1 works as an one-handed 
robot. The performance of the other robots are 
compared to this robot type. 
      Robot 2: The robot models the concurrent 
operation of the two ands having 
"in-turns" operation strategy. Wh
finished its picking or placing task and is away from 
the shared space, the other hand gets the permission to 
enter the shared space. The hands use the "mutual 
exclusion" operation principle. There are no collision 
situations, but the performance of the machine is 
supposed to be lower due to the longer waiting times. 
The operation of this robot is very similar to that 
presented by Zhou [2]. 
      Robot 3: Concurren
having the collision and deadlock avoidance 
procedures was realized here. Petri nets for this robot 
are shown in Fig. 1, "motion controller" in Fig. 2 and 
"collision manager" in Fig. 5. This robot does not need 
any collision avoidance instructions or calculations 
made in advance, it detects and solves the collision 
situations autonomously in real-time. The influence of 
the length of the SafetyDistance to the assembly 
performance was studied by varying this distance from 
0 to 7 arm movement steps.  
     To perform a simulation
materials) are needed. We created three different (for 
100, 200 and 300 components were to be selected 
randomly and placed on a PCB) data sets using a 
pseudo-random number generator and with different 
seeds. Each element of the set consists of three 
pseudo-random numbers: one for the feeder selection, 
second and third for the placing position (x and y) on a  
PCB. All three robots used these data sets as assembly 
orders/tasks. Robot 3 performed these tasks seven 

times using different SafetyDistances to verify how 
this distance influences the assembly performance. 
 
 
4
Analysis 
      The res
8. Beginning from the left, there are the performance 
bars of the one handed operation, which are scaled to 
value 1, to serve as a basis for the comparisons. The 
performance bars for the in-turns type of operation are 
next. Finally, there are the seven sets of performance 
bars for the operation with the real-time collision 
avoidance. 
 

 
Fig. 8  Simulated performances for problems with 

    The results of the performance analysis were rather 

    

e safety distance influenced the 

           100, 200 and 300 components with safety 
           distance (SD) ranging from 0 to 7 steps. 
 
  
unexpected. The assumption before the analysis was 
that the performance in both two-handed cases (robot 
2 and robot 3) would be approximately the same. 
Namely, robot 2 ("in-turns") had to wait until the 
shared workspace was safe to be accessed and robot 3 
("real-time collision avoidance") had to use longer 
paths to avoid collisions by taking side-steps.   
However, this assumption was wrong as we can see in 
Fig 8. The performance of robot 2 was lower (roughly 
0.75 times) than that of the one armed robot. This 
means that the "in-turns"-operation of two arms is less 
advantageous than one arm operation. However, the 
performance of robot 3 was better than (roughly 1.2 
times) that of the one armed robot. And robot 2 
compared to robot 3, was roughly 1.2 / 0.75 =  1.6. 
Thus, in our test case the "real-time collision 
avoidance"-strategy was 60% more efficient than the 
"in-turns"-strategy. 
     The length of th
assembly performance significantly. The best 
performance was achieved, having no safety distance 
at all ( safety distance = 0). The virtual size of the robot 
arm is then the same as the real size of the arm. 



As the safety distance was increased step by step, the 
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performance decreased. The limit seems to be the 
performance of the one armed robot. The explanation 
for this is the strategy we have chosen for the 
dead-lock avoidance. As mentioned before, in a 
dead-lock situation, the arm being closest to the target 
position has the priority to continue and the other arm 
has to wait. Having a safety region around the arm 
means, that the virtual size of the arm is larger than the 
real size. Our animated simulation showed, that this 
results in a situation where one arm occupies the 
whole shared workspace and is always "closer" than 
the other, which has to wait aside at the home position. 
The two-handed robot operates then as one-handed 
robot. 
 
 
5
      A Petri net mod
avoid collisions of the two hands working 
concurrently on the same work area was developed in 
this work. The main idea was to not make the 
calculations for the collision avoidance prior to the 
operation. The need to make such kind of calculations 
off-line would reduce the flexibility of component 
assembly. Instead, a real-time collision detection and 
management procedure was suggested. The function 
of the procedure has been visually tested by the means 
of real-time animation. The simulation of the 
performance of the model shows unexpectedly that the 
performance of the "in-turns"-operation of two hands 
is less than that of one-handed robot. However, the 
suggested procedure presented in this work results in a 
gain of about 60% in performance compared to the 
commonly used "in-turn" type of operation. A control 
system using the suggested method can control 
dual-handed robots in a more flexible way and can 
achieve noticeable performance gains.  
      The simulation results presented in 
not be seen as a general truth. They are only valid for 
the here given geometrical dimensions, only one 
feeder block and pseudo random data. Other 
conditions like other geometry, two feeder blocks (one 
for each arm) sorted/optimized data etc. would 
produce totally different results. 
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