
Petri Nets and Dual-Handed Assembly Robots
FRANS VAINIO, MIKA JOHNSSON1), TIMO KNUUTILA, OLLI S. NEVALAINEN

Department of Information Technology and TUCS
University of Turku

20014 Turku
FINLAND

1)Valor Computerized Systems (Finland) Oy
Ruukinkatu2, 20450 Turku

FINLAND

Abstract: - A method to detect and manage collision situations of the concurrent operations made by two robot
arms in a shared work space is presented. Two different strategies, collision avoidance and in-turns operation are
considered. The operation of a dual-armed assembly robot is modeled using Petri nets. The model is then tested
by the means of an animated virtual assembly system. By observing the operation of the virtual robot, the
observer can verify that the robot arms work correctly and that the possible deadlock situations are avoided
successfully. Finally, the performance of the collision avoidance method and that of the in-turn operation mode
are compared.

Keywords: - Assembly robots, Petri nets, modeling, motion control, collision avoidance, simulation

1 Introduction
 Robotic assembling is used widely in today's
highly automated production lines. In these
environments, the cost of production, quality of
products and operational flexibility are the key factors
having an influence on the joint economy of the
production. Improving the assembly performance is
one possible method when aiming at reduced
production costs. The kind of assembly robots is
tightly tied to the needs of the production process and
universal robots are becoming common due to their
flexibility in situations where the lifecycle of products
is short. Electronics industry is one of the most
emerging fields utilizing automated production lines.
The machines on the lines have been traditionally
specialized to rather restricted tasks, like inserting of
electronic components of certain size and feeder type.
A recent trend has been the increased popularity of
general purpose precision robots using one or two
arms and allowing several possible packaging types
for the electronic components. The idea behind their
use seems to be their flexibility especially in
high-mix-low-volume production.
 In cases where the two robot arms can physically
access the same area or space, the topic of collision
avoidance has to be discussed and solved. The
measures for collision avoidance apparently influence
the performance of the robot system significantly. The
prediction of potential collisions is difficult in general
cases when the two arms are used independently from

each other in a fully concurrent manner. There are
numerous articles and research results proving that
common variants of the problem are so complex that
mathematical solutions are hard to find or are not yet
known [4, 5]. Because of this, heuristics or other
approximate methods are needed. In the present work
we apply simulation to evaluate the different heuristic
ideas. Hereby, a discrete event modeling method
called Petri net [7, 2] will be used and demonstrated.
In particular, the operation of a dual-handed robotic
systems is modeled, simulated and visualized. The
performance of the systems is then evaluated when
assuming two different modes of operation:
1) concurrent operation with collision detection and
avoidance and
2) in-turn operation of the same robot making the
same assembly task.
 In addition to the many basic questions concerning
the overall performance of different robot design
alternatives, we have an acute practical problem of
controlling a dual-handed assembly robot equipped
with a real time collision avoidance system. In order to
reach a favorable division of the component
placements for each arm, we need a simulator for the
robot. The present study is a first step towards
implementing this kind of generic software.
 Actions of the robot are visualized by using
animation on the computer screen. The animated
model is intended to verify the functioning of the Petri
model to a human observer. The actual Petri net
execution and its visualization are made using a simple

scripting language, which interprets the human made
Petri net model into a computer understandable form.
 The plan of the rest of the paper is as follows. In
section 2, we shortly describe some known simulation
models of dual-handed assembly robots. We restrict
ourselves to the use of Petri nets only. In section 3, we
present a more advanced Petri net model having an
autonomous in-fly collision avoidance system instead
of the mutual exclusion based systems described in
section 2. In section 4, an animated model of a virtual
dual-handed assembly robot is presented. Further, four
different assembly strategies to be simulated are
described and some results of the simulation with
these strategies are presented. In section 5, some
conclusions over this work are drawn.

2 Previous work
 There seems to be only few models for
dual-handed assembly robots using Petri nets in open
literature [1, 2]. The robotic assembly system modeled
by Zhou and Leu [2] has two arms. The robot repeats a
cycle of picking-moving-inserting-moving operations
by both of its hands. However, since the arms operate
on the same PCB and obtain components from the
same feeder area, avoidance of arm collisions has to be
considered. Collision avoidance is achieved by the
mutual exclusion technique implemented using tokens
(as semaphores) in the Petri model. Thus, when one
arm is operating above the PCB area, the other is
prohibited from moving into the same area. Because
the arms use a common feeder, collision may also
occur in the feeder area. For this reason mutual
exclusion is applied for this area, too.
 Originally the Petri nets consist only of the four
original primitives presented by Carl A. Petri. These
include two types of nodes, places (denoted by circles)
and transitions (denoted by bars), edges called arcs
(denoted by edges and arrow heads on the edges
indicating the direction) and tokens (denoted by black
dots). A Petri net is a bipartite directed graph, so an
edge can connect only two nodes that belong to
different types. Starting (or triggering) a Petri net
transition is called by convention firing. A transition
must be enabled before it can fire. To be enabled
means that all input places of a transition contain one
token. Effects of firing are: all enabling tokens are
destroyed and, after selected transition times, new
tokens are created in output places by the multiplicity
of the output arcs. The initial state of a Petri net model
is denoted by placing tokens on the initial places. This
is called the initial marking.
 By convention, when bars are used, it is supposed
that all transitions will take place in an infinitely short

time. In the real world, however, they last certain time,
which can be expressed by a timed net and the
transitions are then denoted by rectangles. Operations
like moving from the feeder to PCB are influenced by
the position of the feeder and the destination of
component insertion on the PCB. However, because
all the movements are between the feeder and PCB
areas, an average movement time can be calculated.
The variation in time of the different movements can
then be represented as a kind of noise. On this coarse
modeling level, the operation times are modeled as a
fixed time added with a small variation drawn from a
negative exponential distribution.

3 Modeling a dual-handed assembly
robot
 We next specify a virtual robot having concurrent
operation of two robot arms and study a Petri net
model capable of simulating and controlling the
virtual robot or even real robots. The virtual robot with
two hands is schematized in Fig. 1. On the top of the
figure is the feeder bank having four feeders. The
unpopulated printed circuit board (PCB) is fixed in the
middle of the working table. When all placements
have been done, the PCB is ejected, moved to the left
and a new unpopulated PCB is fed from the right of the
robot. A feeder bank is located over the working table
and the electronic components are stored in the slots of
the feeder bank. The two arms operate independently
in cycles of component pickup-and-placement
operations. The arms can be moved in the y-direction
and reached out in the x-direction by independent
(total of four) virtual stepper motors.

3.1 Petri net model
 When the two arms are used concurrently to rise
the performance of the placement operations, one must
face the risk for collisions, especially if shared
resources or work spaces are in use. The two arms
form moving obstacles to each other. To avoid
collisions and robot breakdowns, collision avoidance
must be arranged. Solving a general collision
avoidance problem is difficult and costly [4, 5].
Therefore, in many cases, the operations are restricted
to be not fully concurrent, which changes the
operation mode more or less to "in turn" type. This
means that there are waiting time periods when one
arm waits until the other arm has completed its task
and is away from the critical space. However, the
waiting reduces the overall performance of the robot.
Fully concurrent operation without waiting times
would be a better solution. In Fig. 3.1, a Petri net

model of a dual-handed assembly robot having fully
concurrent operation is shown.
 In order to be able to model the operation control
of the dual-handed assembly robot described above,
we need three extensions to the common Petri nets [9].
First, inhibitor arcs are used to disable transitions in
certain situations. Inhibitor arcs are denoted as arcs
with circular heads instead of arrow heads. An
inhibitor arc can join only places to transitions. If there
is a token in the place having an inhibitor arc pointing
to a transition, the transition is disabled as long as the
token is there. Secondly, in order to avoid the Petri net
model to become all too complex, an abstraction
mechanism, hierarchical structuring, is used. The
hierarchy construct is called a subnet. A subnet is an
aggregate of a number of places, transitions, arcs and
other subnets. Subnets make constructing, reviewing
and modifying of large models easier. Third, we show
explicitly the connections to outside of the control
logic. Hollow arrows point places, where tokens are
coming from the outside of the Petri net, e.g. from a
computer manipulating the simulation data. Petri nets
are not commonly used to make arithmetic operations,
because they are not capable to read or write physical
data files. Therefore, a computer is needed to run the
actual Petri net and to perform file and arithmetic
operations.
 The Petri net model for a two-handed assembly
robot in Fig 1 consists of three main functional parts:
 1) the upper part of the model forms the PCB
feeding and assembly controller. The initial marking
for this functional part of the net is one token in the
place OK_TO_ASSEMBLY. During the robot's
assembly operations nothing happens here until the
END_ OF_ FILE (EOF) of the list of components is
encountered, then a token in the place END_OF_FILE
fires the transition EJECTING_PCB and inhibits
component data readings of the both arms by means of
inhibitor arcs. Only the data reading is inhibited, both
of the arms are continuing their operation until their
cycles are completed. After this, the completed PCB is
ejected and, if there are more PCBs to assembly,
(which is denoted by a token in the place
MORE_TO_DO), the feeding of a new, unpopulated
PCB is started. This transition consumes also the
initial token from the place OK_TO_ASSEMBLY.
When a new PCB is fed and fixed on the work table,
the file pointer is reset and the token causing the data
readings to disappear is consumed by the transition
RESETTING_FILE_POINTER. Now, both robot arms
are free again to continue their component assembly
operations.
 2) The left side of the lower part of the model in
Fig 1 controls the pick and place operations of the
arm_1. The initial marking is a token in the place

CYCLE

PICKINGMOVING MOVING

PLACING PLACING

CYCLE
COMPLETED

CYCLE
COMPLETED

READY TO
PICK

CONTROL OF
THE ARM 1

CONTROL OF
THE ARM 2

PCB FEEDING

MOTION
CONTROL
SUBNET

MOTION
CONTROL
SUBNET

MOTION
READY

MOTION
READY

READY TO
MOVE

READY TO
MOVE

READING
DATA

 DATA
DISAPPLED

= TOKENS GENERATED BY A COMPUTER

PICKING

READY TO
PICKREADING

DATA

FEEDING
NEXT PCB

RESETTING
FILE
POINTER

END OF FILE MORE TO DO

EJECTING PCB

PCB EJECTED

PCB FEEDED

OK_TO_ASSEMBLY

Figure 1 The virtual dual-handed robot to be modeled.

COMPLETED. This is also the place where the arm
control waits after the EOF is reached and the
assembly of the current PCB is completed. In that case
the assembly controller disables the reading of data by
means of an inhibitor arc. If the reading of data is not
disabled and the pick-and-place cycle is completed,
the next record of the data file is read.
 The record contains the pick and place addresses
for the next component placement. The transition
READING_DATA then consumes the token from the
place CYCLE_COMPLETED and creates tokens in the
places READY_TO_PICK and READY_TO_MOVE.
The token in the place READY_TO_PICK disables the
transition PLACING. Therefore, after the arm
movement has been completed, only the pick-up
operation can be performed. One token in the place
READY_TO_MOVE fires the transition MOVING.
 Transition moving is a subnet and the details of the
actual movement are defined and controlled in a
subnet called "Motion control subnet", see Fig 1.
While the arm performs two different kinds of
movements, move-to-feeder and move-to-PCB, there
is only one transition MOVING in the net. The motion
is here always from the current position to the target
position. Reaching the target position is notified by
creating one token in the place MOTION_READY.
 The alternation between the two kinds of
movements is achieved by the use of exhibition arcs. If
the transition PLACING is disabled by the inhibitor arc
(as is the case at the beginning of a pickup-placement
step), the next transition is PICKING. The transition
PICKING consumes the tokens from the places
READY_TO_PICK and MOTION_READY, and

creates one token in the place READY_TO_MOVE.
 After the movement to the feeder is completed,
there is again one token in the place MOTION_READY
and the movement is from the feeder position to the
placement position. This time, the transition
PLACING is no longer disabled and PICKING is not
enabled because there is no token in the place
READY_TO_PICK. The next transition is therefore
PLACING. After the component has been placed there
is again one token in the initial place
CYCLE_COMPLETED.
 3) The right side of the lower part of the model in
Fig 1 controls the pick and place operations of arm_2.
The description of the model is analogous to that of
arm_1. Note that both arms have their own motion
control subnets.
 Both arms operate independently; the only
controls between them are the inhibitor arcs pointing
to the transitions READING DATA. These two
inhibitor arcs function only as on/off switches to
enable and disable data readings, there is no other
control for the arms at this main level. Further, there is
not any mutual exclusion or other explicit collision
detection or collision avoidance features in Fig. 1. It
may seem that a robot controlled by the presented Petri
net would collide and have a breakdown immediately,
but this is not the case.
 The explanation for this is that a hierarchical Petri
net model has been used to model the robot. A more
detailed description of the motion transitions,
MOVING, is given in a subnet called "motion
controller" in Fig. 2. The Petri net performs all
movements in the x- and y-directions by taking small,
user-defined steps towards the target position. The
host net of the motion controller has only two places
related to the motion: READY TO MOVE and
MOTION READY. The host does not even know how
the movement is actually performed.
 The Petri net of the motion controller (Fig. 2) is
almost symmetrical; the left side controls the
x-movement and the right side the y-movement. Both
directions are controlled concurrently and
independently, so one direction may become READY
while the other direction is still unfinished.
 The collision manager operates as follows.
Initially, after separating the x- and y-motions, there
are tokens in the places X-MOTION and Y-MOTION.
We follow here up only the x-movement because the
y-motion is analogical. There are three possible
situations: first, the target position may be reached and
the motion is ready, otherwise (secondly), the robot
hand has to move towards the target. The movement
can be HOMEWARD (smaller reach-out) or
OUTWARD (more reach-out). The third situation is,
that the collision manager (described below) has

detected a collision and takes partly over the motion
control of both directions x and y. This "taking over" is
performed by the means of placing tokens into the
places HOMEWARD, HALT_X or HALT_Y according
to the current collision situation. Other motions (not
halted or forced to be HOMEWARD) continue under
the control of the motion controller towards the target
position. After each motion step, the token is delivered
back to the place X-MOTION until the target position
is reached.
 The motion controller performs collision free
movements. Collision freeness is achieved by using a
subnet "collision manager". Both robot arms have
their own copies of the motion controller, but only one
common collision manager.

X-MOTION

OUTWAHOMEWARD

Petrim otion5

Y-MOTION

RD
UPWARD

DOWNWAR

X-MOTION READY Y-MOTION READY

MOTION READY

READY TO MOVE

HALT_X HALT_Y

 COLLISION MANAGER

X_TARGET
REACHED

Y_TARGET
REACHED

= TOKEN GENERATED BY THE COMPUTER

D

Figure .2 Motion controller.

3.2 Handling of the collision situations
 Collision avoidance of concurrent, conflicting
systems can be managed prior to the actual processing
by issuing the proper scheduling and sequencing tasks
for both arms. Optimal collision avoidance is,
however difficult, indeed it belongs mathematically to
the set of NP-complete problems [4, 5]. By
“optimality” we mean in this case a plan with minimal
operation time. Another, much easier way is to omit
the collision avoidance calculations and instead of that
to detect and manage collision situations on-line in
real time.
 In the case of an insertion machine for electronic
components the prior planning for motions is
impossible for several reasons. Some of these are:
handling of erroneous components, some unexpected
situation like run-out of some component type etc. We
therefore consider in this subsection models for

collision management from the point of view of our
virtual machine. Our interest is in the formulation of a
Petri net model, which can be used for the timing
analysis of a real target machine with similar
operations.
 In particular, we suppose that the robot includes
some system for determining in real-time distances
from each arm to the other or a common control
system for both arms, which has real-time knowledge
of the arm distances.

3.2.1 Assumptions
 In order to simplify the simulator design we make
three simplifications regarding the organization of the
virtual robot.
 1) Only the 2D case is concerned. In PCB
assembly, most collision problems are in (x,y)-space.
There are, however, some important exceptions, which
should be kept in mind here. If the layout of the PCB is
very tight, the order of insertions may be critical: a
small component must sometimes be inserted prior to
a large component in its vicinity. These types of
constraints may cause problems for a two-handed
robot, in particular if the precedence constraints deal
with components placed with different arms. We
suppose that a proper component-to-arm mapping and
sequencing of the placements have solved these kinds
of difficulties.
 2) 2D linear/cartesian robots are used. Instead of
scara or other more complex robot types, we suppose a
robot with two linear arms. This excludes the
possibility for hooking of the both arms together and
largely simplifies the determining of the colliding
parts and the time of collisions. Further, we can avoid
a detected collision simply by stepping back, towards
the home position, which is reducing the arms reach
out. The home position is the minimum reach out
position and it is supposed to be outside the maximum
reach out of the other robot arm.
 A linear robot arm here consists of two standard
linear movement units connected together. The base
arm is fixed to a robot body and cannot move. The
moving arm is riding on the base carrier arm
(y-direction) and it can move (reach out) orthogonal to
the base arm (x-direction). A gripper or a nozzle to
pick up components is fixed to one end (opposite to the
driving unit end) of the linear unit.
 3) The arms cover the components during the
movement. All components to be picked and placed
are supposed to be small enough to be inside of the
arms borders. Thus, a component cannot collide
against the component in the other arms gripper or
against the other arm during arm movement.

3.2.2 Collision detection for the virtual assembly
robot
 The collision detection is easy for linear/cartesian
robots, because the possible collision points are
obvious. After a safe distance is defined, it is only
necessary to continuously check the x- and
y-directions (or radius for a round safety area) whether
or not the physical borders of the arms violate the
safety distance. This can be done by the test: if (DX >
SafetyDistance) or (DY > SafetyDistance) then no
collision else collision.
 Here DX and DY stand for the distances between
the arms in the x- and y-directions, as shown in Fig. 3.
SafetyDistance is a user-defined distance between the
borders of the arms. It has to be defined so that the
movements of both arms can be slowed down and
stopped before a physical collision damages the robot
arms. The above collision detection decision can be
performed step-by-step when advancing from a
current position to the target position. The length of
each step has not to be the same as that of the stepper
motor but then one has to select the SafetyDistance so
that it corresponds to the step size, velocity and
deceleration capabilities of the robot arms.

ARM 1 ARM 1 ARM 2ARM 2

a) OVERLAPPED b) NOT OVERLAPPED

DX
DY

X

Y

Figure 3 Possible collisions by a 2D cartesian robot.

3.2.3 Procedure to manage the collision situations
 Procedure "blind courier" mimics the actions taken
by a blind human delivering packets from one address
to an other (a similar procedure is described in the
artificial intelligence literature under the notion
stimulus-response agent [3]). Because the courier
cannot see, the person has to use hands or a stick to
find by touching possible obstacles on the route.
Before a step towards to the target address is taken, a
check should made whether there is an obstacle (at the
length of a hand or of the stick) on the route or not. If
not then a step forward is taken. If an obstacle is
found, side steps are made until the courier feels that
there is no more an obstacle in the direction of the
target. After this, stepping proceeds towards to the
original destination. Because of the side steps the
courier will be further from the original path, and a

new shortest path to the target position should be
recalculated. In the dual-handed robot case, the only
obstacle is the other arm (i.e. the other "Blind
courier"). Both couriers behave the same; they take
side steps towards home in case of an obstacle. The
only difference comes from that the homes of the first
and second couriers are on the left and right sides of
the working area, respectively. Thus one courier
side-steps to the left and the other to the right. The
procedure is illustrated in Fig. 4, where Arm 1 (2) will
be moved from A1 (A2) to B1 (B2).
 While the procedure described above may work
for some time, it is not sufficient for controlling the
robot because it is not deadlock free. A deadlock
happens when both couriers want to pick up or deliver
at the same address at exactly same time. Both of them
are then forced to make side steps but they cannot
reach the target. Introducing priorities to the arms can
solve this situation. The courier who is already closest
to the target has priority to complete his task first.
Now, after this addition the procedure may work some
time longer but it still has a problem: should it happen
that the both couriers are at exactly same distance from
the target, then the deadlock is there again. This
problem can be solved for example by saying that in
such situation the courier_1 has the priority and the
courier_2 has to wait until the courier_1 finishes his
task.

ARM 1

a) Original tracks b) Tracks due to collision
 avoidance procedure

ARM 1ARM 2 ARM 2
A2 A2

B2 B2

B1 B1

A1 A1

Figure 4 Collision avoidance by sidestepping.

 The collision management procedure described
above is modeled as a Petri net for the dual-handed
robot control in Fig. 5. The upper part of the figure, of
inside the square, is the collision manager Petri net.
The lower part of the figure, outside of the square,
shows the places of the motion controllers of the both
arms, in which the collision manager generates tokens.

 The collision management starts its operation by
testing: if (DX > SafetyDistance) or (DY >
SafetyDistance) then no collision else collision.

X_COLLISION Y_COLLISION

DX = SD

SD = Safety Distance

DX < SD

DIFFERENT
OR SAME
DIRECTIONS:

DIFFERENT
DIRECTIONS:

SAME DIRECTIONS:
SAME DIRECTIONS:

HALT_X1 HALT_Y1 HALT_Y1HALT_X2 HALT_Y2 HALT_Y2

AT SAME
DISTANCE

ARM_2 IS
CLOSER

ARM_2
HOMEWARD

ARM_2
HOMEWARD

ARM_1
HOMEWARD

ARM_1
HOMEWARD

ARM_1 IS
CLOSER

ONE ARM HAS
COMPLETED
ITS Y-MOTION

BOTH ARMS ARE GOING
TO PICK OR TO PLACE

BOTH ARMS ARE
MOVING
IN Y-DIRECTIONS

ONE ARM IS GOING
TO PICK OTHER TO
PLACE

ARM_2 IS
FOREMOST

ARM_1 IS
FOREMOST

SubnetCollision5.cdr

COLLISION
NOT((DX> SD)AND(DY> SD))

= TOKEN GENERATED BY THE COMPUTER

 Figure 5 Collision manager subnet.

 If there is a collision situation, a further test is
made to decide between a x-collision and an
y-collision. In a x-collision, a movement of the one
arm in x-direction or the movements of both arms in
opposite x-directions would cause a collision. The
case of y-collision is analogous. If DX =
SafetyDistance, (Fig. 3.b), there is a x-collision,
otherwise if DX < SafetyDistance, (Fig. 3.a), there is
an y-collision.
 Let us consider the collision management in case
of a x-collision; see the left side of Fig. 5. The
operation of this net contains already plenty of
functionality which is, however, relatively easy to
interpret. There are two different situations. First, as
long as both arms are moving in the y-direction,
parallel in the same directions or in opposite direction,
x-movements are restricted (no x-movement or no
more reach out) until there is no more x-collision. This
is achieved by sending the tokens, HALT_X1 and
HALT_X2, into the corresponding places of the
motion controllers of both arms. This is the right side
arc under the place X-COLLISION. If both arms are
moving in parallel in the same y-direction, it can
happen that one arm completes its y-movement and
stops while the other arm continues its y-movement
and the x-collision situation is solved in this case.
 But secondly, if both arms complete their
y-movements in a x-collision situation, there might be
a deadlock situation. This is the left side arc under the
place X-COLLISION. If both arms have not
completed their x-movement (because of the x-halts
forced by the collision manager) and, if the left arm
wants to move to the right and the right arm wants to
move to the left, then one of the arms has to step
homeward to allow the other arm to complete its
x-movement. The rule here is that the arm closest to its
target position has the priority and the other arm has to

take steps homewards. The deadlock, where both arms
are exactly at the same distance from their targets, is
solved by defining that the left arm has the priority.
The homeward steppings are performed by sending
tokens, ARM_1 HOMEWARD or ARM_2
HOMEWARD, into the corresponding place of the
motion controller of the corresponding arm. The other
arm continues at the same time its scheduled
movement towards the target position.
 Next, we follow the y-collision situations on the
right side of Fig. 5. First we consider the left side arc
under the place Y-COLLISION, see Fig. 4 for this case.
The collision is solved by sending repeatedly the
tokens ARM_1 HOMEWARD, HALT_Y1, ARM_2
HOMEWARD and HALT_Y2 to the corresponding
places of the corresponding motion controllers until
the collision situation is over. Second, consider the
right side arc under the place Y-COLLISION. Here the
foremost arm has completed its y-movement and it
stops, and the other arm is still continuing its
y-movement. To avoid the threatening collision, the
collision manager send a token HALT_Y1 or HALT_Y2
into the corresponding place of the corresponding
motion controller to halt and to force the other arm to
wait. So, the foremost arm can complete its task
without collision

 .
Figure 6 Overview of the complete Petri net model for
robot control.

 To sum up, the Petri net model of the dual-handed
assembly robot consists of the main net, two instances
of the subnet motion controller and the subnet
collision manager serving both motion controllers. An
overview of the complete Petri net is presented in
Fig 6.

4. Animation of the Petri Net model
 A software system was constructed to test,
simulate and animate the function and the collision
avoidance method of the robot. The system visualizes

of assembly instructions read from a file (list of
components to be assembled with pick and place
position addresses).

the operation of the virtual robot (Fig. 7 left) for a set

COMPUTER

(ARITHMETIC
and I/O)

PETRI NET

Figure 7 Virtual assembly system with a Petri net

 operating assembly system,

 the animation model and

control.

 To create a complete
we have congregated the animated virtual robot (on
the left), the Petri net model (in the middle) and a
computer together (on the right) as in Fig. 7. The
computer is needed to simulate the Petri net and to
perform the arithmetic arm position and distance
calculations and file operations. The large hollow
arrows present information flows between the
component systems.
 To realize the Petri net control system (parallel
operations) on a standard computer (one processor and
serial operations) it was necessary to define a serial
order for the parallel operations. The serial processing
of this Petri net control system a continuous loop. The
processing begins by the PCB feeding and assembly
instructions. After this the control of Arm_1 and then
the control of Arm_2 follows. Finally, the control goes
back to the beginning and the execution of the loop
starts again. This serial operation does not harm the
simulation and animation results in this kind of
mechanical operations, where the physical actions are
very slow compared to some microseconds the
computer needs to make the calculations. The
refreshing of the computer screen is not made until the
control loop has been completed. Therefore, an
observer sees the robot animation as if it were
processed in parallel and all the motions were
happening at the same time.
 We fix the dimensions of
the speeds of the arm movements as follows: The
length unit of the model is a pixel on a 1024 x 768
display. The shared work space (PCB and the picking
zone of the feeder block having 38 feeders) is x = 420
and y = 280 pixels. The total movable area (shared
area and private home area) is x = 500 and y = 280.
Thickness of the robot arm is y = 60 pixels. The length
of one step of the arm movement (in x- and
y-directions) is chosen to be 10 pixels. The speed is
then the number of steps in a time unit. The
performance of the robotic assembly system was
measured by counting the number of steps needed to
complete the assembly task. Therefore, the actual

Assembly Control
and PCB feeding

Control
Arm_1

Control
Arm_2

Motion Controller Motion Controller

Coll ger ision Mana

MAIN
LEVEL
(Fig. 1)

SUBNET
LEVEL_1
(Fig. 2)

SUBNET
LEVEL_2
(Fig. 5)

speed of the arms on the screen is not important for the
performance calculation. The speed was chosen to suit
observer's eyes in the animation. The SafetyDistance
can be chosen freely as a given number of steps. The
influence of the length of the SafetyDistance to
assembly performance was studied in the simulations
by varying this distance from 0 to 7 steps. The pixel
values used here, can be converted to the
corresponding real world values by using some scaling
factor.

4.1 Simulated strategies

ts three different robots

basis

h
en one hand has

t operation of the two hands

, also data sets (list of

.2 Results of the Simulation and Performance

ults of the simulations are presented in Fig.

 The simulator implemen
having three different behavioral strategies: one
handed operation, two-handed in-turns operation
mode and two- handed with real-time collision
avoidance operation mode.
 Robot 1: To set a for the working
performance comparisons, the operation of one arm is
switched off. So, the robot 1 works as an one-handed
robot. The performance of the other robots are
compared to this robot type.
 Robot 2: The robot models the concurrent
operation of the two ands having
"in-turns" operation strategy. Wh
finished its picking or placing task and is away from
the shared space, the other hand gets the permission to
enter the shared space. The hands use the "mutual
exclusion" operation principle. There are no collision
situations, but the performance of the machine is
supposed to be lower due to the longer waiting times.
The operation of this robot is very similar to that
presented by Zhou [2].
 Robot 3: Concurren
having the collision and deadlock avoidance
procedures was realized here. Petri nets for this robot
are shown in Fig. 1, "motion controller" in Fig. 2 and
"collision manager" in Fig. 5. This robot does not need
any collision avoidance instructions or calculations
made in advance, it detects and solves the collision
situations autonomously in real-time. The influence of
the length of the SafetyDistance to the assembly
performance was studied by varying this distance from
0 to 7 arm movement steps.
 To perform a simulation
materials) are needed. We created three different (for
100, 200 and 300 components were to be selected
randomly and placed on a PCB) data sets using a
pseudo-random number generator and with different
seeds. Each element of the set consists of three
pseudo-random numbers: one for the feeder selection,
second and third for the placing position (x and y) on a
PCB. All three robots used these data sets as assembly
orders/tasks. Robot 3 performed these tasks seven

times using different SafetyDistances to verify how
this distance influences the assembly performance.

4
Analysis
 The res
8. Beginning from the left, there are the performance
bars of the one handed operation, which are scaled to
value 1, to serve as a basis for the comparisons. The
performance bars for the in-turns type of operation are
next. Finally, there are the seven sets of performance
bars for the operation with the real-time collision
avoidance.

Fig. 8 Simulated performances for problems with

 The results of the performance analysis were rather

e safety distance influenced the

 100, 200 and 300 components with safety
 distance (SD) ranging from 0 to 7 steps.

unexpected. The assumption before the analysis was
that the performance in both two-handed cases (robot
2 and robot 3) would be approximately the same.
Namely, robot 2 ("in-turns") had to wait until the
shared workspace was safe to be accessed and robot 3
("real-time collision avoidance") had to use longer
paths to avoid collisions by taking side-steps.
However, this assumption was wrong as we can see in
Fig 8. The performance of robot 2 was lower (roughly
0.75 times) than that of the one armed robot. This
means that the "in-turns"-operation of two arms is less
advantageous than one arm operation. However, the
performance of robot 3 was better than (roughly 1.2
times) that of the one armed robot. And robot 2
compared to robot 3, was roughly 1.2 / 0.75 = 1.6.
Thus, in our test case the "real-time collision
avoidance"-strategy was 60% more efficient than the
"in-turns"-strategy.
 The length of th
assembly performance significantly. The best
performance was achieved, having no safety distance
at all (safety distance = 0). The virtual size of the robot
arm is then the same as the real size of the arm.

As the safety distance was increased step by step, the

 Conclusions
el for a concurrent procedure to

Section 4 can

eferences
hen Anna and Grotzinger Stephen,

EEE

g

, pages

telligence - A new

998.

e,

earch,

zakis,

,

 nets homepage,

triNets/

i Net

Net Design,

performance decreased. The limit seems to be the
performance of the one armed robot. The explanation
for this is the strategy we have chosen for the
dead-lock avoidance. As mentioned before, in a
dead-lock situation, the arm being closest to the target
position has the priority to continue and the other arm
has to wait. Having a safety region around the arm
means, that the virtual size of the arm is larger than the
real size. Our animated simulation showed, that this
results in a situation where one arm occupies the
whole shared workspace and is always "closer" than
the other, which has to wait aside at the home position.
The two-handed robot operates then as one-handed
robot.

5
 A Petri net mod
avoid collisions of the two hands working
concurrently on the same work area was developed in
this work. The main idea was to not make the
calculations for the collision avoidance prior to the
operation. The need to make such kind of calculations
off-line would reduce the flexibility of component
assembly. Instead, a real-time collision detection and
management procedure was suggested. The function
of the procedure has been visually tested by the means
of real-time animation. The simulation of the
performance of the model shows unexpectedly that the
performance of the "in-turns"-operation of two hands
is less than that of one-handed robot. However, the
suggested procedure presented in this work results in a
gain of about 60% in performance compared to the
commonly used "in-turn" type of operation. A control
system using the suggested method can control
dual-handed robots in a more flexible way and can
achieve noticeable performance gains.
 The simulation results presented in
not be seen as a general truth. They are only valid for
the here given geometrical dimensions, only one
feeder block and pseudo random data. Other
conditions like other geometry, two feeder blocks (one
for each arm) sorted/optimized data etc. would
produce totally different results.

R
[1] Sciomac
 Petri Net-Based Emulation for Highly
 Concurrent Pick-and-Place Machine, I
 Transactions on Robotics and Automation,
 Vol. 6, No. 2, pages 242-247, April 1990.
[2] MengChu Zhou and Ming C. Leu, Modelin
 and Performance Analysis of a Flexible PCB
 Assembly Station Using Petri Nets,
 Transactions of the ASME, Vol. 113
 410-416, December 1991.
[3] Nils J. Nilsson, Artificial In
 Synthesis, Stanford University, Morgan
 Kaufman Publishers, Inc., pages 21-35, 1
[4] Randal Wilson, Lydia Kavraki, Tomás
 Lozano-Pérez and Jean-Claude Latomb
 Two-Handed Assembly Sequencing,
 International Journal of Robotics Res
 Vol. 14(4), pages 335-350, 1995.
[5] Lydia Kavraki and Mihail Kolount
 Partitioning a Planar Assembly Into
 Two Connected Parts Is NP-Complete
 Information Processing Letters, Vol. 55,
 pages 159-165, 1995.
[7] Petri Nets World, Petri
 University of Aarhus, Denmark
 URL.: http://www.daimi.au.dk/Pe
[8] MengChu Zhou and Kurapati Venkatesh,
 Modeling, Simulation and Control of
 flexible Manufacturing Systems a Petr
 Approach, World Scientific, 1999.
[9] Wolfgang Reisig, A Primer in Petri
 Springer Verlag, 1991.

	1 Introduction
	2 Previous work
	3 Modeling a dual-handed assembly robot
	4. Animation of the Petri Net model
	5 Conclusions
	References

