
A Rule-based Approach to Security Test Automation on Network Layer

HYEOKCHAN KWON, JAEHOON NAH, KYOIL CHUNG
Information Security Research Division

Electronics and Telecommunications Research Institute
161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350

SOUTH KOREA

Abstract: - Recently, Many projects have been implementing IPsec(IP Security) on the various Operating Systems
for security of IPv6 network. But there is no existing tool that checks the IPsec-based systems, which provide IPsec
services, work properly and provide their network security services well in the IPv6 network. In this paper, we
propose a rule-based approach to security test automation on IPv6 network. So, we design STRDL(Security Test
Rule Description Language) to define security test rule and rule execution engine for executing the rules defined
by STRDL for testing security of the IPv6 network, and we provide implementation details. The system is divided
into following part: User Interface part, Rule Execution Module Part, DBMS part and Agent that gathering
information needed for security test.

Key-Words: - Security Test, IPv6, IPsec, Rule description language

1 Introduction
IP version 6(IPv6) is a new version of the Internet
Protocol, designed as the successor to IP version
4(IPv4). IPv6 is finally gaining market momentum
after many years of getting attention mainly in the
standard forums, due to two recent market trends: the
growing shortage of available IP addresses, mainly in
the Far East, and the upcoming deployment of 3G
mobile networks with IP address assignment per
individual wireless phone or handheld device[1,2].
The changes from IPv4 to IPv6 fall primary into the
following categories: Expanded Addressing
Capabilities, Header Format Simplification, Improved
Support for Extensions and Options and Flow
Labeling Capability.[1] Currently 43 RFCs and 22
Internet drafts related to IPv6 have been made by IETF
Internet Area IPv6 Working Group.[3] IPv6 is now a
deployment phase. Several pieces of network
equipment that support IPv6 have been shipped, and
some network providers have started IPv6 commercial
services. However, more implementations and
experiments are necessary in some areas. One such
ongoing field is Security for IPv6.[4]

For security of IPv6 network, IPsec(IP Security) is
designed by IPsec Working Group of IETF. Currently
nearly 18 RFCs and 30 Internet drafts related to IPsec
protocols have been made[5-8]. IPsec is a method of
protecting IP datagrams. This protection takes the
form of data origin authentication, connectionless
integrity, confidentiality, anti-replay protection, and
limited traffic flow confidentiality. IPsec can protect

any protocol that runs on top of IPv4 and IPv6 such as
TCP, UDP, and ICMP. Recently, Several projects
such as KAME, USAGI [9,10] implement IPv6 IPsec
on the various Operating Systems.

In order to maintain the security of the network, we
need the security test tool that can check current
security status of the network. But there is no existing
such a tool which checks the systems that provide
IPsec services work properly and provide their
network security services as well on IPv6 Network.
There is several network security scanning tool such
as Internet Scanner by ISS, Cisco Scanner by Cisco
and LANguard network&port scanner [11-13]. But
these tools only provide network(or host) scanning
and they can not provide security test for IPsec-based
secure platform. Moreover they can’t be operated on
IPv6 network. The proposed approach in this paper
that evaluates security by sniffing, modifying, sending,
analyzing packet by real time is a new method in the
area of security test.

In this paper, we propose a rule-based approach to
security test automation on IPv6 network. So, we
design STRDL(Security Test Rule Description
Language) to define security test rule and rule
execution engine for executing the rules defined by
STRDL for testing security of the IPv6 network, and
we provide implementation details. As the proposed
method is based on rules, it is able to automate the
security test of the network and it can cope with new
vulnerability easily without modifying the system. If
its users get information about a new vulnerability,

they can edit security test rules by using STRDL that
can handle the new vulnerability.

The paper is organized as follows. Section 2
presents about STRDL and section 3 presents
architecture of the rule execution engine. Section 4
presents the examples of security test by using
prototype system of rule execution engine. Finally the
conclusion is given in section 5.

2 STRDL: Security Test Rule
Description Language
In this section, we’ll present about STRDL i.e Security
Test Rule Description Language to define security test
rule. Table 1 shows the list of statement and its
grammar of the STRDL. The meanings of the
sentences are as follows.

RULE NAME: To define Rule Name
DESCRIPTION: To describe the meaning of rule
START_EVALUATION: To inform starting of the
test
END_EVALUATION: To inform end of the test
IF: IF statement
LOOP: LOOP statement. The keyword time is also
defined in order that the loop can be repeated for
designated time. (ex: LOOP time > 50ms : Repeat the
loop for 50miliseconds)
SAVE: Process query from input DB(or file) and store
the result in the output DB(or file) so that next test rule
can use them.
CAPTURE: Capture packet by real time and store it
into the output DB(or file). The processing of
CAPTURE command includes sending the command
to the agent that is installed in the target system that is
specified in query and receiving and storing the results.
The query of CAPTURE in table 1 contains the several
query keywords. Currently we defined following
query keywords.
- ip_packet : Capture only IP packet
- ip6 proto protocol : Capture the packet whose

nexthdr value equals protocol
- ip6 protochain protocol : Capture the packet

whose protocol chain contains protocol
- source_ip source_address : capture the packet

whose source IP is equal to source_address
- dest_ip destination_address: : capture the packet

whose destination IP is equal to
destination_address

- icmp_type type : capture the icmp packet whose
type is equal to type

SEND: Send packet that is stored in the file, specified
in its filename, field to the target system
EDIT_PACKET: Edit packet that is stored in
fromfile with edit_option and store it to the file, named
tofile. Currently we defined following edit_option
keywords.
- sa new_sa : replace source address of the packet

with new_sa
- da new_da : replace destination address of the

packet with new_da
- tc new_tc : replace traffic_class field of the packet

with new_tc
- fl new_fl : replace flow_label field of the packet

with new_fl
CHECK_PACKET: Analyze the meaning of the
packet. It also checks that the packet is correctly
applied to IPsec. And it is also used in extracting
usable information from packet to modify the packet
during test process. The detailed grammar and
processing steps of CHECK_PACKET keyword are
under defining.
CHECK_FILE: Check the file, named filename,
whether it is NULL or not.
IPSEC_PROC: Apply IPsec to the packet, that is
stored in fromfile, by referring to ipsec_option and
store it to the file, named tofile. Currently we defined
following ipsec_option keywords.
- RECAL_ICV sa: Recalculate ICV value by using

predefined sa
- DECRYPT sa: Decrypt the packet by using

predefined sa
- ENCRYPT sa: Encrypt the packet by using

predefined sa
Before processing this keyword, user must set the sa
value manually.
BREAK: Exit the loop.
PRINT: Display the message by using Graphic User
Interface.
DELAY: Delay processing for time milliseconds.
COMMENT: Comment something using the symbol
// or /* */

Table 1. Major keywords of STRDL

Keyword Grammar
RULE_NAME RULE_NAME : strings
DESCRIPTION DESCRIPTION : strings
START_EVALUAT
ION

START_EVALUATION

END_EVALUATIO
N

END_EVALUATION

LOOP LOOP conditions
statements ...

END LOOP

IF IF conditions THEN
statements..

[ELSE]
 statements..

ENDIF
conditions condition {[AND | OR] condition}*
SAVE SAVE (filename, query, DBname)

SAVE (DBname, query, filename)
CAPTURE CAPTURE (DBname, query)

CAPTURE (filename, query)
SEND SEND (filename, target)
EDIT_PACKET EDIT_PACKET(fromfile, edit_option, tofile)
CHECK_PACKET CHECK_PACKET(filename, check_option)
CHECK_FILE CHECK_FILE(filename)
IPSEC_PROC IPSEC_PROC(fromfile,IPsec_option,tofile)
BREAK BREAK
PRINT PRINT display statement
DELAY DELAY time
COMMENT // … or /* … */

3 Rule Execution Engine

3.1 Functional and Security Requirement
The security requirements at network layer are as
follows [2].

Confidentiality: Confidentiality is the property of
communicating such that the intended recipients know

what was being sent, but unintended parties cannot
determine it. For example, ensuring the secrecy of
passwords when logging into a remote machine over
the Internet. A mechanism commonly used for
providing confidentiality is called encryption.

Connectionless integrity: Guarantee that the data
does not get changed in transit. If you are on a line
carrying invoicing data you probably want to know
that the amounts and account numbers are correct and
have not been modified by a third party.

Data origin authentication: Data origin
authentication guarantees the claimed sender is in fact
the actual sender.
Access control: Access control function controls
user’s access to a target system according to users’
authority so that data security can be ensured in the
target system.

Anti-replay: We need ways to ensure a datagram is
processed only once, regardless of how many times it
is received. I.e. it should not be possible for an
attacker to record a transaction (such as a bank account
withdrawal), and then by replaying it verbatim cause
the peer to think a new message (withdrawal request)
had been received.
3.2 The Architecture of Rule Execution

Engine
In this section, we’ll address each module in security rule

execution engine.
Figure 1 shows the
architecture of the
security rule
execution engine
and the test process.
The system is
divided into
following parts -
User interface
Module, Rule
Processing Module,
DBMS (Data Base

Management
System), Agent
module that is
installed in target
system. –

3.2.1 User

Interface
Module
Users may create,
modify, select or
delete the rule by
using Rule Editor

Manager

Rule Editor

Rule Processor

Evaluation Reporter

Configuration

Syntax Analyzing Block

Rule Execution Block

Packet Gathering Unit.

Packet Analyzing Unit

Packet Modification Unit

IPsec Processing Unit

Send Packet Unit

U
ser In

terface

Rule DB

Packet DB

Report DB

DBMS

Agent

Target System
Security Test Rule Execution EngineSecurity Test Rule Execution Engine

Vulnerability Reporting Unit

Network Mapping Unit

1. start
1. load test rule

2. edit test rule

3. start testing

4. start testing (test rule)
5. Analyzing the syntax of test rule

6. Transfer Test Rule(token type)

Rule Processing Module

7,14. request packet gathering(condition)
8,15. transfer packet

9. Request packet modification(option,packet)

8,15. transfer packet

10. Request/reply IPsec Processing(option, packet)

11. transfer
modified packet

12. request packet sending(option,packet)

13. send packet

16. Request packet analyzing(packet, option)

17. Transfer the test result

18. Store test result

19. Inquiry test result

Fig. 1. Security Test Rule Execution Engine & test process

in User Interface Module. And defined rule is stored in
Rule DB in DBMS module. Rule Processor calls the
Rule Processing Module for executing the defined rule.
Evaluation Reporter displays the security test result
that is stored in Report DB using Graphic User
Interface. Configurator sets the various options of
Security Test Rule Execution Engine, and it checks the
status of target network and installs the agent to the
target system. Figure 2 shows the installation process
of agent by Configurator and packet gathering process
by using installed agent.

ConfiguratorConfigurator Target SystemTarget System

AgentAgent

ICMP or Ping

ICMP or Ping reply

Request agent installation

Reply agent installation

Conn. request

Wait for connection
Connection reply.

Wait for connection

command

Reply of command
Wait for reply

Wait for command

result

Ack of result
Wait for result Wait for reply

Packet gathering unitPacket gathering unit

InstallationInstallation

Fig 2. Installation process of agent

3.2.2 User Interface Module
Rule processing module comprised of Syntax analyzer
block and Rule Execution block.
Syntax Analyzer Block: Syntax Analyzer Block in
Rule Processing Module has the function of analyzing
the syntax of the Rules that are selected for the
security test from the Rule Evaluation DB that are
selected. If it finds any syntax error during syntax
analyzing process, it informs GUI module of this error
message. Otherwise, Syntax Analyzer divides rule into
tokens and transmits them to the Rule Execution
Module.
Rule Execution Block: This Block executes the rules
by using 5 execution units. The 5 execution units are
as follows.
- Packet Gathering Unit: This unit has the function

of sniffing packets, in accordance with the
specified option, from the network, by cooperate
with agent that is installed in target host. Currently,
Packet Gathering Unit can sniff the packets
generated by the protocols that are used by IPsec
or IPv6 such as AH, ESP, ISAKMP, IPv6, ICMP
and so on.

- Packet Analyzing Unit: It analyzes the packet
content, and informs rule execution block of the

analyzing results. The analyzing process contains
the extraction of some packet information, to
modify packet during test process.

- Packet Modification Unit: This unit has the
function of modifying packets, in accordance with
the specified rule. It modifies some fields of the
packet. If it needs IPsec processing, it requests that
to the IPsec processing unit.

- Send Packet Unit: This unit is used for sending a
packet that is stored in its system to the target host
by Raw Socket interface. Currently Send Packet
Unit can send the IPv6 and IPsec packet such as
AH, ESP, ISAKMP, IPv6, ICMP.

- IPsec Processing Unit: This unit is used for
modifying packet by IPsec processing, and it is
also used to examine whether packet contains
valid IPsec processing data or not.

3.3 Agent

Syntax
check

Call errMsg

Analyzing
command

Display
errMsg

START
command

STOP
command

Call Sniffer

Check static
var. of

TCPconn

Compete
Execution
Normally

Send the
Command

to the sniffer

Disconnect
with Sniffer

Display
the command

Failed agent
execution

Run sniffer
Agent with rsh

Call TCPConn

Success
connection

Start thread
in TCPconn

Send the
Command
to sniffer

TCP connection
With sniffer agent

(open socket)

Send streams to
CMD_START sniffer

Wait for data
from sniffer

Read data

PKT Ether
AGENT_ST

ART_OK
AGENT_
RESULT

AGENT_S
TART_FAIL

AGENT_RE
SULT_ALL

Add data into
Module in GUI table Display the result

Store the data
to SNF DB

Store the protocol
information
to SNF DB

RunRule mainform TCPConn

START agent execution

STOP agent execution

error

AGENT_OK_FLAG=false

AGENT_OK_FLAG=true

Connection failed
Receive
message

 Fig 3. Processsing steps of agent execution

Agent sniffs the packets generated by the protocols
that are used by IPsec and IPv6 such as AH, ESP,
ISAKMP, IPv6, ICMP, TCP, and send them to the
Security Rule Execution Engine in order to check
whether security systems provide proper IPsec
services to the network or not. When the connection is
established with test engine, agent waits a command
from the rule execution engine. The Rule Execution
Engine can send four types of command - START,
STOP, HALT, RESUME – and options to the agent.
The keywords that are used by option are ip_packet,
ip6 proto, ip6 protochain, source_ip, dest_ip and
icmp_type. The meaning of this option was described

in section 2. Figure 3 shows the flow of agent
execution. Figure 4 shows the content of sniffed ESP
packet by agent by real time.

Fig 4. Sniffed ESP packet by real time

3.4 DBMS
The Databases used by Security Rule execution
Engine are Packet DB, Rule DB and Result DB The
Rule DB stores the rule that is used for the security test.
Table 2 shows the field of Rule DB.

Table 2. Rule DB

Field Name Type Description
RULE_ID INTEGER Rule Identification

Number
RULE_NAME CHAR Rule Name
DESCRIPTION CHAR Description of the Rule
RULE MEDIUMTEXT Defined Rule which is

described in STRDL
DateTime DATE / TIME Date and Time

Proposed Engine provides Database Access routine by
using JDBC. The algorithm to set the security test rule
is as follows.
begin RSU module {
switch(func) {

case SelectRule : sRules = RuleDB.select(expr);
 if (sRules != 0) DisplayRuleTitle();
 break;

case NewRule : if(CheckRuleSyntax(newRule) == OK)
RuleDB.insert(newRule);

 else DisplayErrMsg(badRuleSyntax);
 break;

case UpdateRule :if (CheckRuleSyntex(rule) == OK)
RuleDB.update(rule);

 else DisplayErrMsg(badRuleSyntax);
 break;

case RemoveRule : RuleDB.delete(rule); break;
case DetailedInfo : DisplayDetailedRuleInfo(rule);

break;
case ShowEnvVar: DisplayEnvVar();

 break;
case ChangeEnvVar: Update(envVar, newVal);

 break;

default: DisplayErrMsg(badCommand);
 break;

}
}

Table 3. Report DB

Field Name Type Description
HOSTID INTEGER Target Host ID
IP STRING Target Host IP address
RULE_LIST ARRAY of INTEGER Applied Rule ID(s)
RESULTS ARRAY of CHAR Each Report of rule

execution
DateTime ARRAY of

DATE/TIME
Date and Time

Packet DB stores the various kinds of protocol data
that the agent transmits. The protocol which is stored
in the each table is the Ethernet, ARP, IPv6, AH, ESP,
TCP, UDP, ICMP and ISAKMP.

The Report DB stores the result of security test. The
values stored in Report DB are displayed during the
test process and sometimes later it is used to verify the
test result. Table 3 shows the field of Report DB.

4 Security Test
The prototype of the Security Rule Execution Engine
has been implemented in Java and C language and the
Database has been implemented in JDBC. And we
implemented packet-sniffing component in agent with
libpcap for the IPv6 network, a system independent
interface for user-level network packet capturing
developed by the Network Research Group at the
Lawrence Berkeley Laboratory. This system operated
on Windows and Linux platform. The method of
evaluating the four representative security services
that must be provided at ip layer can be summarized
below.

Confidentiality: Sniff any ESP packet, whose
source or destination IP equals target host IP, from
network, and check the packet whether it is readable or
not, and try to decrypt it by using arbitrary key.

Data Origin Authentication: Sniff AH or ESP
packet whose destination IP equals target host IP, from
network by real time, and modify source IP address in
sniffed packet, and try to send it to the target host
again, and see if the host responds to this trial or not.

Access Control: Generate ICMP packet with AH or
ESP by using arbitrary key, and send it to the target
host, and see if the host responds to this trial or not.
Connectionless Integrity: Modify arbitrary field of
sniffed packet, and re-calculate ICV(Integrity Check
Value) , and replace the ICV with the newly calculated

ICV, and send it to the target host, and see if the host
responds to this trial or not.

Anti-replay: Monitor SN(Sequence Number) value
in sniffed AH/ESP packet header, and guess and
change the SN value of the packet, and send it to the
target host, and see if the host responds to this trial or
not.

3ffe:2e01:1:4::0/64 NET 3ffe:2e01:1:1::0/64 NET

Secure
Host

Secure
Host

Secure
Host

Security Evaluation Rule
Execution Engine

Secure
Gateway Secure

Gateway

IPsec communication
Test signal / packet sniffing

Tunnel AH/ESP

Transport AH/ESP

… …

Fig 5. Testbed

By using our Security Rule Execution Engine, we

tried to evaluate IPv6 IPsec Platform developed by
ETRI in Korea for some test items. The test
environment is shown in figure 5. Figure 6 shows the
sample rule that is described using STRDL for
evaluating AH Connectionless Integrity function.

The meaning of the rule displayed in Figure 6 is as
follows. Sniff and store the AH+ICMP packet whose
destination is target host, and modify ICV value, and
send it to the target host. And see what happens to the
target host. If target host responds to this trial, the
Security Test System displays the warning message “It
can’t support AH Connectionless Integrity”.
Otherwise, the Security Test System displays the
message “It can support Connectionless Integrity”
Figure 7 shows the result of this test. As a result of this
test item, IPv6 IPsec Platform support AH
Connectionless Integrity.

RULE_NAME: AH CI
DESCRYPTION : AH Connectionless Integrity Test
START_EVALUATION

LOOP time < 300ms
 IF (CAPTURE (ci_test, ip6 protochain icmp and ah and

icmp_type 8))
 IPSEC_PROC(ci_test, RECAL_ICV sa, ci_test2);
 BREAK;
 ENDIF
END LOOP
IF (CHECK_FILE(ci_test2)) SEND_PACKET(ci_test2,

3ffe:2e01:1:4::2);
ELSEIF PRINT(“Error: Failed to packet capturing”);
ENDIF
LOOP time < 30ms
 IF(CAPTURE (ci_result, ip6 protochain icmp and source_ip

3ffe:2e01:1:4::2 and icmp_type 0))
 PRINT(“It can’t support AH Connectionless Integrity”);

 BREAK
 ENDIF
END LOOP
IF NOT CHECK_FILE(ci_result)

PRINT(“It can support AH Connectionless Integrity”);
ENDIF

END_EVALUATION

 Fig 6. The test rule of AH Connectionless Integrity

Fig 7. Test results of AH Connectionless Integrity test

4 Conclusion
In this paper, we design STRDL(Security Test Rule
Description Language) to define security test rule and
rule execution engine for evaluating security of the
IPv6 network. The proposed method is based on rules,
so it is able to automate the security test of the network
and it can cope with new vulnerability easily without
modifying the system. If its users get information
about new vulnerability, then they can edit security
test rules by STRDL that can handle the new
vulnerability. Currently, we defined some security test
rule by using STRDL so that user can select such a
rule or edit the rule by himself.

The prototype of Security Rule Execution Engine
has been implemented in Java and C language and the
Database has been implemented in JDBC. And we
implemented packet-sniffing component in agent with
libpcap for the IPv6 network. By using our Security
Rule Execution Engine, we tried to evaluate IPv6
IPsec Platform developed by ETRI for some test items.
This rule execution engine can be applied to any IPv6
security systems because it exists independently and it
is up to standard document such as IETF RFC 2460,
2401, 2402, 2406, 2407 and so on.

The characteristics of the STRDL and Rule
Execution Engine that is presented in this paper are as
follows.

- The proposed approaches in this paper that
evaluates security by sniffing, modifying, sending,
analyzing packet by real time is a new method in
the area of security test.

- It is operated on IPv6 network
- It is able to collect and analyze various protocol

packets from network
- It is rule based test system, so it is able to automate

the security test of the network and it can cope
with new vulnerability easily without modifying
the system. If its users get information about new
vulnerability, then they can add Security Test
Rules that can handle the new vulnerability.

- The grammar of the security test rule is simple, so
we can define test scenario easily.

In the future work, we’ll extend the STRDL and test
engine so that it will cover various security
requirements.

References:
[1] S.Deering, R.Hinden, Internet Protocol, Version

6(IPv6) Specification, RFC2460, Dec. 1998
[2] White Paper, IPv6 to IPv4 is Not Merely 50%

More, Ezchip Technologies.
[3] IETF, http://www.ietf.org
[4] N.Doraswamy and D.Harkins, IPsec : The New

Security Standard for the Internet, Intranets, and
Virtual Private Networks, Prentice Hall, 1999

[5] S.Kent and R.Atkinson, Security Architecture for
the Internet Protocol, RFC2401, Nov. 1998

[6] S.Kent and R.Atkinson, IP Authentication Header,
RFC2402, Nov. 1998

[7] S.Kent and R.Atkinson, IP Encapsulating Security
Payload, RFC2406, Nov. 1998

[8] D.Harkins, D.Correl, Internet Key Exchange,
RFC2409, Nov. 1998

[9] KAME, http://www.kame.net
[10]USAGI, http://www.linux-ipv6.org/
[11] ISS, ISS Internet Scanner, http://www.iss.net/
[12] Cisco Scanner, http://www.cisco.com/univercd/

cc/td/doc/pcat/nssq.htm
[13] LANguard Network&Port scanner,

http://www.gfi.com/languard/lanscan.htm
[14] S.Garfinkel and G.Spafford, Practical UNIX and

Internet Security 2nd edition, 1996, O’Reilly
[15] M.Y.Lee, Internet Security – Cryptographic

principles, algorithms and protocols, 2003,
WILEY

