Nullor Network Jacobian and Hessian Matrices: Symbolic Determination by using Chan-Mai Signal-Flow Graphs
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Abstract:  A topological method for obtaining the Jacobian and Hessian matrices of active networks is presented. It is based on the replacement of the investigated network by using a nullor equivalent circuit and on the representation of the circuit passive part by a Chan-Mai signal-flow graph (CMSFG). The Jacobian and the Hessian matrix elements of the nullor network can be obtained by means of the some dependent variables of two or four isomorphic CMSFGs, respectively. Two examples illustrate the proposed method.
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1. Introduction

Every network synthesis procedure normally finishes by first-order or (more rarely) second-order network sensitivity analysis. The main problem here is the evaluation of the corresponding first- or second-order derivatives of network functions with respect to the changes of the circuit element values which form the network Jacobian (J) and Hessian (H) matrices. A variety of methods exist for such an evaluation but most of them are intended for the sensitivity of one network transfer function only. Besides this in many cases it is desirable to find the symbolic expressions of the sensitivities because such a presentation facilitates the element value influence determination.

An other useful and important application of the matrices J and H is in the tasks for optimization of synthesized networks with respect to their sensitivities or other parameters. 
As it is well known all linear active networks can be modeled by using passive elements and nullator-norator pairs (nullors). The presented paper deals with the application of Chan-Mai signal-flow graphs to the determination of the matrices J and H elements, having in mind the peculiarities of nullors and its influence on the passive element network admittance matrix and on the corresponding CMSFG. The method developed here contains an improved version of those in [2]. Further we will demonstrate that the method reduces to the obtaining of two (for the elements of J) or four (for the elements of H) isomorphic Chan-Mai signal-flow graphs.
2. Nullor Network Chan-Mai Signal-Flow Graph

Suppose that an equivalent nullor network N with m+1 nodes, r passive branches and g nullors is given and the nodal equation of its passive part Np (the part of N which is obtained by removing all nullors) is

(1)
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is the nodal matrix of Np and

(3)
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are the nodal voltage and the nodal current vectors of Np, respectively. Additionally we assume that between the nodes of all node pairs in N are connected by only one element or more than one but

parallel connected elements (it is easy to fulfill this condition by increasing the number of nodes).


The equation (1) can be represented graphically by using a CMSFG Gp [1] 


Further, taking into account the peculiarities of the nullators and the norators, the graph Gp can be transformed into the graph G of the actual network N according to the following 


Rule 

i. When a nullator is connected between the node k in N and the ground node m+1 one removes all vertices going out from the vertex Vk of Gp;

ii. When a norator is connected between the node k in N and the ground node m+1 one removes all vertices coming into the vertex Ik of Gp;

iii. When a nullator is connected between the nodes k and l in N one unites the vertices Vk and Vl in Gp;

iv. When a norator is connected between the nodes k and l in N one unites the vertices Ik and Il in Gp.


The so obtained graph G corresponds to the matrix equation

(4)
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where Y is an (n(n) nodal admittance matrix of N, V is the nodal voltage vector of N and I is the nodal current vector of N for n=m-g.

3. Jacobian Matrix Determination

The matrices in (4) have the form:

(5)
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In the common case every element Yji in (6) is an algebraic admittance sum

(7)
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where ys is the admittance of s-th branch of the network Np.


The vectors V and I correspond to the unknown (dependent) variables and to independent variables of N, respectively and consequently

(8)
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Let us suppose that the admittance ys changes its value to

(9)
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Usually the admittance ys takes part in several (but no more then four) elements of (5) and then all these elements change their values

(10)
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and 

(11)
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Without loss of generality let us assume that the admittance ys influences the admittances Yji and Ykl only. Then one obtains

(12)
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Note that the values of the derivatives in (12) are 1 or –1 and they follow from (7).

Hence

(13)
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for

(14)
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or more common:

(15)
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By substituting Y ’ and V ’ in (4) instead Y and V,  respectively, it follows

(16)
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Having in mind that

(17)
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 EMBED Equation.3  [image: image19.wmf]
the equation (16) yields

(18)
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Then we obtain

(20)
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and the Jacobian matrix [3-5] for the change of the admittance ys is

(21)
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where

(22)
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Taking into account (19) and (20) one obtains

(23)
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and according to (21) and (22)

(24)
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The expressions (23) show that in order to find the vector Js it is necessary:

i. To find the vector V by using the CMSFG G;

ii. To evaluate the vector Vs;
iii. To draw a new CMSFG Gs where the source vertices are the elements of the vector Js and the sink nodes are the elements of the vector Vs;
iv. To find the source vertex variables in Gs.
Example A

The network N in Fig. 1 is given, where m=6; r=9; g=2. Here obviously V2=V3=V23; V6=0 and  we wish to find the vector

(25)
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Fig. 1

In Fig. 2 the CMSFG Gp of the passive part of N is drawn [2]. Further following the Rule in section 2 we reach to the graph G in Fig. 3 for

(26)
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Fig. 3

Because Y32=sC4; Y42= -sC4 and 

(27)
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from (12), (23) and (26) we have

(28)

[image: image33.wmf][

]

ï

ï

ï

î

ï

ï

ï

í

ì

-

=

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

t

V

V

23

23

4

4

4

0

0

;

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

V

K

V

K



Then (23) yields

(29)
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The elements of the vector V can be obtained by the procedure described in [1] and repeated here briefly:

Let the CMSFG G represents the matrix equation

(30)
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where  a is an (n(n) matrix, x is the dependent variable vector and b is the independent variable vector. Then the determination of a dependent variable xi needs an additional CMSFG Gi . It follows from the graph G by deleting all edges going out from the vertex xi and by adding new edges with coefficients b, b, …bn  going out from xi toward the corresponding sink vertices.

For the variable xi we have

(31)
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 EMBED Equation.3  [image: image37.wmf]
Here Ns,k is the number of symmetric edge pairs in the k-th separation of G; Na,k is the number of asymmetric edges in the k-th separation of G; Sk is the product of edge coefficients in k-th separation of G; Ni,s,q is the number of symmetric edge pairs in the q-th separation of Gi; Ni,a,q is the number of asymmetric edges in the q-th separation of Gi; Si,q is the product of edge coefficients in q-th separation of Gi. The first expression in  (31) holds for Na,k , Ni,a,q ( 0 and the second one - for Na,k , Ni,a,q = 0. 

Having in mind the formulae (31) from G one obtains

(32)
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and following (28) and (29) one draws the CMSFG GJ4 (Fig. 4). 
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Fig. 4

By applying to GJ4 the same procedure as for V23 one obtains the elements of the vector J4, namely:

(33)
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4. Hessian Matrix Determination

In many practical cases it is necessary and useful to find not only the first-order derivatives of a network function or variable (for example voltage Vw) among n variables with respect to some parameter (for example ys) but their second-order derivatives with respect to the same or to an other parameter (for example yt ), too.

The matrix formed from all possible second-order derivatives of Vw with respect to the simultaneously changes of two parameters

(34)
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is the Hessian matrix or briefly Hessian [3 - 5]. Obviously for a network they exists a variety of Hessian matrices – every one matrix corresponds to a definite network function or variable.

The results obtained in section 3. can be used for derivation of the Hessian matrix as it will be described below.

By differentiating the vector Js in (23) with respect to the admittance yt one obtains

(35)   
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Because the elements in Y depend linearly on the network element admittances and their derivatives with respect to the parameter ys equal 1, -1 or 0 it holds

(36)
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and from (35) it follows

(37)
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The last result is comparable to the formula (23) and it shows that we can find the vector ( 2V/(ys(yt in principle by using the same approach as in section 3 for ( V/(ys.

However here we must pay attention to the obtaining of the matrix Kst: In the common case the matrices Ks and Kt contain more than one nonzero element (1 or –1). Hence we can expressed each of them as a sum of no more then four addends

(38)
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where each of the matrices Ks,a and Kt,b has only one nonzero element. Then as a result the expression of Kst in (37) is a sum of products of the kind

(39)
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The multiplication in (39) leads to a square matrix with only one nonzero element which is a definite element of Y-1. Let, for example, the nonzero element for the left-side matrix in (39) is on j-th row and on i-th column and the similar element for the right-side matrix is on k-th row and on the l-th column. Then it is easy to see that in the corresponding product in (39) contains the element (zik on the j-th row and on the l-th column, where zik is an element of Y-1.The upper (lower) sign of this element holds for equal (non equal) signs of nonzero elements of Ks,a  and Kt,b in (39), respectively.

The matrix Y-1 can be evaluate by using an auxiliary CMSFG G0 too. For this purpose let us consider the equation

(40)
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After multiplying in (40) for X one follows

(42)
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This means that if the CMSFG G0 corresponds to (40) the multipliers of e1, e2, …, en for every element of X are elements of Y-1. Note that in real cases a limited number of the elements of Y-1 are necessary only.

Hence for determination of an element of the Hessian matrix H we can form the following: 

Procedure:

i. Draw the CMSFG Gp of the nullor network under consideration;

ii. Transform the graph Gp into the graph G, according to the Rule in item 2. and compose the vectors V and I;

iii. Determine the vector V from G;

iv. Write the matrices Ks and Kt;

v. Determine the matrix Y-1 by using the auxiliary CMSFG G0;

vi. Determine the matrix Kst;

vii. Determine the matrix Vst;

viii. Draw the graph Gst in accordance with Vst;

ix. Determine the elements of the vector       ( 2V/(ys(yt from Gst.
Note that by following the above sequence we obtain 2n elements of n Hessian matrices simultaneously, 
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Fig. 5

because ( 2V/(ys(yt =( 2V/(yt(ys – Fig. 5.
Example B

Suppose    that  we want  to  determine       the vector      ( 2V/((sC4)((sC3) for the network N in Fig.1. Because the items i, ii and iii of the Procedure in the previous section were fulfilled in the Example A we have to continue further:

Here the matrices K3 and K4 are 

(43)
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and from (37) it follows

(44)
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The nonzero elements of K34
can be found by using the auxiliary CMSFG G0 drawn in Fig. 6.

So we obtain

(45)
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Fig. 7

Then from CMSFG G ,(37) and (44) we have

(46) 
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By using Chan-Mai’s procedure [1], according to (31), from CMSFG GH34 in Fig. 7 we reach to the following second-order derivatives:

(47)
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which are a part of elements of Hessian matrices H1, H23, H4 and H5 with respect to the parameters sC3 and sC4.

5. Conclusions

A method for determination of nullor network Jacobian and Hessian matrices is presented. It uses the theory of Chan-Mai signal-flow graphs and leads to symbolic expression of the elements of these matrices. The obtained results are useful for evaluation of network first- and second-order sensitivities and for network optimization.
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