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Abstract: Complicated meshes used in numerical simulations on complex geometries often limit the applica-
bility of multilevel techniques for fast solvers. We propose a way how this limitation can be circumvented

if domain adaptation is used. We represent the geometry implicitly by its signed distance function and solve
the problem on a larger domain taking account of the complex shape by adaptive refinement and subelement
assembling routines. The software conceptddDiS[1] allow to deal with this situation in a nearly standard

way. An example is shown which allows a detailed convergence analysis by comparing the numerical solution
with an analytical solution.
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1 Introduction fore follow a different way which circumvents the
meshing of a complex domain. An essential decision

Creating a mesh is always the first step in a Wldein this way is how to represent the geometry. We use

rir:i%e zfnﬁpcrgﬁaﬁgrs ﬁzn%?crgeﬁlvgghiﬁgfﬁ;'f'zg?,vrglasigned distance functiod(z, y, z, t), which is neg-
buting b grap ' 9 9 ative inside the region, to represent our domain. Our

as med_lcal appllcatlo_ns usually quite complex three'numerical grid is now always generated from a reg-
dimensional geometries need to be meshed. Fully au-

. s . ular tetrahedral grid in a larger box, which is adap-
tomatic mesh generators for such applications Ieadmglively refined according ta(z, y, . t), see Figure 3

t(i.lrl"gh qu"fll_“r:y mejhes for the nlijmer.'fal probllem aLrﬁfor an example. The signed distance function can ei-
stli rare. € codes are usually quite complex andy, ., given analytically, be computed for implic-
nearly inaccessible by the user which suppresses thﬁly given boundaries by equation&z, v, z,t) — 0

] e T g7 be PIOWCe n  dScrete form by vaivs on e
: 9 grid, which is common irfevel setapplications [2],

(.)f th.'s mterac_:t_lon necessary for mul_tllevel treatments where PDEs efficiently model geometries with mov-
lies in the ability to adaptively describe the complex- ing boundaries

ity of the geometry as well as the solution. We there-

Fig.1: Different levels of refinement of the underlying grid and boundary of the domain represemdg. by
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Fig.2: ElementT’, boundaryM,, and definition of\.

2 Boundary representation and inte-  evaluated. The method used is similar as in [3] and is
gration explained in Figure 2:

Let the boundary of the domain at tintebe given

by the zero level set of the signed distance func- /)\(;S z/ >\m¢+/ Aout P

tion My = {(z,y,2) € Q | d(z,y,2,t) = 0}. T A(DBE) O(ADEC)

This boundary does not coincide with the boundary

of the computational domain, which is a box em- :/ )\mqur/ Aout® — AoutP-
bedding.M,, nor can it be represented by nodes of A(DBE) T A(DBE)

the underlying grid. Figure 1 shows an illustrative  Ngte that this formula avoids the explicit integra-
two-dlmenS|or21aI e>2<a1m2ple of a circle represented Dyijon gver quadrilaterals and requires only integration
d(z,y,t) = (2° + y°) / — linacomputational do-  gyer riangles, and can be thus performed in a nearly
main[—2, 2] x [—2, 2] for different refinements. standard way.

The geometry is adaptively resolved with increas-  If in addition boundary conditions are specified
ing refinements, but at no level can be represented byt the domain wall given byM,, a penalty method
the nodes of the grid. Instead we are confronted withis applied in order to fulfill them. We approximate
the situation ofd(x,y,t) = 0 within an element’, the introduced line integral alonity within an ele-
as pointed out in Figure 2. If parameters vary acrossment7’ by an integration along the straight lideF,

M integrals of the form[,. A¢, with X a discontin-  see Figure 2. This involves nothing else as a stan-
uous function and) a smooth function, have to be dard integration of an element in one dimension and

Fig.3: Adaptively refined grid and numerical solutiontth



Fig.4: Isosurface;, = 0 representing the Dirichlet boundary conditions.

therefore leads to no further complications. The same
approach can be carried over to three dimensions.

These concepts are realized in our finite element ~V-DVu = 1 on¢
toolbox AMDIS [1]. This software is primarily de- uan = 0
veloped to solve realistic computations in materials
science but can be used for other applications as well.
The design is based on a natural hierarchy of locally  To realize the boundary conditiomyy = 0 a
refined meshes and an abstract concept of general fipenalty method is used. With the penalty term the
nite element spaces which is combined with an ob-finite element formulation reads
ject oriented data structure. In this way dimension in-
dependent programming is possible and complex ap-
plications can be implemented on an abstract level, DVupVé dx + 1/ upddo = | ¢dx
keeping the numerical issues away from the user. The Jo e(h) Joaq (9
basic concepts are described in [4]. . . Liew

A more rigorous approach to circumvent resoly-  Where the test functions are inV, C Hy (€)
ing the boundary of complex geometries by the meshand the penalty coefficien/¢(h) depends sensitively

can be found in [5], where the notimomposite finite 0N the sizeh of the mesh elements (see [6]). The so-
elementdas been introduced. lution is shown in Figure 3 and the isosurfage= 0

representing the Dirichlet boundary conditions at the
approximated domain o1 is shown in Figure 4.
3 Testexample In [6] the following error estimation is given for
As a first test example we consider the Laplace equathe penalty method
tion with diffusion coefficientD and homogenous
Dirichlet boundary conditions

U|BQ’ = 0.

h
u—un] g < O(—F= + V) llell - @

Ve(h)
—V-DVu = 1 onQ where|.|; o is the H!-seminormp is the order of
upg = 0 the finite element space adda generic constant not

depending ork. Therefore, we choos€h) € O(h)
with © the unit sphereB(0;1). The domain is  to obtain optimal convergence. The error in tHeé-
embedded int6’ representing a box, which can eas- seminormE(h) then behaves lik€©(v/h?). We use
ily be meshed. As the solution di'\2 should not  global refinement to compare our solution with this
affect the solution ori2 we use homogenous Dirich- estimate. During global refinement the volume of
let boundary conditions onf2’. Thus we have the each element is bisected in one refinement step. Thus
problem in dimension 3 the length of the element edges divides
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Fig.5: Convergence results showing the error of the numerical solution if compared with the analytical solution
in Q and the theoretically expected rate of convergence.

by two in 3 refinement steps. That meang fisthe  pose our finite element toolboXMDiS [1] is com-
initial size of an element edge,the number of global  bined with theJulius[7] framework for medical visu-
refinements and,, the size of an element edge after alization.

n global refinements, we have, = 2’% Thus the

error should behave like
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