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Abstract: Complicated meshes used in numerical simulations on complex geometries often limit the applica-
bility of multilevel techniques for fast solvers. We propose a way how this limitation can be circumvented
if domain adaptation is used. We represent the geometry implicitly by its signed distance function and solve
the problem on a larger domain taking account of the complex shape by adaptive refinement and subelement
assembling routines. The software concepts ofAMDiS [1] allow to deal with this situation in a nearly standard
way. An example is shown which allows a detailed convergence analysis by comparing the numerical solution
with an analytical solution.
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1 Introduction
Creating a mesh is always the first step in a wide
range of applications concerned with scientific com-
puting and computer graphics. In engineering as well
as medical applications usually quite complex three-
dimensional geometries need to be meshed. Fully au-
tomatic mesh generators for such applications leading
to high quality meshes for the numerical problem are
still rare. The codes are usually quite complex and
nearly inaccessible by the user which suppresses the
possibility to combine the mesh generation with the
numerical solution and visualization. The advantage
of this interaction necessary for multilevel treatments
lies in the ability to adaptively describe the complex-
ity of the geometry as well as the solution. We there-

fore follow a different way which circumvents the
meshing of a complex domain. An essential decision
in this way is how to represent the geometry. We use
asigned distance functiond(x, y, z, t), which is neg-
ative inside the region, to represent our domain. Our
numerical grid is now always generated from a reg-
ular tetrahedral grid in a larger box, which is adap-
tively refined according tod(x, y, z, t), see Figure 3
for an example. The signed distance function can ei-
ther be given analytically, be computed for implic-
itly given boundaries by equationsf(x, y, z, t) = 0
or be provided in a discrete form by values on the
grid, which is common inlevel setapplications [2],
where PDEs efficiently model geometries with mov-
ing boundaries.

Fig.1: Different levels of refinement of the underlying grid and boundary of the domain represented byM0.
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Fig.2: ElementT , boundaryM0, and definition ofλ.

2 Boundary representation and inte-
gration

Let the boundary of the domain at timet be given
by the zero level set of the signed distance func-
tion M0 = {(x, y, z) ∈ Ω | d(x, y, z, t) = 0}.
This boundary does not coincide with the boundary
of the computational domain, which is a box em-
beddingM0, nor can it be represented by nodes of
the underlying grid. Figure 1 shows an illustrative
two-dimensional example of a circle represented by
d(x, y, t) = (x2 + y2)1/2 − 1 in a computational do-
main[−2, 2]× [−2, 2] for different refinements.

The geometry is adaptively resolved with increas-
ing refinements, but at no level can be represented by
the nodes of the grid. Instead we are confronted with
the situation ofd(x, y, t) = 0 within an elementT ,
as pointed out in Figure 2. If parameters vary across
M0 integrals of the form

∫
T λφ, with λ a discontin-

uous function andφ a smooth function, have to be

evaluated. The method used is similar as in [3] and is
explained in Figure 2:

∫
T

λ φ ≈
∫
4(DBE)

λinφ +
∫

�(ADEC)
λoutφ

=
∫
4(DBE)

λinφ +
∫

T
λoutφ−

∫
4(DBE)

λoutφ.

Note that this formula avoids the explicit integra-
tion over quadrilaterals and requires only integration
over triangles, and can be thus performed in a nearly
standard way.

If in addition boundary conditions are specified
at the domain wall given byM0, a penalty method
is applied in order to fulfill them. We approximate
the introduced line integral alongM0 within an ele-
mentT by an integration along the straight lineDE,
see Figure 2. This involves nothing else as a stan-
dard integration of an element in one dimension and

Fig.3: Adaptively refined grid and numerical solution inΩ′.



Fig.4: Isosurfaceuh = 0 representing the Dirichlet boundary conditions.

therefore leads to no further complications. The same
approach can be carried over to three dimensions.

These concepts are realized in our finite element
toolbox AMDiS [1]. This software is primarily de-
veloped to solve realistic computations in materials
science but can be used for other applications as well.
The design is based on a natural hierarchy of locally
refined meshes and an abstract concept of general fi-
nite element spaces which is combined with an ob-
ject oriented data structure. In this way dimension in-
dependent programming is possible and complex ap-
plications can be implemented on an abstract level,
keeping the numerical issues away from the user. The
basic concepts are described in [4].

A more rigorous approach to circumvent resolv-
ing the boundary of complex geometries by the mesh
can be found in [5], where the notioncomposite finite
elementshas been introduced.

3 Test example
As a first test example we consider the Laplace equa-
tion with diffusion coefficientD and homogenous
Dirichlet boundary conditions

−∇ ·D∇u = 1 onΩ
u|∂Ω = 0

with Ω the unit sphereB(0; 1). The domain is
embedded intoΩ′ representing a box, which can eas-
ily be meshed. As the solution onΩ′\Ω should not
affect the solution onΩ we use homogenous Dirich-
let boundary conditions on∂Ω′. Thus we have the
problem

−∇ ·D∇u = 1 onΩ′

u|∂Ω = 0
u|∂Ω′ = 0.

To realize the boundary conditionu|∂Ω = 0 a
penalty method is used. With the penalty term the
finite element formulation reads

∫
Ω′

D∇uh∇φdx +
1

ε(h)

∫
∂Ω

uhφ dσ =
∫

Ω′
φ dx

where the test functionsφ are inVh ⊆ H1
0 (Ω′)

and the penalty coefficient1/ε(h) depends sensitively
on the sizeh of the mesh elements (see [6]). The so-
lution is shown in Figure 3 and the isosurfaceuh = 0
representing the Dirichlet boundary conditions at the
approximated domain ofM0 is shown in Figure 4.

In [6] the following error estimation is given for
the penalty method

∣∣u − uh

∣∣
1,Ω

≤ C
(

hp√
ε(h)

+
√

ε(h)
)∥∥u

∥∥
p+1,Ω

, (1)

where|.|1,Ω is theH1-seminorm,p is the order of
the finite element space andC a generic constant not
depending onh. Therefore, we chooseε(h) ∈ O(h)
to obtain optimal convergence. The error in theH1-
seminormE(h) then behaves likeO(

√
hp). We use

global refinement to compare our solution with this
estimate. During global refinement the volume of
each element is bisected in one refinement step. Thus
in dimension 3 the length of the element edges divides
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Fig.5: Convergence results showing the error of the numerical solution if compared with the analytical solution
in Ω and the theoretically expected rate of convergence.

by two in 3 refinement steps. That means ifh0 is the
initial size of an element edge,n the number of global
refinements andhn the size of an element edge after
n global refinements, we havehn = h0

2n/3 . Thus the
error should behave like

E(hn) ≈
( h0

2n/3

)1/2
.

If we plot the logarithm of the errorE(hn) against
the number of global refinementsn, we obtain a
straight line with gradient−1

6 log(2). Figure 5 shows
how the numerical results obey this linear behavior if
linear finite elements are used.

4 Conclusion and Outlook
Even if the problem considered in Section 3 is
rather simple, it should be obvious that the described
methodology is neither restricted to ball shaped do-
main nor to the Laplace equation. Coupled systems of
PDEs with moving boundaries on complex domains
can be solved as well. The only ingredient needed
is the signed distance functionwhich describes the
domain. As a final goal the simulation will be in-
teractively visualized in virtual environments such as
theCAVE andResponsive Workbench. For that pur-

pose our finite element toolboxAMDiS [1] is com-
bined with theJulius[7] framework for medical visu-
alization.
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