
Generalized Predictive Control with a Non-linear Autoregressive Model

ING. HYNEK VYCHODIL , ING. M ICHAL SCHMIDT,
ING. PETR NEPEVNÝ, PROF. ING. PETR PIVOŇKA , CSC.

Department of Control and Instrumentation
FEEC VUT Brno

Kolejní 4, 61200 Brno
CZECH REPUBLIC

Abstract: – This paper presents a solution to computation of predictive control using non-linear auto-regressive
models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems.
However, the described approach is applicable to any type of auto-regressive model. The model is not linearized
in the operating point, but in each control optimization step the model’s derivative is computed (linearization)
for all points in the prediction horizon. The method can be used in real-time control. This is verified by porting
the algorithm directly to the PLC.

Key–Words:– Neural network, Modelling, Non-linear, Predictive control

1 Control Algorithm

1.1 Generalized predictive control of a non-
linear system

Let’s have a discrete causal non-linear dynamic system
defined by the function:

yk = f(k,u,x0) (1)

where:
yk system output in stepk,
f non-linear function of the system,
u control action vector(uk−1, uk−2, . . . u0)T and
x0 . . . initial state.

and its model

ŷk = f̂(k,u,x0) (2)

where:
ŷk estimated system output in stepk and
f̂ non-linear function of the model.

Let’s have a cost function:

E =
1
2

n∑
i=1

[
(ŷi − wi)2 + α(ui−1 − ui−2)2

]
(3)

where:
E cost function,
n prediction horizon,
ŷi system output in stepi,
wi set value in stepi,
α cost of action,
ui control action in stepi.

The cost function can be represented in a vector form as

E =
1
2

[
‖e‖2 + α ‖h‖2

]
(4)

where:
e vector of differences between the predicted sys-
tem output and the desired value(ŷn − wn, ŷn−1 −
wn−1, . . . , ŷ1 − w1)T and
h vector of action increments(un−1 −
un−2, un−2 − un−3, . . . u0 − u−1)T.

For both vectorse andh we can introduce their varia-
tion by the control vectoru using variation matricesG
resp.H and estimate their values in the iteration process
uj+1 = uj + ∆u with a first-order Taylor polynomial:

êj+1 = ej + G∆u (5)

and ĥj+1 = hj + H∆u (6)

By substitution of (5) and (6) into (4) we get an estima-
tion of the cost function:

Êj+1 =
1
2

[
‖ej + G∆u‖2 + α ‖hj + H∆u‖2

]
(7)

By minimizing this estimation we get:

∂Ê

∂∆u
= GT (ej + G∆u) +

+αHT (hj + H∆u) = 0 (8)

The corresponding new control is then:

uj+1 = uj −
(
GTG + αHTH

)−1 ·
·
(
GTej + αHThj

)
(9)

The iteration process described by the equation (9) does
not necessarily converge for all non-linear functionsf
from the equation (1) nor for all initial conditionsu0.
For a class of non-linear continuous smooth functions
and initial vectorsu0 the convergence can be expected.
The probability of convergence for a given pair of func-
tionf(k,u,x0) and an initial vectoru0 can be increased
using the Marquardt–Levenberg’s modification of the
Newton’s method for searching extremes of a multidi-
mensional function.

The result is the well-known algorithm, which is also
used for learning of neural networks:

uj+1 = uj −
(
GTG + αHTH + λI

)−1 ·
·
(
GTej + αHThj

)
(10)

where:
λ non-negative scalar which allows smooth tran-
sition between Newton’s method and gradient descent
method.

Forλ → 0 we get equation (9).
Forλ →∞ we get

uj+1 = uj −
(
GTej + αHThj

)
/λ (11)

which is a gradient descent method. The usually chosen
starting value ofλ is 0.1. In each step a new control
vector is computed, the cost functionE is evaluated and
compared with the value in the previous step. If it is
less than in the previous step, thenλ is decreased and
the next iteration step starts. Otherwiseλ is increased,
the control vector is assigned its previous value and the
current step is repeated with the new value ofλ.

1.2 The variation matrix of a non-linear au-
toregressive model

For the equation (10) the knowledge of variance matri-
cesH andG is necessary. The matrixH is:

H =

1 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 0
...

... ...
...

0 −1 1 0
0 0 · · · 0 −1 1

(12)

The matrixG has a form:

G =

∂f̂
∂u0

∣∣∣
k=1

∂f̂
∂u1

∣∣∣
k=1

· · · ∂f̂
∂un−1

∣∣∣
k=1

∂f̂
∂u0

∣∣∣
k=2

∂f̂
∂u1

∣∣∣
k=2

· · · ∂f̂
∂un−1

∣∣∣
k=2

...
...

...
...

∂f̂
∂u0

∣∣∣
k=n

∂f̂
∂u1

∣∣∣
k=n

· · · ∂f̂
∂un−1

∣∣∣
k=n

(13)

To simplify we will write ∂ŷp

∂ur
instead of ∂f̂

∂ur

∣∣∣
k=p

. For

causal systems the matrixG is lower triangular:

G =

∂ŷ1

∂u0
0 · · · 0

∂ŷ2

∂u0

∂ŷ2

∂u1
· · · 0

...
...

...
...

∂ŷn

∂u0

∂ŷn

∂u1
· · · ∂ŷn

∂un−1

 (14)

Let’s define a time-invariant non-linear autoregressive
model of the system (1) in the form:

ŷk+1 = F (ŷk, ŷk−1, . . . ŷk−m,

uk, uk−1, . . . , uk−l) (15)

where:
F non-linear function (can be realized by a neural
network) and
l, m . . define the order of the model. Oftenl = m.

If we denotek + 1 as the operating point and partial
derivations by one of the parametersx of the functionF
in this point is ∂F

∂x

∣∣
k+1

, we’ll denote this derivation as
∂Fk+1

∂x . Then we can calculate each element of the ma-
trix G as:

∂ŷp

∂ur
=

∂Fp

∂uk−p+r+1
+

m∑
i=0

∂Fp

∂ŷk−i
· ∂ŷp−i−1

∂ur
(16)

row\column p− l − 1 p− l p− 2 p− 1 p p + 1
...

...
...

...
...

...
+ + + + + +

· · · 0 0 · · · 0 0 0 0 · · ·
· · · · · ·

p−m− 2 · · · ∂ŷp−m−2

∂up−l−2
0 · · · 0 0 0 0 · · ·

+ + + + + +
· · · ∂Fp

∂ŷk−m

∂Fp

∂ŷk−m
· · · ∂Fp

∂ŷk−m

∂Fp

∂ŷk−m

∂Fp

∂ŷk−m

∂Fp

∂ŷk−m
· · ·

· · · · · ·
p−m− 1 · · · ∂ŷp−m−1

∂up−l−2

∂ŷp−m−1

∂up−l−1
· · · 0 0 0 0 · · ·

...
...

...
...

...
...

+ + + + + +
· · · ∂Fp

∂ŷk−1

∂Fp

∂ŷk−1
· · · ∂Fp

∂ŷk−1

∂Fp

∂ŷk−1

∂Fp

∂ŷk−1

∂Fp

∂ŷk−1
· · ·

· · · · · ·
p− 2 · · · ∂ŷp−2

∂up−l−2

∂ŷp−2

∂up−l−1
· · · ∂ŷp−2

∂up−3
0 0 0 · · ·

+ + + + + +
· · · ∂Fp

∂ŷk

∂Fp

∂ŷk
· · · ∂Fp

∂ŷk

∂Fp

∂ŷk

∂Fp

∂ŷk

∂Fp

∂ŷk
· · ·

· · · · · ·
p− 1 · · · ∂ŷp−1

∂up−l−2

∂ŷp−1

∂up−l−1
· · · ∂ŷp−1

∂up−3

∂ŷp−1

∂up−2
0 0 · · ·

+ + + + + +
· · · 0 ∂Fp

∂uk−l
· · · ∂Fp

∂uk−2

∂Fp

∂uk−1

∂Fp

∂uk
0 · · ·

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
p · · · ∂ŷp

∂up−l−2

∂ŷp

∂up−l−1
· · · ∂ŷp

∂up−3

∂ŷp

∂up−2

∂ŷp

∂up−1
0 · · ·

Fig. 1: Calculation of thep-th row of matrixG

It is clear that the matrixG can be filled during
the prediction. Inp-th step of prediction thep-th row
is calculated usingm previous rows multiplied by the
corresponding coefficients of the sensitivity derivation
of the non-linear model (neural network). An illustra-
tion of the calculation is shown in Fig. 1.

1.3 Model Error Correction

An inaccuracy of the model can cause a steady error in
the system output. To prevent future errors the knowl-
edge of past differences between the model and the sys-
tem can be used. Average difference is calculated over
several past time steps and this value is assumed to be
constant in the future. This average value is added to the
model output over the whole prediction horizon. This
approach is described in [8].

1.4 The non-linear model

For modelling of the non-linear system (1) a non-linear
auto-regressive moving-average (NARMA) model (15)
is used, where the functionF is realized by a neu-
ral network. The neural network is a feed-forward
multi-layered perceptron with one hidden layer with
two non-linear neurons. For learning, the Marquardt-
Levenberg’s method is used. The size of the training set
is fixed. The set is updated on-line with new samples.
The selection of old samples to replace is controlled by
the samples’ criterion of "credibility". This criterion
penalizes samples which are too similar to each other,
therefore it ensures sufficient diversity of the training
set [7].

2 Implementation

2.1 Development of the control algorithm

The control algorithm is developed in three phases as
shown in Fig. 2. First, the algorithm is tested with a
simulation tool e. g. MATLAB/Simulink. Second, the
algorithm is connected to the real world. At this point
it is still running on a PC and communicates in real-
time with a PLC which connects it to the process. We
used a B&R PLC which communicated with MATLAB
through Process Vizualization Interface (PVI) over Eth-
ernet. Finally, the algorithm is ported directly to the
PLC. The B&R PLC is programmable in ANSI C,

therefore the porting fairly straightforward. We devel-
oped a portable C librarysfmatwhich supports matrix
operations, neural networks, system modelling and pre-
dictive control. The library works in the same way on
the PC and the B&R PLC.

Fig. 2: The scheme of three steps of direct implementa-
tion from MATLAB/Simulink into PLC.

2.2 Simulation results

We compared the neural predictive controller with
a classical well known and used PID (PI-D variant) con-
troller. For the comparison, analog physical model was
used. It is a 3-rd order system with non-linearities, off-
set, and noise. Simulation results are shown in Fig. 3.
The predictive controller was intentionally set so that
it didn’t take into account the information about future
desired value. The response to the step in desired value
of predictive controller is faster and with smaller over-
shoot than with the PID. Response to the disturbance in
the system is also faster if we use predictive controller.
When we used a predictive controller with knowledge
of future desired value, it reacted to the change of ref-
erence trajectory before the change was done. This can
be seen on Fig. 4.

3 Conclusion

This paper presents a computation method for non-
linear predictive control. The linearization in each pre-

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 450 500 550 600 650 700

u

t (s)

desired value
output with predictive

output with PID

-10

-5

 0

 5

 10

 450 500 550 600 650 700

u

t (s)

action of predictive
action of PID

Fig. 3: Comparison of control process with the predic-
tive controller and PID controller. The physical model’s
transfer function isF (s) ≈ 1

(s+1)
1

(10s+1)
1

(s+1) . A con-
stant disturbance of size3 is entering into the middle
integrator at timet = 520s.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 450 500 550 600 650 700

u

t (s)

desired value
output with predictive

output with PID

-10

-5

 0

 5

 10

 450 500 550 600 650 700

u

t (s)

action of predictive
action of PID

Fig. 4: Comparison of the control process with the pre-
dictive controller and PID controller. The controlled
system is the same as in Fig. 3. The predictive con-
troller is aware of future reference trajectory.

diction step brings the advantage of more optimized
control of non-linear systems as opposed to lineariza-
tion of the model in only one operating point. The com-
putation is still effective enough to implement the con-
trol algorithm in real-time control.

The feasibility of the control agorithm for real-time
control was verified when the algorithm was connected
through PVI to the physical model and later ported di-
rectly into the PLC. Testing showed that the algorithm
compares favourably to the PID controller.

The full power of the control algorithm is fully un-
leashed, when the reference trajectory is known in ad-
vance. In such cases the predictive controller can react
to the change ahead of time.

Acknowledgement:The paper has been prepared
with the support of the research plan PhD grant Talent
102/03/H116.

References

[1] Omatu, S., Khalid, M., Yusof, R.,Neuro-Control and its
Application, Springer–Verlang, London Limited, 1996

[2] Alexander, I., Morton, H.,An Introduction to Neural
Computing, Chapman and Hall, 1990

[3] Hassoun, M. H.,Fundamentals of Artificial Neural Net-
works, The MIT Press, 1995

[4] Hunt, K. J., et al., Neural Networks for Control Systems
– A Survey,Automatica, Vol.28, No.6, 1992, pp. 1083-
1112.

[5] Najvárek, J.,Neural networks in predictive control.
Dissertation work(in Czech), ÚAMT, FEI VUT Brno,
1998

[6] Pivoňka, P., Neural controllers (in Czech),Automati-
zace, Vol.38, No.2, 1995, pp. 39-43.

[7] Vychodil, H., Pivǒnka, P., Krupanský, P., The Choice
of Patterns in Training Set for Neural On-line Identifi-
cation,In Advances in Scientific Computing, Computa-
tional Intelligence and Applications, (Eds. Mastorakis
V.) Electrical and Computer Engineering Series -A Se-
ries of Reference Books and Textbooks, WSES Press,
Greece, 2002, pp. 250-254.

[8] Richalet, J.A., A. Rault, J.D. Testud, J. Papon, Model
Predictive Heuristic Control: Applications to Industrial
Processes.Automatica, 14, 1978, pp. 413-428.

