
Generalized Predictive Control with a Non-linear Autoregressive Model

HYNEK VYCHODIL, MICHAL SCHMIDT,
PETR NEPEVNÝ, PETR PIVǑNKA

Department of Control and Instrumentation
FEEC VUT Brno

Kolejní 4, 61200 Brno
CZECH REPUBLIC

Abstract: – This paper presents a solution to computation of predictive control using non-linear auto-regressive
models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems.
However, the described approach is applicable to any type of auto-regressive model. The model is not linearized
in the operating point, but in each control optimization step the model’s derivative is computed (linearization)
for all points in the prediction horizon. The method can be used in real-time control. This is verified by porting
the algorithm directly to the PLC.

Key–Words:– Neural network, Modelling, Non-linear, Predictive control

1 Introduction

Traditionally linear models were used for predictive
controllers, because of easy control optimization. In
cases when non-linear models were used, their lin-
earized equivalents were used for the whole prediction
horizon. A more correct approach would be lineariza-
tion for each point in the prediction horizon. However,
this is computionally expensive and therefore unsuitable
for real-time control. We’ll present a method to com-
pute the model’s linearization matrix recurrently, thus
significantly reduce the computational requirements.

2 Control Algorithm

2.1 Generalized predictive control of a non-
linear system

Let’s have a model of a discrete causal non-linear dy-
namic system:

ŷk = f̂(k,u,x0) (1)

where:
ŷk estimated system output in stepk and
f̂ non-linear function of the model.

Let’s have a cost function:

E =
1
2

n∑
i=1

[
(ŷi − wi)2 + α(ui−1 − ui−2)2

]
(2)

where:
E cost function,
n prediction horizon,
ŷi system output in stepi,
wi set value in stepi,
α cost of action,
ui control action in stepi.

The cost function can be represented in a vector form as

E =
1
2

[
‖e‖2 + α ‖h‖2

]
(3)

where:
e vector of differences between the predicted sys-
tem output and the desired value(ŷn − wn, ŷn−1 −
wn−1, . . . , ŷ1 − w1)T and
h vector of action increments(un−1 − un−2,
un−2 − un−3, . . . , u0 − u−1)T.

For both vectorse andh we can introduce their varia-
tion by the control vectoru using variation matricesG

resp.H and estimate their values in the iteration process
uj+1 = uj + ∆u with a first-order Taylor polynomial:

êj+1 = ej + G∆u (4)

and ĥj+1 = hj + H∆u (5)

By substitution of (4) and (5) into (3) we get an estima-
tion of the cost function:

Êj+1 =
1
2

[
‖ej + G∆u‖2 + α ‖hj + H∆u‖2

]
(6)

By minimizing this estimation we get:

∂Ê

∂∆u
= GT (ej + G∆u) +

+αHT (hj + H∆u) = 0 (7)

The corresponding new control is then:

uj+1 = uj −
(
GTG + αHTH

)−1 ·
·
(
GTej + αHThj

)
(8)

The iteration process described by the equation (8) does
not necessarily converge for all non-linear functionsf̂
from the equation (1) nor for all initial conditionsu0.
For a class of non-linear continuous smooth functions
and initial vectorsu0 the convergence can be expected.
The probability of convergence for a given pair of func-
tionf(k,u,x0) and an initial vectoru0 can be increased
using the Marquardt–Levenberg’s modification of the
Newton’s method for searching extremes of a multidi-
mensional function.

The result is the well-known algorithm, which is also
used for learning of neural networks:

uj+1 = uj −
(
GTG + αHTH + λI

)−1 ·
·
(
GTej + αHThj

)
(9)

where:
λ non-negative scalar which allows smooth tran-
sition between Newton’s method and gradient descent
method.

Forλ → 0 we get equation (8).
Forλ →∞ we get

uj+1 = uj −
(
GTej + αHThj

)
/λ (10)

which is a gradient descent method. The usually chosen
starting value ofλ is 0.1. In each step a new control
vector is computed, the cost functionE is evaluated and
compared with the value in the previous step. If it is
less than in the previous step, thenλ is decreased and
the next iteration step starts. Otherwiseλ is increased,
the control vector is assigned its previous value and the
current step is repeated with the new value ofλ.

2.2 The variation matrix of a non-linear au-
toregressive model

For the equation (9) the knowledge of variance matrices
H andG is necessary. The matrixH is:

H =



1 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 0
...

... ...
...

0 −1 1 0
0 0 · · · 0 −1 1


(11)

The matrixG has a form:

G =



∂f̂
∂u0

∣∣∣
k=1

∂f̂
∂u1

∣∣∣
k=1

· · · ∂f̂
∂un−1

∣∣∣
k=1

∂f̂
∂u0

∣∣∣
k=2

∂f̂
∂u1

∣∣∣
k=2

· · · ∂f̂
∂un−1

∣∣∣
k=2

...
...

...
...

∂f̂
∂u0

∣∣∣
k=n

∂f̂
∂u1

∣∣∣
k=n

· · · ∂f̂
∂un−1

∣∣∣
k=n


(12)

To simplify we will write ∂ŷp

∂ur
instead of ∂f̂

∂ur

∣∣∣
k=p

. For

causal systems the matrixG is lower triangular:

G =


∂ŷ1

∂u0
0 · · · 0

∂ŷ2

∂u0

∂ŷ2

∂u1
· · · 0

...
...

...
...

∂ŷn

∂u0

∂ŷn

∂u1
· · · ∂ŷn

∂un−1

 (13)

Let’s define a time-invariant non-linear autoregressive
model of the dynamic system in the form:

ŷk+1 = F (ŷk, ŷk−1, . . . ŷk−m,

uk, uk−1, . . . , uk−l) (14)

where:
F non-linear function (can be realized by a neural
network) and
l, m . . define the order of the model. Oftenl = m.

If we denotek + 1 as the operating point and partial
derivations by one of the parametersx of the functionF
in this point is ∂F

∂x

∣∣
k+1

, we’ll denote this derivation as
∂Fk+1

∂x . Then we can calculate each element of the ma-
trix G as:

∂ŷp

∂ur
=

∂Fp

∂uk−p+r+1
+

m∑
i=0

∂Fp

∂ŷk−i
· ∂ŷp−i−1

∂ur
(15)

row\column p− l − 1 p− l p− 2 p− 1 p p + 1
...

...
...

...
...

...
+ + + + + +

· · · 0 0 · · · 0 0 0 0 · · ·
· · · · · ·

p−m− 2 · · · ∂ŷp−m−2

∂up−l−2
0 · · · 0 0 0 0 · · ·

+ + + + + +
· · · ∂Fp

∂ŷk−m

∂Fp

∂ŷk−m
· · · ∂Fp

∂ŷk−m

∂Fp

∂ŷk−m

∂Fp

∂ŷk−m

∂Fp

∂ŷk−m
· · ·

· · · · · ·
p−m− 1 · · · ∂ŷp−m−1

∂up−l−2

∂ŷp−m−1

∂up−l−1
· · · 0 0 0 0 · · ·

...
...

...
...

...
...

+ + + + + +
· · · ∂Fp

∂ŷk−1

∂Fp

∂ŷk−1
· · · ∂Fp

∂ŷk−1

∂Fp

∂ŷk−1

∂Fp

∂ŷk−1

∂Fp

∂ŷk−1
· · ·

· · · · · ·
p− 2 · · · ∂ŷp−2

∂up−l−2

∂ŷp−2

∂up−l−1
· · · ∂ŷp−2

∂up−3
0 0 0 · · ·

+ + + + + +
· · · ∂Fp

∂ŷk

∂Fp

∂ŷk
· · · ∂Fp

∂ŷk

∂Fp

∂ŷk

∂Fp

∂ŷk

∂Fp

∂ŷk
· · ·

· · · · · ·
p− 1 · · · ∂ŷp−1

∂up−l−2

∂ŷp−1

∂up−l−1
· · · ∂ŷp−1

∂up−3

∂ŷp−1

∂up−2
0 0 · · ·

+ + + + + +
· · · 0 ∂Fp

∂uk−l
· · · ∂Fp

∂uk−2

∂Fp

∂uk−1

∂Fp

∂uk
0 · · ·

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
p · · · ∂ŷp

∂up−l−2

∂ŷp

∂up−l−1
· · · ∂ŷp

∂up−3

∂ŷp

∂up−2

∂ŷp

∂up−1
0 · · ·

Fig. 1: Calculation of thep-th row of matrixG

It is clear that the matrixG can be filled during
the prediction. Inp-th step of prediction thep-th
row is calculated usingm previous rows multiplied by
the corresponding coefficients of the sensitivity deriva-
tion of the non-linear model (neural network). An illus-
tration of the calculation is shown in Fig. 1.

2.3 Model Error Correction

An inaccuracy of the model can cause a steady error in
the system output. To prevent future errors the knowl-
edge of past differences between the model and the sys-
tem can be used. Average difference is calculated over
several past time steps and this value is assumed to be
constant in the future. This average value is added to
the model output over the whole prediction horizon.
This approach is described in [8].

2.4 The non-linear model

For modelling of the system a non-linear autoregressive
moving-average (NARMA) model (14) is used, where
the functionF is realized by a neural network. The neu-
ral network is a feed-forward multi-layered perceptron
with one hidden layer with two non-linear neurons. For
learning, the Marquardt-Levenberg’s method is used.
The size of the training set is fixed. The set is updated
on-line with new samples. The selection of old sam-
ples to replace is controlled by the samples’ criterion
of "credibility". This criterion penalizes samples which
are too similar to each other, therefore it ensures suffi-
cient diversity of the training set [7].

3 Implementation

3.1 Development of the control algorithm

The control algorithm is developed in three phases as
shown in Fig. 2. First, the algorithm is tested with
a simulation tool e. g. MATLAB/Simulink. Second,
the algorithm is connected to the real world. At this
point it is still running on a PC and communicates in
real-time with a PLC which connects it to the pro-
cess. We used a B&R PLC which communicated
with MATLAB through Process Vizualization Interface
(PVI) over Ethernet. Finally, the algorithm is ported
directly to the PLC. The B&R PLC is programmable
in ANSI C, therefore the porting fairly straightforward.
We developed a portable C librarysfmatwhich supports

matrix operations, neural networks, system modelling
and predictive control. The library works in the same
way on the PC and the B&R PLC.

Fig. 2: The scheme of three steps of direct implementa-
tion from MATLAB/Simulink into PLC.

3.2 Simulation results

We compared the neural predictive controller with
a classical well known and used PID (PI-D variant) con-
troller. For the comparison, analog physical model was
used. It is a 3-rd order system with non-linearities, off-
set, and noise. Simulation results are shown in Fig. 3.
The predictive controller was intentionally set so that
it didn’t take into account the information about future
desired value. The response to the step in desired value
of predictive controller is faster and with smaller over-
shoot than with the PID. Response to the disturbance in
the system is also faster if we use predictive controller.
When we used a predictive controller with knowledge
of future desired value, it reacted to the change of ref-
erence trajectory before the change was done. This can
be seen on Fig. 4.

4 Conclusion

This paper presents a computation method for non-
linear predictive control. The linearization in each pre-
diction step brings the advantage of more optimized

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 450 500 550 600 650 700

u

t (s)

desired value
output with predictive

output with PID

-10

-5

 0

 5

 10

 450 500 550 600 650 700

u

t (s)

action of predictive
action of PID

Fig. 3: Comparison of control process with the predic-
tive controller and PID controller. The physical model’s
transfer function isF (s) ≈ 1

(s+1)
1

(10s+1)
1

(s+1) . A con-
stant disturbance of size3 is entering into the middle
integrator at timet = 520s.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 450 500 550 600 650 700

u

t (s)

desired value
output with predictive

output with PID

-10

-5

 0

 5

 10

 450 500 550 600 650 700

u

t (s)

action of predictive
action of PID

Fig. 4: Comparison of the control process with the pre-
dictive controller and PID controller. The controlled
system is the same as in Fig. 3. The predictive con-
troller is aware of future reference trajectory.

control of non-linear systems as opposed to lineariza-
tion of the model in only one operating point. The com-
putation is still effective enough to implement the con-
trol algorithm in real-time control.

The feasibility of the control agorithm for real-time
control was verified when the algorithm was connected
through PVI to the physical model and later ported di-
rectly into the PLC. Testing showed that the algorithm
compares favourably to the PID controller.

When the reference trajectory is known in advance,
the predictive controller can react to the change ahead
of time.

Acknowledgement:The paper has been prepared
with the support of the research plan PhD grant Talent
102/03/H116.

References:

[1] Omatu, S., Khalid, M., Yusof, R.,Neuro-Control
and its Application, Springer–Verlang, London
Limited, 1996

[2] Alexander, I., Morton, H.,An Introduction to Neu-
ral Computing, Chapman and Hall, 1990

[3] Hassoun, M. H.,Fundamentals of Artificial Neu-
ral Networks, The MIT Press, 1995

[4] Hunt, K. J., et al., Neural Networks for Control
Systems – A Survey,Automatica, Vol.28, No.6,
1992, pp. 1083-1112.

[5] Najvárek, J.,Neural networks in predictive con-
trol. Dissertation work(in Czech), ÚAMT, FEI
VUT Brno, 1998

[6] Pivoňka, P., Neural controllers (in Czech),Auto-
matizace, Vol.38, No.2, 1995, pp. 39-43.

[7] Vychodil, H., Pivǒnka, P., Krupanský, P., The
Choice of Patterns in Training Set for Neural On-
line Identification,In Advances in Scientific Com-
puting, Computational Intelligence and Applica-
tions, (Eds. Mastorakis V.) Electrical and Com-
puter Engineering Series -A Series of Reference
Books and Textbooks, WSES Press, Greece, 2002,
pp. 250-254.

[8] Richalet, J.A., A. Rault, J.D. Testud, J. Papon,
Model Predictive Heuristic Control: Applications
to Industrial Processes.Automatica, 14, 1978, pp.
413-428.

