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1 Introduction 
Process Industries for instance chemical 
and petrochemical plants have special 
specifications that application of simple 
control algorithms couldn't cover the total 
aspects of the control and economic 
demands. Some of these specifications are 
nonlinearity, interaction, numerous 
variables and presence of disturbances. 
Whereas application of Advance Process 
Control in an automated hierarchical 
structure for these systems besides of 
obtaining the control and product 
requirements, has involved greatly 
economic benefits. 
    Backbone of any APC (Advance 
Process Control) method is Model 
Predictive Control [1]. MPC  (Model 
Predictive Control) refers to a class of 
algorithms that compute a sequence of 
manipulated variable adjustments in order 
to optimize the future behavior of a plant. 
Originally developed to meet the 
specialized control needs of power plants 
and petroleum refineries, MPC technology 
can now be found in a wide variety of 
application areas including chemicals & 
petrochemical, food processing, 
automotive, aerospace, metallurgy, and 
pulp and paper [2,3,4]. Several authors 
have published excellent reviews about 
MPC theoretical issues [5, 6]. [7] Provides 

a vendor's perspective on industrial MPC 
technology and summarizes likely future 
developments.  
   Weakness of linear models in 
considering the nonlinearity of systems 
caused studying the application of 
nonlinear models in MPC' considered to 
be started from 1990's. Until now many 
implementations of MPC & NMPC 
(Nonlinear MPC) methods have been 
reported. [2,4] present an overview of 
commercially available MPC & NMPC 
technologies.  
Adaptation of linear models with 
occurrence of new conditions according to 
variety of operating points in nonlinear 
systems is a solution for extending linear 
methods in design of controllers for 
nonlinear systems. 
 In this paper we concentrate on a CSTR as 
a highly nonlinear system. Our model 
predictive controller is based on an 
ARMAX (Auto Regressive Moving 
Average with external Input) model when 
its parameters are changed properly 
according to the new operating conditions. 
Measurable disturbances are considered in 
design of the controller. The adaptation 
mechanism is based on identification of 
the parameters of the linear model 
according to the inputs, outputs and 

Abstract: -An adaptive predictive controller has been designed in this paper. The model 
predictive controller design is based on the linear model and by employing adaptation 
mechanism; it can be applied to the nonlinear systems. Identification of the linear model 
parameters in each sample time from a recursive least square method is the suggested 
technique for adaptation. This method is applied to a CSTR1 as a nonlinear MIMO system with 
considering measurable disturbances. Simulations are performed for normal operating 
condition and a case in which system is caused with disturbance.  
 
Key-words:-Model Predictive Control, Adaptive, CSTR 

mailto:h_bolandi@iust.ac.ir
http://www.iust.ac.ir
mailto:m_khodabandeh@ee.iust.ac.ir
http://www.iust.ac.ir
mailto:s_bahmanpour@ee.iust.ac.ir
http://www.iust.ac.ir


measurable disturbances values with 
recursive least squares (RLS). 
In section 2 the mentioned adaptive model 
predictive controller is proposed. A review 
of model predictive control with 
considering measurable disturbances is 
presented in section 2.1. Adaptation 
mechanism is explained in 2.2. In section 
3 model of the selected Continuous Stirred 
Tank Reactor is introduced. Simulation 
results are presented in section 4 which 
shows the validity of the designed 
algorithm and discussions on the 
application of the mentioned scheme on 
CSTR. Finally Section 5 draws some 
concluding remarks. 
 
2 Adaptive Model Predictive 
Control  
 
2.1 Model Predictive Control 
The concept of model predictive control 
involves the repeated optimization of a 
performance objective such as (1) over a 
finite horizon extending from a future time 
N1 up to a prediction horizon N2. Given set 
points r(k+j), a reference ω(k+j) which is 
produced by pre-filtering and is used 
within the optimization of the MPC cost 
function. The control variable u(k+j), over 
the control horizon Nu , is obtained from 
solving the cost function. 
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(1) 
i)(t +ŷ  is the predicted outputs vector and 

u∆ is the increment of input vectors. R 
and Q are the weighting matrix and N1,N2 
and Nu must be tuned as controller 
parameters. 
 Suppose an ARMAX model in the form of 
(2). Which is given in this equation y,u,w,ξ 
are the output vector, input vector, 
measurable disturbance and noise vectors 
respectively. A,B,D,C are the 
corresponding matrix polynomials. I(t) is 
an assumed constant disturbance and Dd is 
its matrix polynomial. I(t) and Dd are used 
for modeling the constant terms that are 
generated by linearization of the nonlinear 
system.   
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(C is assumed identity matrix i.e. white 
noise). 
In the following analysis we assume that 
prediction equations derived to the free 
and forced response after solving a 
Diophantine equation. The following 
method is very similar to the Generalized 
Predictive Control (GPC). These equations 
are obtained after some extensions of the 
equations from [3]. 
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Equation (3) can be represented in a 
compressed form as (4): 
 

fHWGUY ++=ˆ                                          
(4) 
 
All terms of the (4) aren’t used in (1) but a 
portion of them, based on prediction and 
control horizons as (5) can be used. 
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With considering (5) in the index of 
performance as in (1) and solving it, 
increment of the control input is achieved 
as (6): 
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    At the same time (6) can be solved by 
Quadratic Programming while constraints 
on system variables exist. 
 
2.2 Adaptation Mechanism for 
Nonlinear Systems 
For using the equations in section 2.1 for 
nonlinear systems we must linearize the 
nonlinear describing equations of the 
system in each step time. This scheme is 
very efficient. In order to increase the 
speed of the controller, linearization could 
be performed in greater time scales but in 
this case accuracy of the linear model may 
be reduced according to the selected time 
scales. After linearization and 
discretization of the linear state space 
model, it is converted to the transfer 
function representation as an ARMAX 
model form. In this case we have a model 
as form as (2) with measurable 
disturbances and a constant term as 
transfer function of the assumed constant 
disturbance that be generated from 
linearization. Now equations (1-6) can be 
used for calculation of the control input 
and this procedure is repeated in each time 
step [8]. This approach is time consuming 
and if an accurate model of system is not 
available or system parameters are time 
varying, this approach can not work 
properly. Furthermore equations (1-6) can 
be used in an adaptive model predictive 
controller.  

 
 

Fig. (1); Block diagram of the controller and CSTR 
 
Therefore, identification of the system 
transfer function parameters could be done 
by an adaptation mechanism. In this case 
parameters of the system are identified 
with well known recursive least squares 
method [9].   
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Where e(t) is a white noise vector. 
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In each step time new parameters of the 
linear transfer function is calculated by 
RLS with considering the previous inputs, 
outputs and measurable disturbances. (10), 
(11) represent the RLS equations for 
estimating the parameters. In these 
equations, θ̂ is the estimated parameters 
matrix, p is the error covariance matrix 
and λ is forgetting factor. 
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    These parameters are used in the MPC 
block. Linearization in first steps is 
performed to obtain the appropriate initial 
values in identification algorithm. If 
number of model parameters is many, 
parameter identification causes bad 
modeling and therefore this approach can 
not work properly. 
 
3 A Continuous Stirred Tank 
Reactor  
 
The CSTR system is a highly nonlinear 
process and has several interesting features 
for process control engineers. In the 
jacketed chemical reactor (CSTR) shown 
in Fig. (2), a second-order exothermic 
reaction (2A →  B) takes place, in which 2 
components A react irreversibly and at 
specific reaction rate k to form a product B 
[10]. The reaction rate constant k follows 
the Arrhenius (12). According to this 
equation, the effect of temperature, Tr(t), 
on the specific reaction rate k is usually 
exponential. This exponential temperature 
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dependence represents one of the most 
severe nonlinearities in chemical 
engineering systems. 
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The mathematical model for this CSTR 
involves a mass balance on A, in which 
the flow of moles of component A into the 
system, minus the flow of moles of A out 
of the system, plus the rate of formation of 
moles of A component form chemical 
reactions is equal to time rate of change of 
moles of A component inside system. This 
concept is expressed by (13). The first law 
of thermodynamics puts forward the 
principle of conservation of energy. The 
mathematical model must include an 
enthalpy balance on reacting mass, and an 
enthalpy balance on jacket (water is 
flowing through the jacket). In this case, 
the flow of internal energy into the system, 
minus the flow of internal energy out of 
the system, plus the heat added to the 
system by reaction is equal to the rate of 
change of internal energy inside the 
system. The balance on reacting mass is 
given by (14) and the balance on the jacket 
by (15). For more details about the model 
and its parameters you can refer to [10]. 
Mass Balance on A: 
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Enthalpy Balance on Jacket: 
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Fig (2); Continuous Stirred Tank Reactor  

In this system, we consider the following 
variables will change over time: 
Control Input variables:  
   W (t):     Feed mass flow rate (lb/min) 
   Wj(t):     Water cooling rate at jacket 
(lb/min) 
Outputs: 
   CA(t):  Concentration of reactant A in 
reactor and exit stream (lb/ft3) 
   Tr(t) :      Reactor temperature (oF) 
   Tjo(t):      Outlet jacket temperature (oF) 
Measurable disturbances: 
    CAi(t):   Concentration of reactant A in 
feed   (lb/ft3) 
    Tji(t) :       Inlet jacket temperature (oF) 
    Tri(t) :       Input reactants temperature 
(oF) 
Tracking the desired set points of 
concentration of reactant A and outlet 
jacket reactor temperature is the goal of 
design of predictive controllers. Since 
reactor temperature must be in the safe 
region, it is considered in design of the 
controllers. 
    The model given by (12-15) can be 
expressed as (16). 
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After linearizing equation (16) by Taylor 
series expansion around the operating 
point (17) is obtained. In this situation we 
have a linear state space model: 
 

0)()()()1( NtNtBtAtx +++=+ wux          (17)  
 
A,B,N  are the system matrix, control 
input matrix and measurable disturbance 
input matrix respectively. N0 is a constant 

1×n  matrix (n is number of state variable) 
which will be generated from linearization 
around the operating point because of 
nonzero initial values.  
 



4 Simulation Results 
 
In this section, the designed algorithm is 
applied to the CSTR. The values of CSTR 
parameters are from [10]. 
The CSTR system has 2 outputs, 3 
measurable disturbances and 2 inputs. For 
utilizing the identification method in 
adaptation mechanism, we want to use (7) 
in the RLS algorithm and vectors in φ must 
have same dimension. Here we add a zero 
input as third input and consider Tr as third 
output.  
 
The assumptions for simulations are: 
 
- The process noise is random and applied 
to the input of system with variance 1, 
zero expectation value and amplitude of 
10% of the input control signal. 
(Signal/Noise ratio is constant and equal to 
90%). 
- The measurable disturbances have the 
nominal expectation values and a random 
noise with variance 1, zero expectation 
value and amplitude of 10% of the 
nominal value are added to them. . 
(Disturbance per disturbance noise is also 
constant and equal to 90%). 
- Reference trajectories are exponential 
functions that follow the set points 
smoothly as (18):  
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SP is the set points vector and y0 is the 
output initial value vector.  
-  Set points of this CSTR are: 
CA=3.5955 lb/ft3 

Tjo=120.0222 F°  
-  The Inputs are limited to the [0-1400] 
(lb/min). 
With respect to the system dynamic and 
with a trial and error operation, the 
parameters of the controller are achieved 
as follows: 
 









=








=

====

40000
04000000

,
20
05

sec1,3,1 21

QR

TNNN su
 

 
Fig. (3) Responses of the CSTR after application of 
the adaptive predictive controller. Dashed line is for 

adaptive predictive controller of the nonlinear 
system and dotted line for reference 

 
Fig. (3) illustrates responses of the controller 
that be applied to the CSTR.  

 
Fig. (4); third state (Tr)  

 
Fig.(4) shows Tr as the third state of the 
system. Fig.(5) represents control input 
signals. 
 In this case, the controller works properly. 
Outputs are tracking the set points with less 
than 1% steady state error and Tr also is good. 
If the model of CSTR is affected by 
disturbance or parameters of the system are 
time varying, identification of the model 
parameter is a good solution in consideration 
with linearization but choosing initial values 
for identification of the model parameters are 
important. At hence we obtained initial values 
from linearization for first steps in 
identification. 



 
Fig. (5); Control Input signals  

 
Now we consider the system that its 
measurable disturbances are changed. In 
this case we suppose concentration of 
reactant A in feed is increased 50% (i.e.  
CAi =16.2 lb/ft3) at time t=1500 sec. 
 
Two cases are discussed:  
Case 1: the value of this measurable 
disturbance is changed but the measured 
value of  CAi that be send to the controller 
is as same as before.  
Case 2: the value of this measurable 
disturbance is changed but in this case the 
measured value of CAi is as same as the 
actual value which is applied to the CSTR. 
 

 
Fig. (6); CA & Tjo after application of the adaptive 

predictive controller to the CSTR which its 
measurable disturbance is changed (case 1 & 2). 

Dashed line is for adaptive predictive controller of 
the nonlinear system and dotted line for reference 

 
 Fig.(6) illustrates responses of the CSTR, 
after applying the controller while 
concentration of reactant A in feed is 
increased 50% in two cases. The 

assumptions and controller parameters are 
as same before. After a transient time and 
with a little variation, the controller can 
generate control input signals that cause 
good tracking of the references. The 
controller has good responses in two cases. 
 

 
Fig. (7); Third state (Tr) after application of adaptive 

predictive controller in cases that measurable 
disturbance is changed.  

 
Fig. (7) represents Tr for two mentioned 
cases. Fig. (8) also represents control input 
signals for the controllers in these cases. 
As can be seen in Fig. (6), if measurable 
disturbances are measured well and its 
violations are reported to the controller, 
the responses will be better and the 
reference can be tracked faster. It's 
because of considering the measurable 
disturbances in design of the controller.  

 

 
Fig. (8); Control Input signals (measurable 

disturbance is changed.-cases 1 & 2) 
 

5 Conclusion  
In this paper a linear model predictive 
controller with an adaptation mechanism is 
extended to deal with nonlinear systems. 
The adaptation mechanism is based on 
identification of the model parameters in a 
recursive manner. In this way, the 
controller adapts itself with nonlinear 



model. Furthermore measurable 
disturbances are considered in derivation 
of the model predictive controller.  If an 
accurate model of a system is available, 
linearization is an efficient solution but it 
is time consuming. When parameters of 
the system are unknown, then 
identification of linear system could be 
extended to nonlinear system. This method 
is faster but its efficiency is reduced by 
increasing the number of parameters. Also 
selection of initial value for identification 
of model parameters is important. For 
identification of model parameters we 
obtained initial values of parameters by 
linearization the nonlinear model in first 
steps and then we employ adaptation 
mechanism. 
The adaptive predictive controller is 
applied to a CSTR as a nonlinear MIMO 
system and the results are discussed in 
normal case and two cases that measurable 
disturbances are changed. In case 1 this 
change isn't reported to the controller but 
in case 2 is reported.  In these cases 
controller is working properly. In case 2, 
controller works better than case 1. 
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