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Abstract: -An adaptive predictive controller has been designed in this paper. The mode
predictive controller design is based on the linear modd and by employing adaptation
mechanism; it can be applied to the nonlinear systems. Identification of the linear mode
parameters in each sample time from a recursive least square method is the suggested
technique for adaptation. This method is applied to a CSTR" as a nonlinear MIMO system with
considering measurable disturbances. Simulaions are performed for normal operating
condition and a case in which system is caused with disturbance.
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1 Introduction

Process Industries for instance chemical
and petrochemical plants have specia
specifications that application of simple
control algorithms couldn't cover the total
aspects of the control and economic
demands. Some of these specifications are
nonlinearity, interaction, nNuMerous
variables and presence of disturbances.
Whereas application of Advance Process
Control in an automated hierarchical
structure for these systems besides of
obtaining the control and product
requirements, has involved greatly
economic benefits.

Backbone of any APC (Advance
Process Control) method is Modd
Predictive Control [1]. MPC  (Modd
Predictive Control) refers to a class of
algorithms that compute a sequence of
manipulated variable adjustments in order
to optimize the future behavior of a plant.
Origindly devdoped to mest the
specidized control needs of power plants
and petroleum refineries, MPC technology
can now be found in a wide variety of
application areas including chemicals &
petrochemical, food processing,
automotive, aerospace, metallurgy, and
pulp and paper [2,3,4]. Severa authors
have published excellent reviews about
MPC theoretical issues [5, 6]. [7] Provides

a vendor's perspective on industrial MPC
technology and summarizes likey future
devel opments.

Weakness of linear modes in

considering the nonlinearity of systems
caused studying the application of
nonlinear models in MPC' considered to
be started from 1990's. Until now many
implementations of MPC & NMPC
(Nonlinear MPC) methods have been
reported. [2,4] present an overview of
commercially available MPC & NMPC
technologies.
Adaptation of liner models with
occurrence of new conditions according to
variety of operating points in nonlinear
systems is a solution for extending linear
methods in design of controllers for
nonlinear systems.

In this paper we concentrate on a CSTR as
a highly nonlinear system. Our modd
predictive controller is based on an
ARMAX  (Auto Regressive Moving
Average with external Input) model when
its parameters are changed properly
according to the new operating conditions.
Mesasurable disturbances are considered in
design of the controller. The adaptation
mechanism is based on identification of
the parameters of the linear mode
according to the inputs, outputs and
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measurable disturbances values with
recursive least squares (RLS).

In section 2 the mentioned adaptive model
predictive controller is proposed. A review
of modd predictive control  with
considering measurable disturbances is
presented in section 2.1. Adaptation
mechanism is explained in 2.2. In section
3 mode of the sdected Continuous Stirred
Tank Reector is introduced. Simulation
results are presented in section 4 which
shows the validity of the designed
algorithm and discussions on the
application of the mentioned scheme on
CSTR. Findly Section 5 draws some
concluding remarks.

2 Adaptive Mode Predictive
Control

2.1 Model Predictive Control

The concept of model predictive control
involves the repeated optimization of a
performance objective such as (1) over a
finite horizon extending from a future time
N3 up to a prediction horizon N,. Given set
points r(k+j), a reference w(k+j) which is
produced by prefiltering and is used
within the optimization of the MPC cost
function. The control variable u(k+j), over
the control horizon N, , is obtained from
solving the cost function.

N, N,
J= 4+ o+ +& |aut+j- 1)
j=1

i=N;
@D
g(t +i) is the predicted outputs vector and
Duis the increment of input vectors. R
and Q are the weighting matrix and Ni,N,
and N, must be tuned as controller
parameters.
Suppose an ARMAX modd in the form of
(2). Which is given in this equation y,u,w,X
are the output vector, input vector,
measurable disturbance and noise vectors
respectively. AB,D,C are the
corresponding matrix polynomids. I(t) is
an assumed constant disturbance and Dd is
its matrix polynomial. I(t) and Dd are used
for modeling the constant terms that are
generated by linearization of the nonlinear
system.

A(z)y(t) =B(z u(t - D + D(z " )w(t) 2
+Dd(z )1 (t) + C(z H)x(t)

Where

A=, +AZ +L+A Z™

B(z')=B,+Bz'+..+B 7™

D(z') =D, +D,z*+..+D, "™

Dd(z")=Dd, +Dd,z " +...+ Dd, z "™

C(zY) =1, +Cz*+..+C z "™

(C is assumed identity matrix i.e. white
Noise).

In the following analysis we assume that
prediction equations derived to the free
and forced response dfter solving a
Diophantine equation. The following
method is very similar to the Generdized
Predictive Control (GPC). These equations
are obtained after some extensions of the
equations from [3].

JE+D =G, (Zu(t) +H;(Z ")t +D +f,

Jt+2) =G, (ZHu(t+D+H ()t +2) +f,

Jt+N,) =G (Zult+ N, - D +H; (2 Hw(t +Np) +fy,

©)

Equation (3) can be represented in a
compressed form as (4):

V =GU+HW +f

(4)

All terms of the (4) aren’t used in (1) but a
portion of them, based on prediction and
control horizons as (5) can be used.

?le =G Nioy u N, +H le\/\/Nlz +le2 (5)
Vo =[IEEN)T SN DT o 9N,
UNuz[u(t)T ut+)T - ut+N3_1)T]T

W, =[wt+N)T Wit N 4T N

R R

With considering (5) in the index of
performance as in (1) and solving it,
increment of the control input is achieved
as (6):

DU, = (sz QG + R)'lGImQ(r SHWW,, - f)

(6)



At the same time (6) can be solved by
Quadratic Programming while constraints
on system variables exist.

2.2 Adaptation Mechanism for
Nonlinear Systems

For using the equations in section 2.1 for
nonlinear systems we must linearize the
nonlinear describing eguations of the
system in each step time. This scheme is
very efficient. In order to increase the
speed of the controller, linearization could
be performed in greater time scales but in
this case accuracy of the linear modd may
be reduced according to the sdected time
scales. After linearization and
discretization of the linear state space
modd, it is converted to the transfer
function representation as an ARMAX
model form. In this case we have a modd
as form a (2) with measurable
disturbances and a constant term as
transfer function of the assumed constant
disturbance that be generated from
linearization. Now equations (1-6) can be
used for calculation of the control input
and this procedure is repeated in each time
step [8]. This approach is time consuming
and if an accurate model of system is not
available or system parameters are time
varying, this approach can not work
properly. Furthermore equations (1-6) can
be used in an adaptive mode predictive
controller.

Measurable
Disturbdhce  |mmeasurable

Parageters Disturbances
Ref q rV
erence
utput
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Fig. (1); Block diagram of the controller and CSTR

Therefore, identification of the system
transfer function parameters could be done
by an adaptation mechanism. In this case
parameters of the system are identified
with wedl known recursive least sguares
method [9].

y) =q'j +elt)
()

Where g(t) is awhite noise vector.

JO=Fyt-97-yt- 27 - yt- n),
utt- )Tut- 27, ut- n -7
,\N(t)T,W(t' l)T,“',W(t' nd)Tvlvlv"'vl]T

o (8
a=[AA,A,BB, B, DD, D, DdyDd, - Dd, [
9)

In each step time new parameters of the
linear transfer function is calculated by
RLS with considering the previous inputs,
outputs and measurable disturbances. (10),
(11) represent the RLS equations for
edimating the parameters. In  these
equations, qis the estimated parameters
matrix, p is the error covariance matrix
and | isforgetting factor.

qt) =q(t-n+

(4 (t- D p(t- 2§ (t- D) pit- 2) ¢- DIy®-4t- D] (t-
(10)

p(t-1)=|3p(t-2)-

Ii(l +j (t- D p(t- 2) (t- D) p(t- 2) (- D (- )7 p(t-
(12)

These parameters are used in the MPC
block. Linearization in first steps is
performed to obtain the appropriate initial
values in identification algorithm. |If
number of modd parameters is many,
parameter  identification causes bad
modeling and therefore this approach can
not work properly.

3 A Continuous Stirred Tank
Reactor

The CSTR system is a highly nonlinear
process and has several interesting features
for process control engineers. In the
jacketed chemica reactor (CSTR) shown
in Fig. (2), a second-order exothermic
reaction (2A® B) takes place, in which 2
components A react irreversibly and at
specific reaction rate k to form a product B
[10]. The reaction rate constant k follows
the Arrhenius (12). According to this
equation, the effect of temperature, T(t),
on the specific reaction rate k is usually
exponential. This exponential temperature

r



dependence represents one of the most

severe nonlinearities in chemical
engineering systems.
k - koe(Tr+460) (12)

The mathematicd modd for this CSTR
involves a mass balance on A, in which
the flow of moles of component A into the
system, minus the flow of moles of A out
of the system, plus the rate of formation of
moles of A component form chemical
reactions is equal to time rate of change of
moles of A component inside system. This
concept is expressed by (13). The first law
of thermodynamics puts forward the
principle of conservation of energy. The
mathematicad modd must incdude an
enthal py balance on reacting mass, and an
enthalpy balance on jacket (water is
flowing through the jacket). In this case,
the flow of interna energy into the system,
minus the flow of internal energy out of
the system, plus the heat added to the
system by reaction is equal to the rate of
change of interna energy inside the
system. The baance on reacting mass is
given by (14) and the balance on the jacket
by (15). For more details about the model
and its parameters you can refer to [10].
Mass Balanceon A:

I C, W

—(C, - C,)-kC? (13)

o =y (G- G- KCI
Enthal py Balance on reacting mass:
m _w UA (-DH) 2

—(T.-T)- T-T kC
ﬂ ( ri r) VGC( r ]o)+ GC A
(14)

Enthal py Balance on Jacket'
T, _ UA w (15)
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Fig (2); Continuous Stirred Tank Reactor
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In this system, we consider the following
variables will change over time;
Contral Input variables:

W (t): Feed mass flow rate (Ib/min)

W;(t): Water cooling rate at jacket
(Ib/min)
Outputs:

Ca(t): Concentration of reactant A in
reactor and exit stream (Ib/ft?)

T«(t): Reactor temperature (°F)

Tio(t):  Outlet jacket temperature (°F)
Measurabl e disturbances:

Cai(t):  Concentration of reactant A in
feed (Ib/ft°)

Ti(t):  Inlet jacket temperature (°F)
Tr(t) : Input reactants temperature
(F)

Tracking the desired set points of
concentration of reactant A and outlet
jacket reactor temperature is the goal of
design of predictive controllers. Since
reactor temperature must be in the safe
region, it is considered in design of the
controllers.

The modd given by (12-15) can be
expressed as (16).

ix(t) _
Tt

= f(x(t),u(t),w(t)) (16)

Where:

(t)u &€,
x®) =7 (1) dw(ty =1, ¢
STJo(t)I‘:I STJII‘:I
eW(t)u

t:“ t
. gra“ ()]

After linearizing equation (16) by Taylor
saries expansion around the operaing
point (17) is obtained. In this situation we
have a linear state space model:

X(t +1) = AX(t) + Bu(t) + Nw(t) + N, (17)

AB,N are the system matrix, control
input matrix and measurable disturbance
input matrix respectively. Ng is a constant
n- 1 mMatrix (n is number of state variable)
which will be generated from linearization
around the operating point because of
nonzeroinitial values.



4 Simulation Results

In this section, the designed algorithm is
applied to the CSTR. The values of CSTR
parameters are from [10].

The CSTR system has 2 outputs, 3
measurable disturbances and 2 inputs. For
utilizing the identification method in
adaptation mechanism, we want to use (7)
in the RLS agorithm and vectors in ¢ must
have same dimension. Here we add a zero
input as third input and consider T, as third
output.

The assumptions for simulations are;

- The process noise is random and applied
to the input of system with variance 1,
zero expectation vaue and amplitude of
10% of the input control signal.
(Signal/Noise ratio is constant and equal to
90%).

- The measurable disturbances have the
nominal expectation values and a random
noise with variance 1, zero expectation
vaue and amplitude of 10% of the
nomina value ae added to them.
(Disturbance per disturbance noise is aso
constant and equal to 90%).

- Reference trgectories are exponential
functions that follow the set points
smooathly as (18):

w(t) =SP+(y, - SP)e™ ,a =0.005(/,)(18)

SP is the set points vector and y, is the
output initial value vector.

- Set points of this CSTR are:

Ca=3.5955 Ib/ft®

Tj,v=120.0222 °F

- The Inputs are limited to the [0-1400]
(Ib/min).

With respect to the system dynamic and
with a trial and error operation, the
parameters of the controller are achieved
asfollows:
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Fig. (3) Responses of the CSTR &fter application of
the adaptive predictive controller. Dashed line is for
adaptive predictive controller of the nonlinear
system and dotted line for reference

Fig. (3) illustrates responses of the controller
that be applied to the CSTR.
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Fig.(4) shows T, as the third state of the
system. Fig.(5) represents control input
signals.

In this case, the controller works properly.
Outputs are tracking the set points with less
than 1% steady state error and T, also is good.

If the mode of CSIR is affected by
disturbance or parameters of the system are
time varying, identification of the mode
parameter is a good solution in consideration
with linearization but choosing initial values
for identification of the modd parameters are
important. At hence we obtained initial values
from linearization for first stegps in
identification.
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Fig. (5); Control Input signals

Now we consider the system that its
measurable disturbances are changed. In
this case we suppose concentration of
reactant A in feed is increased 50% (i.e.
Cai =16.2 Ib/ft®) at time t=1500 sec.

Two cases are discussed:

Case 1. the vdue of this measurable
disturbance is changed but the measured
value of C,; that be send to the controller
is as same as before.

Case 2. the vdue of this measurable
disturbance is changed but in this case the
measured value of C,; is as same as the
actual vauewhichis applied to the CSTR.

1,

assumptions and controller parameters are
as same before. After a transient time and
with a little variation, the controller can
generate control input signals that cause
good tracking of the references. The
controller has good responses in two cases.

T, 6

) o0 E 200 o0

Fig. (7); Third state (T,) after application of adaptive
predictive controller in cases that measurable
disturbance is changed.

Fig. (7) represents T, for two mentioned
cases. Fig. (8) also represents control input
signals for the controllers in these cases.

As can be seen in Fig. (6), if measurable
disturbances are measured well and its
violations are reported to the controller,
the responses will be beter and the
reference can be tracked faster. It's

| because of considering the measurable
g\\ disturbances in design of the controller.
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Fig. (6); Ca & Tj, after gpplication of the adaptive
predictive controller to the CSTRwhich its
measurable disturbance is changed (case 1 & 2).
Dashed line is for adaptive predictive controller of
the nonlinear system and dotted line for reference

Fig.(6) illustrates responses of the CSTR,
after applying the controller while
concentration of reactant A in feed is
increased 50% in two cases. The

3000

disturbance is changed.-cases 1 & 2)

5 Conclusion

In this paper a linear modd predictive
controller with an adaptation mechanism is
extended to ded with nonlinear systems.
The adaptation mechanism is based on
identification of the modd parameters in a
recursive manner. In this way, the
controller adapts itsdf with nonlinear



modd . Furthermore measurable
disturbances are considered in derivation
of the modd predictive controller. If an
accurate model of a system is available,
linearization is an efficient solution but it
is time consuming. When parameters of
the system ae  unknown, then
identification of linear system could be
extended to nonlinear system. This method
is faster but its efficiency is reduced by
increasing the number of parameters. Also
sdection of initial value for identification
of model parameters is important. For
identification of modd parameters we
obtained initid vaues of parameters by
linearization the nonlinear modd in first
steps and then we employ adaptation
mechanism.

The adaptive predictive controller is
applied to a CSTR as a nonlinear MIMO
system and the results are discussed in
normal case and two cases that measurable
disturbances are changed. In case 1 this
change isn't reported to the controller but
in case 2 is reported. In these cases
controller is working properly. In case 2,
controller works better than case 1.
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