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Abstract ---In this paper we present a method for 
behavior computation of the magneto static field 
through the permeable thin layers. For the 
determination of induction and magnetic field in any 
point in the space 3D, a formulation in magnetic scalar 
potential is adopted, by applying the finite element 
method on the structure with thin layer and the 
boundary integral method to the surrounding medium. 
We propose two numerical approaches of the fictitious  
magnetic charges introduced on the surface of the thin 
layers.  
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Introduction :  
 
The modeling of the structures with thin layers in order 
to  know the behavior of the magnetic field trough 
their  borders, is the several industrial application 
object (systems of  telecommunications, medical 
imagery, identification and  signatures,...). These 
applications differ in the mode of the magnetic field 
source,  the nature of material composing the thin 
layers and its structure.  We propose an 
electromagnetic system composed of a structure with 
thin layers  and its environment.  This system presents 
an open problem that extends to infinity. We consider 
a structure with thin layer of permeability µ, embedded 
into a magnetic source field Hs. Its thickness (ep) is 
very small than the other dimensions in space R3. A 
cut of the system is represented by figure 1. Some 
work on this same model has summers made with 
other numerical  approaches [1] [2] [3].   
 
Formulation :  
 
The equations that govern it interpret the magneto-
static without current. In any point of the system we 
have . We supposed that the material does 
not comprise any initial  magnetization;  one deduces 
from it that induction and the magnetic  field are 
related to the magnetic polarization induced by the  
relation:   

0=hrot

( )Mhb += 0µ  and we have : 

( ) 0;0 ==+ ssr hhh rotdivµ  

The decomposition of the total magnetic field in hr
 + hs 

is theoretical.  The determination of the magnetic field 
of reaction hr makes it  possible to better highlight the 
results which will be presented.  
 

 
Fig. 1 scheme of a cut of the structure with thin Layers 
 
Subsequently we indicate the field of reaction hr by a 
simple  letter h. Then, the magnetic field derives from 
a scalar potential ϕ  :  ϕgradh = . The unknown 
quantity is the reduced potential magnetic scalar ϕ.  
To establish a variational formulation of the problem 
we use the second property which verifier owes 
magnetic induction :  
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where Ψ is an unspecified function test defines in same 
space as that  of state function ϕ. 
 
A volume Ω with thin layer is characterized by a very 
small thickness ep compared to its other dimensions 
geometrical. Thus, one can confuse the two borders Γ1 
and Γ2 , and ep  becomes a parameter. The two borders 
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Γ1 and Γ2 will be confused at a median border Γ. 
Ω becomes surface Γ   field occupied by the structure 
in R3  of permeability  magnetic µ = µ0 µr. Ωe  
indicates the medium external of  magnetic 
permeability µ0. By holding account that  n is the 
outgoing normal  with Γ  the two integrals relating to 
the two  borders become:   
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The jump of the normal component of the field source 
being  null, the formulation of the interior problem is 
written then : 

Ψ

ΓΓ
∫ ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

+∫ ndgradgrade p
φµγψφ .
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The second term of the integral equation is called term 
of edge.  This stage, it should be noted on the one hand 
that we cannot solve the problem without identifying 
the jump of the normal component of  the magnetic 
field on Γ. On the other hand the solution of the 
interior problem could not be the solution of the 
problem posed in open space R3.  Only the term of 
edge which enables us to take account of the behavior 
of the field in the external medium.  To treat this term 
of edge we first of all will formulate the external 
problem and will express its solution according to the 
traces of the field on the border Γ. The system of 
equations which govern the behavior of the magnetic 
field in the medium external of the structure : 

00 =∆⇒= ϕhdiv  
We indicate by ψ the surface potential on Γ associated 
with  the magnetic field of reaction.  To know the 
function ϕ only on  the border Γ would be enough with 
the determination to ϕ in Ωe, and  thus to the magnetic 
field of reaction in the external medium.  The  problem 
consists in finding a potential ϕ such as:   

esur Ω=∆ 0ϕ  

Γ= surψϕ  
With through Γ, the jump of the normal component of 
magnetic  induction and the jump of the tangential 
component of the magnetic  field are null.  The 
equivalent conditions, imposed on the scalar  potential 
ϕ, are thus:   
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With : q  The magnetic potential can be 
to calculate starting from the  surface density of 

magnetic load q. Indeed, by using the technique of the 
simple potential layer [4], shows that the solution of 
exterior problem can be written in the following 
integral form: 

][ .Mn
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The magnetic charge q, introduced on Γ, are fictitious.   
It is also an intermediate unknown used to couple the 
exterior and the interior problem. To keep the potential 
ϕ like only unknown factor on Γ, we  will have to 
express q according to ϕ :  
 

[ ] ϕϕ Rn =∂∂ . 
Our goal now is to calculate R.    
 
Numerical Implementation :  
 
One proceeds then in the way  indicated below.  One 
adopts a triangular grid on Γ and one associates a value  
ϕi of ϕ for each node i of the grid.  On a triangle, one 

writes:  .  λϕϕ i
i i∑
=

=
3

1

In this work we propose two forms of approximations 
of the  magnetic charges on Γ. In a first time, we take 
the charges like constant functions by triangle.  We  

write then :  .  With qηi
ti i

qq ∑
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A variational formulation of (2) makes it possible to 
carry out the condition of coupling; i.e. to calculate the 
operator R : 

ϕϕλϕϕη II
Ik

i

tk
ii

tk i
ik Bs ∑∑∫∑∫ ===

==Γ

3

1

3

1 3  

qJJk
J Ktj

jk
j

j
tk

k D
yx

dy
qxdyx

ydqdxq ∑∑∫∑∫∫ ∫ =
−

=
−Γ Γ

'

 
where q' is defined like test function :  
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In the matrix form we thus obtain : q = (D-1)B ϕ. 
In the second time, we take the charges like linear 
functions on each  element of the grid.  We write on 

each triangle: . In this case the operator R 

takes another form.  in fact, the  variational 
formulation of  (2)  is written:   
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In the matrix form we thus obtain :  
q = (Q-1)S ϕ, 

where I and J indicate the total numbers of the nodes 
of the  grid. These calculations enables us to write the 
variational  formulation of the problem with only 
unknown ϕ.  The variational formulation  becomes:   

Ψ
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−
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From this formulation, we calculate ϕ and in particular 
his  trace on Γ, and consequently the density of charge 
q.  Once to calculate q, we calculate  ϕ outside the 
structure with thin layers, the magnetic  field in any 
point of the system and the induced magnetization M 
of the structure with thin layers.   
 
Computation Results : 
 

 
µr 

 
X 

 
Y 

 
Z 

 
CHXT 

 
HAX

  0.0     
 

0.0      4.0     40.10     41.08  

  2.0      
 

0.0      3.4     40.02     40.67  

  0.0      
 

2.0      3.4     40.10     40.67  

 
 
1000 

  3.4      
 

0.0      2.0     39.86     39.86  

  0.0      
 

0.0      4.0     40.11     41.23  

  2.0      
 

0.0      3.4     40.02     40.77  

  0.0      
 

2.0      3.4     40.11     40.77  

 
 
10000 

  3.4      
 

0.0      2.0     39.85     
 

39.84  

 
Table I: Comparative table between the analytical and 
numerical values (With the approximation constant 
charges).    The model is a hollow sphere of ray unit 
and Ep thickness.  The  source field is following X 
direction. the values HAY and HAZ  are null.  We did 
not present the values HYT and HZT in order to 
simplify the  table.  These values are almost null.   
 

 
µr 

 
X 

 
Y 

 
Z 

 
CHXT 

 
HAX

  0.0     
 

0.0      4.0     37.82     41.08   
 
1000   2.0      

 
0.0      3.4     37.24     40.67  

  0.0     
 

2.0      3.4     37.87     40.67  

  3.4     
 

0.0      2.0     38.53     39.86  

  0.0     
 

0.0      4.0     38.30     41.23  

  2.0     
 

0.0      3.4     38.16     40.77  

  0.0     
 

2.0      3.4     39.08     40.77  

 
 
10000 

  3.4     
 

0.0      2.0     39.00     
 

39.84  

 
 

Table II: Comparative table between the analytical and 
numerical values (With the approximation linear 
charges). 
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The results presented here are at different altitude Z 
and the magnetic source field is directed along the 
ship. 
 
Conclusion :  
 
Each one of these two approximations corresponds to a  
computer code.  A first numerical implementation is 
carried out with  charges taken constant by triangle on 
the border of the structure with thin layers.  A second  
numerical implementation is carried out with charges 
taken like linear  functions on each triangle of the 
border.  To test the good functioning of these computer 
codes, we considered a spherical model in order to 
make a comparative study between the numerical 
results and analytical calculations (see table I and II). 
The numerical results relating to different models are 
represented by 
the equipotential sketched lines and the lines of the 
magnetic field (see figures).  We notice that the flux of 
the magnetic field is well  channeled by the thin layers, 
the lines of magnetic field are closed again in  the area 
outside.  In addition, the figures show that the lines  
equipotential take forms in conformity with the 
physical form of the  structure of the thin layers.   
 
The principal difficulty of our problem resides 
especially on the calculation of the term of edge.  The 
approach that we proposed proves more flexible and 
less expensive  from point of view  capacity of the 
memory and time CPU.  The calculation  of the term of 

edge, of the model with constant charges, utilizes less  
large matrices compared to those of the model with 
linear charges.  However, the model, with linear 
charges, gives numerical results in  conformity and a 
faster convergence.   
We note that the approach with linear charges on Γ 
gives a good  representation of the magnetic potential 
and in consequence of the  magnetic field on our 
physical system.  This shows a certain  regularity of 
the field, inside and outside the structure with thin 
layers, and checks the  theory concerning the 
conformity of the magnetic field in the space of  the 
acceptable fields.   
This code can be with the profit of several  
applications we can project calculations on other fields 
such as the  magnetic shielding and magnetic 
compatibility.   
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