
Path Planning For Manipulator Robots 
In Cluttered Environments 

 
SAMIR LAHOUAR SAID ZEGHLOUL LOTFI ROMDHANE 

Laboratoire de Mécanique 
des Solides 

Laboratoire de Mécanique 
des Solides 

Laboratoire de Génie 
Mécanique 

UMR: 6610 CNRS UMR: 6610 CNRS Ecole Nationale d’Ingénieurs 
Bd Pierre et Marie Curie BP 
30179, 86962 Futuroscope 

chasseneuil Cedx 

Bd Pierre et Marie Curie BP 
30179, 86962 Futuroscope 

chasseneuil Cedx 
Monastir 5019 

FRANCE FRANCE  TUNISIA 
          

 
 

Abstract: - In this paper we propose a new path planning method for a robot manipulator in a cluttered static 
environment, based on lazy grid sampling. Grid cells are built while searching for the path to the goal configuration. 
The proposed planner acts in two modes. A depth mode while the robot is far from obstacles makes it evolve toward its 
goal. Then a width search mode becomes active when the robot gets close to an obstacle, and it ensures the shortest 
path to go around an obstacle. This method reduces the gap between pre-computed grid methods and lazy grid 
methods. No heuristic function is needed to guide the search process. An example dealing with a robot in a cluttered 
environment is presented to show the efficiency of the method. 
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1   Introduction 
Path planning is an important issue in robotics. People 
recently are using randomized sampling based motion 
planners. Although these planners give remarkable 
results with many degrees of freedom (DOF), they are 
not complete by the way they use random landmarks to 
describe the configuration space. Examples of these 
methods are: Randomized path planner [1], probabilistic 
roadmap planners [2-6], Ariadne’s Clew [7], Rapidly 
exploring Random Trees [8]. 
     Since the introduction of the idea of using the 
configuration space to resolve path planning problems 
by Lozano-Pérez and Wesley in 1979 [9], almost all later 
works used configuration space called C space. In 
configuration space, the robot is reduced to a point 
representing its joint variables. Obstacles are 
transformed to a set of points that correspond to 
configurations where the robot is in collision with these 
obstacles. This set of points is called C space obstacles. 
C free space is the set of robot configurations that do not 
collide with any obstacle. Path planning consists of 
finding a path in the C free space from an initial point to 
a goal point. 
     The most difficult problem is how to represent the C 
free space which is equivalent to representing the C 
space obstacles. 
      Constructing explicit representation of C free space is 
very hard and needs a great running time especially if the 
number of primitives of robot and obstacles is big [10-

12]. For that reason, sampling based approaches are 
proposed.  There are different kinds of sampling based 
approaches: cell decomposition [13], grid based 
approaches [14-15], randomized planners. [1-8]  
      Probabilistic roadmap planners have been successful 
in many kinds of path planning problems especially in 
applications involving robots with many degrees of 
freedom. However they have a major problem in finding 
valid configurations in tight areas which makes them 
impractical in cluttered environments. Some methods 
where proposed to solve that problem, such as using the 
workspace medial axis[16]. In that method the medial 
axis of the workspace is generated and used in order to 
find configurations in tight regions.    
      In grid based approaches the C space is discretized to 
a sufficiently fine resolution. A collision detection 
method is used to decide whether a cell is in C free space 
or not, which creates a bitmap of C space. To find a path, 
a classical AI search technique is used. 
      Lengyel et al. [14] used a dynamic programming 
technique to find a path in 3 dimensional C space. 
However, in general this kind of approach is limited to 
lower dimensions since the number of resultant grid cells 
grows exponentially with the number of DOF and the 
resolution required to solve the problem. 
      Kondo planner [15] is based on the fact that it is 
possible to find a solution without visiting a large 
portion in the grid. Collision checking is delayed until a 
cell is needed to be checked. In that manner, the 
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expensive processing step is avoided. A cost, f(c), is 
used in order to direct the search in the grid. 
      The cost f(c) is composed of two parts f(c)=g(c)+h(c) 
where g(c) is the standard cost-to-come and h(c) is a 
heuristic weighted sum of squares cost. The efficiency of 
the planner depends strongly on the heuristic used. The 
heuristic itself may be adapted for a kind of problems 
but not for another.  
      In our approach, we propose to compute only cells 
used to find the path and we use constraints in order to 
consider whether a cell is accessible or not, which 
enables us to use a bigger step in the grid. If we are far 
from obstacles we use only the distance to the goal in 
order to choose the cell to compute. If we are near an 
obstacle, we construct all the cells in order to find the 
best way to avoid this obstacle. 
     The planner we propose is based on the alternation of 
two searching modes. The first is a depth search mode 
active when the robot is far from obstacles, so it evolves 
toward its goal. The second is a width search mode when 
the robot is near an obstacle it permits to find the best 
way to avoid the obstacle. 
 
 
2   Construction Of The C Space  
A classic global method using a grid checks all its cells 
for collision before starting to search for a path. The 
number of the grid cells grows exponentially according 
to the number of DOFs of the robot. And in the same 
way, the time and the memory space required to 
compute and store the grid increases. While if the step of 
the grid is raised in order to reduce the number of cells, 
it is not certain to find a path without collision between 
two neighboring cells. For these reasons, we use the 
constraints proposed by [17] which in one hand makes 
the path between two neighboring cells in the C free safe 
even if the step is quite large, and in the other hand 
speeds up the collision checking process as the 
constraints computed in a cell are useful to check all the 
neighboring cells. The constraints calculated in a cell 
allow us to judge whether a path exists to a neighboring 
cell or not. Therefore, the constraints calculating process 
is equivalent to 3N-1 times the collision checking 
process. As a cell has 3N-1 neighbors. Where N is the 
number of DOF of the robot. 
      Fig. 1 shows a PUMA robot placed next to an 
obstacle. The constraint corresponding to that obstacle, 
as defined by [17], is written in that manner   
 

1 1 0/V .n (x R R sd dξ∈ ≤ − )   (1) 
 
 Where: 

1x  is the nearest point in the robot to the obstacle. 

1 1 0/Vx R R∈  is the velocity of the point 1x . 

ξ  is a positive factor. 
d  is the distance between the robot and the obstacle. 

sd  is the security distance that the robot should not go 
beyond. 
     We consider  the Jacobian matrix of the robot 

in point 
1

J ( )x q

1x  and q∆  the configuration variation between 
two cells in the grid, we write the constraint as follow   
 

1
J ( ) .n ( )x q q d dsξ∆ ≤ −  (2) 
 
 Which can be written as: 
 

1

TJ ( )n. ( )x sq q d dξ∆ ≤ −       (3) 
 
  

 

Fig. 1 Distance between a robot and an obstacle 
 
     In our approach we do not construct the entire grid, 
representing the C space, but we only construct the cells 
necessary to find the path to the goal position.  If the 
robot environment is static, we can save the constructed 
cells to speed up the planning of other paths reaching 
other goals. Our planner uses two modes the first makes 
the robot evolve to its goal position if there is no 
obstacle that obstructs its way and the second mode is 
active near the obstacles and enables the robot to find the 
best way to avoid them.  This latter mode is the most 
important as it needs to generate all the cells near the 
obstacle until it is avoided. For this reason, we do not 
have to store all the cells but we just store the cells near 
the obstacles which are sufficient to describe the C free 
space.  
 
 
3   The Proposed Algorithm  
In the following subsections we introduce some notions 
necessary for our approach. 
 
 

1 1 /V x R∈
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3.1 The Cell Class 
The algorithm we propose is based on a “Cell” class in 
terms of object oriented programming. A cell object is 
composed of different properties:  
 
3.1.1   Pointer to the parent cell  
As the grid is constructed while searching for the path 
from the initial configuration to the goal configuration, 
the first cell is the initial configuration it takes a NULL 
value. Then an already constructed cell is chosen 
according to the mode of the planner, the non-collision 
constraints are calculated for that cell and verified for the 
neighboring cells that have not been yet constructed. The 
cells verifying the constraints have a pointer to the cell 
used to construct them. If the goal cell is reached it just 
takes going back through the pointed cells to find the 
path between the goal and the initial cells. 
 
3.1.2   A configuration defining a posture of the robot 
Each cell corresponds to a point in the C space. If a cell 

configuration is written as 
T1 1

1 1 N...q q q⎡ ⎤= ⎣ ⎦   where 

N is the number of DOF of the robot. And let  be the 
step of the grid. The neighboring cells are defined as the 
configurations belonging to the following set: 

q∆

 
( ) { }{ }T1 1

1 1 1 1Vic( )= ... ; ,..., 1,0,1 /(0,...,0)N
N N Nq q q s q q s q s s⎡ ⎤= + ∆ + ∆ ∈ −⎣ ⎦

(4) 

 
3.1.3   A distance to the goal 
It represents the distance between the goal configuration 
and the cell configuration. This distance allows the 
planner’s first mode to choose the closest cell to the goal 
configuration. While the robot is far from obstacles, the 
shortest path to the goal configuration is the straight line 
in C space. 
 
3.1.4   A boolean “collision” variable  
It takes false if the cell verifies the constraints and true if 
it does not. 
 
3.1.5   A boolean “computed” variable  
Used by the planner in order to know whether the cell 
has already been used to search for the path or not. 
 
3.1.6   A boolean “near an obstacle” variable  
Used by the second mode of the planner allowing it to 
stay stuck to the obstacle while performing its width 
search in order to find the best direction to go around the 
obstacle. 
 
 
3.2 Queue 
Another important item in our approach is the Queue Q, 
which is defined as an ordered set of cells. The first cell 

in the Queue is named head and denoted h(Q). While the 
last cell is the tail of the Queue and denoted t(Q). If the 
Queue is empty we write . h(Q)=t(Q)=∅
 In order to handle the Queue Q, we use some operators 
that we will define next. 
  adds the cell  to the head of Q. +

1h (Q,c ) 1c
  adds   to the tail of Q. +

1t (Q,c ) 1c
  removes the head cell from Q. -h (Q)
  removes the tail cell from Q. -t (Q)
 
 
3.3 The Stop Condition 
We define the stop condition as the condition for which 
we judge that the goal position have been found. We 
write this condition as follows  
 

goalq q q− < ∆       (5) 

 
Where goalq  is the goal configuration, q  is the 
configuration of the cell verifying the stop condition and 

q∆  is the step of the grid. 
 
 
3.4 Algorithm 
The algorithm outlined in fig. 2 begins by constructing 
the initial cell in step 1. It sets the parent pointer to 
NULL and evaluates the distance to goal. The algorithm 
uses a variable c representing the cell searched by the 
algorithm. ℵ  is the set of explored cells and 1ℵ  is the 
set of unexplored cells in the vicinity of cell c. 
      Step 6 computes non-collision constraints using 
distances between obstacles and robot parts evaluated in 
the posture defined by cell c. 
      Steps 8 to 13 construct unexplored cells in the 
vicinity of cell c. For each cell the parent pointer is set to 
c, the distance to goal is evaluated and the non-collision 
constraints are verified. A cell is considered a collision if 
it does not verify constraints given by eq. (3). 
      Step 15 determines the nearest cell to the goal in the 
vicinity of c, using the distance to goal already 
evaluated. If that cell is not an obstacle, it is placed in 
the head of the queue Q by step 17. This makes the 
planner perform a depth search since there is no obstacle 
bothering the robot. Whereas if the cell computed by 
step 15 is a collision, all non-collision cells in the 
vicinity of c and close to collision cells are placed in the 
tail of the queue Q by step 22. Which makes the planner 
perform a depth search till the obstacle is bypassed.  
      Step 23 removes from the queue Q all cells, for 
which their vicinity has been already explored and sets 



their computed property to true, so they do not return to 
the queue when the algorithm evolves. 
 

1. Construct initial cell  1c
2. Set  1c=c
3. Let { }1cℵ=  

4. While  and c does not satisfy 
the stop condition do 

c ≠ ∅

5.  c.computed=true 
6.  Compute non-collision 
constraints for the configuration represented by 
the cell c 
7.   1 vic(c)\ℵ = ℵ
8.  For each cell  do 2 1c ∈ℵ
9.   Set c2.parent = c 
10.   Evaluate 
c2.distance_to_goal 
11.   Verify the non-
collision constraints and determine c2.collision 
12.   Set c2.computed to 
false 
13.  End for 
14.   1ℵ=ℵ∪ℵ
15.  Choose c3  in  with the 
minimal distance to goal 

1ℵ

16.  If c3.collision=false then 

17.     +
3h (Q,c )

18.  Else (c3.collision=true) 
19.   For each 

 such as c2c vic(c∈ )

ℵ

2.collision=true do 
20.    For each 

 set
 c .near_an_obstacle=true 

3 2c vic(c )∈ ∩
3

21.   End for 
22.   For each 

 such as c2c vic(c)\Q∈ 2.Near_an_obstacle 
= true and c2.collision=false and 
c2.computed=false      

 do  +
2t (Q,c )

23.   For each  

such as 2   remove c

2c Q∈
vic(c ) ⊂ℵ 2 from the 

Queue Q and set c .computed=true 2
24.  End if 
25.   c=h(Q)
26.   -h (Q)
27. End while 

 
Fig. 2 Pseudo-code of the method 

 
     The search procedure is stopped when a cell verifying 
the stop condition is found and the path is done by 
joining this cell to the initial cell by going back throw 

the parent cells using the pointer of each cell. The 
procedure can also be stopped if the Queue Q is empty, 
in that case there is no possible path for the chosen 
resolution of the grid.  
 
 
4   2D Example 
In order to illustrate the proposed algorithm we give a 
2D example, of a 2R robot (Fig. 3) evolving among 
point obstacles. We make simulations using three point 
obstacles defined by table 1. The start configuration is 

[ ]T20 30sθ = − ° °  and the goal configuration is 

[ ]T40 40gθ = ° − ° . Fig. 4 shows the robot in its starting 
and goal positions and the three point obstacles. We set 
the lengths of the arms of the robot . 1 2 10l l= =
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Fig.3 2R Robot 
 

Start position 

Goal position 

Obstacles

 
 

Fig.4 Path planning consists of moving the robot from 
the start position to the goal position without colliding 

with obstacles 
 
      Fig. 5 shows the C space of the robot, the dark 
regions correspond to C space obstacle. The construction 
order of cells is shown in fig. 6. The algorithm evolves 
toward its goal using the depth-search mode while there 
is no obstacle bothering it. When an obstacle is detected 
the algorithm uses the width-search mode. The algorithm 
overlaps the obstacle in order to find the best direction to 
bypass it. When the obstacle is avoided the depth search 
mode is resumed. 
 
 



Obstacle O1 O2 O3
x  16 2,31 11,8 
y  11 10 2,8 

 
Table 1. 

 

Start 
configuration 

Goal configuration 

 
 

Fig. 5 Config ration Space 
 

u

233 234 235 236
224 225 226 237 240 252
215 216 217 238 241 243 253 358
201 204 205 239 242 244 254 257 359
202 192 180 183 184 245 255 258 261 360
203 193 181 168 171 172 256 259 262 265 361
206 194 182 169 156 159 160 260 263 266 269 362

207 185 170 157 147 150 151 264 267 270 274 363
208 173 158 148 138 139 140 268 271 275 279 364

209 161 149 129 132 133 272 273 276 280 284 365
210 152 130 123 124 125 277 278 281 285 289 366

211 131 111 114 115 282 283 286 290 294 367
134 112 105 106 107 444 287 288 291 295 299 368

113 96 99 100 445 435 292 293 296 300 304 369
116 97 89 90 91 436 431 297 298 301 305 309 370

98 78 79 80 437 424 427 302 303 306 310 314 371
101 70 73 74 425 414 417 307 308 311 315 319

71 64 65 66 426 415 409 410 312 313 316 320
2 5 7 72 58 59 60 416 398 401 402 317 318 321
3 1 8 12 51 52 53 399 390 391 322 323 324
4 6 9 13 17 41 42 400 384 375 325 326 327

10 11 14 18 22 35 36 385 376 328 329 330
15 16 19 23 27 37 386 349 331 332 333

20 21 24 28 32 350 334 335 336
25 26 29 33 351 337 338 339 352

30 31 34 340 341 342 353
38 39 40 48 343 344 345 354
43 44 45 49 355 356 357 392
54 46 47 50 377 378 379 393 403

55 56 57 387 388 389 394 404
61 62 63 395 396 397 405 418
67 68 69 406 407 408 419
75 76 77 86 411 412 413 420
81 82 83 87 461 464 465 421 422 423 438
92 84 85 88 462 457 460 428 429 430 439

93 94 95 463 458 454 432 433 434 440
102 103 104 120 459 455 449 441 442 443
108 109 110 121 456 450 446 447 448
117 118 119 122 451 452 453

126 127 128 144
135 136 137 145
141 142 143 146 165

153 154 155 166 177
162 163 164 167 178 189

174 175 176 179 190 198 212
186 187 188 191 199 213 221

195 196 197 200 214 222 230
218 219 220 223 231 249 346

227 228 229 232 250 347
246 247 248 251 348

383 372 373 374
380 381 382

Generated path

Obstacle cells 

Investigated cells 

 
Fig. 6 Cell ge ration order 

      The algorithm gives the best way to go around the C 

 
 

   Simulation and Results 
 a robotic-oriented-

ne
 

obstacle. The result of the simulation is shown in fig.7. 
Moreover, out of 4891 cells, only 461 cells were 
computed which represents less than 10% of the whole 
workspace. 

5
Simulation has been performed on
Software named SMAR [18]. This software is composed 
of two units: a modeling unit and a simulation unit. The 
Modeling unit is used to generate a model of the robot in 
its environment. The simulation unit is used to simulate 
the motion of the robot in its environment. It contains a 

minimal distance feature we used to implement our 
algorithm. 
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Fig. 7 Results 
 
    Fig. 8 shows the simulation results of a 5 DOF 

ter 

   Conclusion 
presented a new method of path 

cells 

  
ERICC robot carrying a large object and standing in an 
environment containing ladder shaped obstacles.  The 
planner determines the path in 20 steps.  
      The robot is carrying a beam whose length is grea
than the width of the ladder shaped obstacle.  Regular 
local path planners would be stuck in the initial position.  
Our proposed method explores all possible 
configurations capable of going around the obstacle and 
chooses the one that yields the minimum distance to the 
goal.  The sequence of frames shown in Figure 5, show 
the solution found by the proposed planner. In this case 
the total number of cells is 12252303 while the number 
of computed cells is only 220980 which represent less 
than 2% of the whole workspace. 
 
 
6
In this paper we 
planning based on lazy grid methods and searching for 
path without using a heuristic function. This method 
reduces the gap between classic grid methods where all 
the grid cells must be computed before searching for a 
path, and lazy grid methods where the grid is computed 
while searching for the path. The proposed planner is 
very general and is guaranteed to find a path if one exists 
a given resolution. However, this algorithm depends on 
the resolution of the grid. The higher this resolution is, 
the closer the robot can squeeze between obstacles. 
      This method reduces the number of computed 
and gives the best direction to go around a C obstacle. It 
can be combined with quasi-random methods and 
replace the A* searching module. Where quasi-random 
sampling of the C space appears to offer performance 
improvements in path planning [19].  
 



 

 

 

 
Fig. 8 Results 
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