Path Planning For Manipulator Robots
In Cluttered Environments

SAMIR LAHOUAR
Laboratoire de Mécanique
des Solides
UMR: 6610 CNRS
Bd Pierre et Marie Curie BP
30179, 86962 Futuroscope
chasseneuil Cedx

FRANCE

SAID ZEGHLOUL
Laboratoire de Mécanique
des Solides
UMR: 6610 CNRS
Bd Pierre et Marie Curie BP
30179, 86962 Futuroscope
chasseneuil Cedx

FRANCE

LOTFI ROMDHANE
Laboratoire de Genie
Mécanique
Ecole Nationale d’Ingénieurs

Monastir 5019

TUNISIA

Abstract: - In this paper we propose a new path planning method for a robot manipulator in a cluttered static
environment, based on lazy grid sampling. Grid cells are built while searching for the path to the goal configuration.
The proposed planner acts in two modes. A depth mode while the robot is far from obstacles makes it evolve toward its
goal. Then a width search mode becomes active when the robot gets close to an obstacle, and it ensures the shortest
path to go around an obstacle. This method reduces the gap between pre-computed grid methods and lazy grid
methods. No heuristic function is needed to guide the search process. An example dealing with a robot in a cluttered
environment is presented to show the efficiency of the method.

Key-Words: - Path Planning — Manipulators — Lazy grid

1 Introduction

Path planning is an important issue in robotics. People
recently are using randomized sampling based motion
planners. Although these planners give remarkable
results with many degrees of freedom (DOF), they are
not complete by the way they use random landmarks to
describe the configuration space. Examples of these
methods are: Randomized path planner [1], probabilistic
roadmap planners [2-6], Ariadne’s Clew [7], Rapidly
exploring Random Trees [8].

Since the introduction of the idea of using the
configuration space to resolve path planning problems
by Lozano-Pérez and Wesley in 1979 [9], almost all later
works used configuration space called C space. In
configuration space, the robot is reduced to a point
representing its joint variables. Obstacles are
transformed to a set of points that correspond to
configurations where the robot is in collision with these
obstacles. This set of points is called C space obstacles.
C free space is the set of robot configurations that do not
collide with any obstacle. Path planning consists of
finding a path in the C free space from an initial point to
a goal point.

The most difficult problem is how to represent the C
free space which is equivalent to representing the C
space obstacles.

Constructing explicit representation of C free space is
very hard and needs a great running time especially if the
number of primitives of robot and obstacles is big [10-

12]. For that reason, sampling based approaches are
proposed. There are different kinds of sampling based
approaches: cell decomposition [13], grid based
approaches [14-15], randomized planners. [1-8]

Probabilistic roadmap planners have been successful
in many kinds of path planning problems especially in
applications involving robots with many degrees of
freedom. However they have a major problem in finding
valid configurations in tight areas which makes them
impractical in cluttered environments. Some methods
where proposed to solve that problem, such as using the
workspace medial axis[16]. In that method the medial
axis of the workspace is generated and used in order to
find configurations in tight regions.

In grid based approaches the C space is discretized to
a sufficiently fine resolution. A collision detection
method is used to decide whether a cell is in C free space
or not, which creates a bitmap of C space. To find a path,
a classical Al search technique is used.

Lengyel et al. [14] used a dynamic programming
technique to find a path in 3 dimensional C space.
However, in general this kind of approach is limited to
lower dimensions since the number of resultant grid cells
grows exponentially with the number of DOF and the
resolution required to solve the problem.

Kondo planner [15] is based on the fact that it is
possible to find a solution without visiting a large
portion in the grid. Collision checking is delayed until a
cell is needed to be checked. In that manner, the

mailto:Samir.lahouar@lms.univ-poitiers.fr
mailto:said@lms.univ-poitiers.fr
mailto:lotfi.romdhane@enim.rnu.tn

expensive processing step is avoided. A cost, f(c), is
used in order to direct the search in the grid.

The cost f(c) is composed of two parts f(c)=g(c)+h(c)
where g(c) is the standard cost-to-come and h(c) is a
heuristic weighted sum of squares cost. The efficiency of
the planner depends strongly on the heuristic used. The
heuristic itself may be adapted for a kind of problems
but not for another.

In our approach, we propose to compute only cells
used to find the path and we use constraints in order to
consider whether a cell is accessible or not, which
enables us to use a bigger step in the grid. If we are far
from obstacles we use only the distance to the goal in
order to choose the cell to compute. If we are near an
obstacle, we construct all the cells in order to find the
best way to avoid this obstacle.

The planner we propose is based on the alternation of
two searching modes. The first is a depth search mode
active when the robot is far from obstacles, so it evolves
toward its goal. The second is a width search mode when
the robot is near an obstacle it permits to find the best
way to avoid the obstacle.

2 Construction Of The C Space
A classic global method using a grid checks all its cells
for collision before starting to search for a path. The
number of the grid cells grows exponentially according
to the number of DOFs of the robot. And in the same
way, the time and the memory space required to
compute and store the grid increases. While if the step of
the grid is raised in order to reduce the number of cells,
it is not certain to find a path without collision between
two neighboring cells. For these reasons, we use the
constraints proposed by [17] which in one hand makes
the path between two neighboring cells in the C free safe
even if the step is quite large, and in the other hand
speeds up the collision checking process as the
constraints computed in a cell are useful to check all the
neighboring cells. The constraints calculated in a cell
allow us to judge whether a path exists to a neighboring
cell or not. Therefore, the constraints calculating process
is equivalent to 3"-1 times the collision checking
process. As a cell has 3“-1 neighbors. Where N is the
number of DOF of the robot.

Fig. 1 shows a PUMA robot placed next to an
obstacle. The constraint corresponding to that obstacle,
as defined by [17], is written in that manner

\7X1€R1,R0 A<Ed-d,) (1)

Where:
X, is the nearest point in the robot to the obstacle.

V,.er /v, 18 the velocity of the point X, .
& is a positive factor.

d is the distance between the robot and the obstacle.
d. is the security distance that the robot should not go

S
beyond.
We consider J, (q) the Jacobian matrix of the robot

in point X, and AQ the configuration variation between
two cells in the grid, we write the constraint as follow

J, (@)Ag.A<&(d-d;))
Which can be written as:

J. (@R.Aq<&(d-d,) ©)

Fig. 1 Distance between a robot and an obstacle

In our approach we do not construct the entire grid,
representing the C space, but we only construct the cells
necessary to find the path to the goal position. If the
robot environment is static, we can save the constructed
cells to speed up the planning of other paths reaching
other goals. Our planner uses two modes the first makes
the robot evolve to its goal position if there is no
obstacle that obstructs its way and the second mode is
active near the obstacles and enables the robot to find the
best way to avoid them. This latter mode is the most
important as it needs to generate all the cells near the
obstacle until it is avoided. For this reason, we do not
have to store all the cells but we just store the cells near
the obstacles which are sufficient to describe the C free
space.

3 The Proposed Algorithm
In the following subsections we introduce some notions
necessary for our approach.

3.1 The Cell Class

The algorithm we propose is based on a “Cell” class in
terms of object oriented programming. A cell object is
composed of different properties:

3.1.1 Pointer to the parent cell

As the grid is constructed while searching for the path
from the initial configuration to the goal configuration,
the first cell is the initial configuration it takes a NULL
value. Then an already constructed cell is chosen
according to the mode of the planner, the non-collision
constraints are calculated for that cell and verified for the
neighboring cells that have not been yet constructed. The
cells verifying the constraints have a pointer to the cell
used to construct them. If the goal cell is reached it just
takes going back through the pointed cells to find the
path between the goal and the initial cells.

3.1.2 A configuration defining a posture of the robot
Each cell corresponds to a point in the C space. If a cell

- - - - 1 1 T
configuration is written as ¢, =[ql qNJ where

N is the number of DOF of the robot. And let AQ be the

step of the grid. The neighboring cells are defined as the
configurations belonging to the following set:

Vic(q1)={q:[qi+slAq qk+SNAqT;(%,---,SN)E{—LOJ}”/(0 ----- 0)}(4)

3.1.3 A distance to the goal

It represents the distance between the goal configuration
and the cell configuration. This distance allows the
planner’s first mode to choose the closest cell to the goal
configuration. While the robot is far from obstacles, the
shortest path to the goal configuration is the straight line
in C space.

3.1.4 A boolean “collision” variable
It takes false if the cell verifies the constraints and true if
it does not.

3.1.5 A boolean “computed” variable
Used by the planner in order to know whether the cell
has already been used to search for the path or not.

3.1.6 A boolean “near an obstacle” variable

Used by the second mode of the planner allowing it to
stay stuck to the obstacle while performing its width
search in order to find the best direction to go around the
obstacle.

3.2 Queue
Another important item in our approach is the Queue Q,
which is defined as an ordered set of cells. The first cell

in the Queue is named head and denoted h(Q). While the
last cell is the tail of the Queue and denoted t(Q). If the
Queue is empty we write h(Q)=t(Q)=J .

In order to handle the Queue Q, we use some operators
that we will define next.

h*(Q,c,) adds the cell ¢, to the head of Q.
t"(Q,c,) adds c, to the tail of Q.

h™(Q) removes the head cell from Q.
t"(Q) removes the tail cell from Q.

3.3 The Stop Condition

We define the stop condition as the condition for which
we judge that the goal position have been found. We
write this condition as follows

Hqgoal - qH <Aq ®)

Where g, is the goal configuration, q is the

configuration of the cell verifying the stop condition and
Aq is the step of the grid.

3.4 Algorithm

The algorithm outlined in fig. 2 begins by constructing
the initial cell in step 1. It sets the parent pointer to
NULL and evaluates the distance to goal. The algorithm
uses a variable ¢ representing the cell searched by the

algorithm. N is the set of explored cells and X, is the

set of unexplored cells in the vicinity of cell c.

Step 6 computes non-collision constraints using
distances between obstacles and robot parts evaluated in
the posture defined by cell c.

Steps 8 to 13 construct unexplored cells in the
vicinity of cell c. For each cell the parent pointer is set to
¢, the distance to goal is evaluated and the non-collision
constraints are verified. A cell is considered a collision if
it does not verify constraints given by eq. (3).

Step 15 determines the nearest cell to the goal in the
vicinity of c, using the distance to goal already
evaluated. If that cell is not an obstacle, it is placed in
the head of the queue Q by step 17. This makes the
planner perform a depth search since there is no obstacle
bothering the robot. Whereas if the cell computed by
step 15 is a collision, all non-collision cells in the
vicinity of ¢ and close to collision cells are placed in the
tail of the queue Q by step 22. Which makes the planner
perform a depth search till the obstacle is bypassed.

Step 23 removes from the queue Q all cells, for
which their vicinity has been already explored and sets

their computed property to true, so they do not return to
the queue when the algorithm evolves.

1. Construct initial cell C;

2. Set C=C,;

3 Let N ={c, }

4, While € # & and ¢ does not satisfy
the stop condition do

5. c.computed=true

6. Compute non-collision
constraints for the configuration represented by
the cell ¢

7. N, = vic(C)\N

8. For each cell C, € N do
9. Set c,.parent =c¢
10. Evaluate
c,.distance_to_goal

11. Verify the non-

collision constraints and determine c,.collision

12. Set c,.computed to
false

13. End for

14. N=NUN,

15. Choose ¢; in N, with the
minimal distance to goal

16. If cz.collision=false then

17. h™(Q.c,)

18. Else (cs.collision=true)

19. For each

C, ViC(C) such as c;.collision=true do

20. For each

C; € Vic(C,) NN set

cs.near_an_obstacle=true
21. End for
22. For each

C, € Vic(C)\Q such as c,.Near_an_obstacle

= true and c;.collision=false and
C,.computed=false

do t*(Q,c,)

23. For each C, € Q

suchas VIC(C,) €N remove c, from the
Queue Q and set c,.computed=true

24, End if

25. c=h(Q)
26. h"(Q)
217. End while

Fig. 2 Pseudo-code of the method

The search procedure is stopped when a cell verifying
the stop condition is found and the path is done by
joining this cell to the initial cell by going back throw

the parent cells using the pointer of each cell. The
procedure can also be stopped if the Queue Q is empty,
in that case there is no possible path for the chosen
resolution of the grid.

4 2D Example

In order to illustrate the proposed algorithm we give a
2D example, of a 2R robot (Fig. 3) evolving among
point obstacles. We make simulations using three point
obstacles defined by table 1. The start configuration is

0,=[-20° 30°]" and the goal configuration is
6, =[40° —40°]T. Fig. 4 shows the robot in its starting

and goal positions and the three point obstacles. We set
the lengths of the arms of the robot I, =1, =10.

yA

Fig.3 2R Robot

Obstacles
Y []

Goal position

Start position

Fig.4 Path planning consists of moving the robot from
the start position to the goal position without colliding
with obstacles

Fig. 5 shows the C space of the robot, the dark
regions correspond to C space obstacle. The construction
order of cells is shown in fig. 6. The algorithm evolves
toward its goal using the depth-search mode while there
is no obstacle bothering it. When an obstacle is detected
the algorithm uses the width-search mode. The algorithm
overlaps the obstacle in order to find the best direction to
bypass it. When the obstacle is avoided the depth search
mode is resumed.

Obstacle 0, 0, O3

X 16 2,31 11,8

y 11 10 2,8
Table 1.

Start

configuration

Goal configuration

Fig. 5 Configuration Space

233 234 235 236

Fig. 6 Cell generation order

The algorithm gives the best way to go around the C
obstacle. The result of the simulation is shown in fig.7.
Moreover, out of 4891 cells, only 461 cells were
computed which represents less than 10% of the whole
workspace.

5 Simulation and Results

Simulation has been performed on a robotic-oriented-
Software named SMAR [18]. This software is composed
of two units: a modeling unit and a simulation unit. The
Modeling unit is used to generate a model of the robot in
its environment. The simulation unit is used to simulate
the motion of the robot in its environment. It contains a

minimal distance feature we used to implement our
algorithm.

20.00

15.00 A

10.00 -

5.00 -

0.00

-5.00 -

-10.00

Fig. 7 Results

Fig. 8 shows the simulation results of a 5 DOF
ERICC robot carrying a large object and standing in an
environment containing ladder shaped obstacles. The
planner determines the path in 20 steps.

The robot is carrying a beam whose length is greater
than the width of the ladder shaped obstacle. Regular
local path planners would be stuck in the initial position.
Our proposed method explores all possible
configurations capable of going around the obstacle and
chooses the one that yields the minimum distance to the
goal. The sequence of frames shown in Figure 5, show
the solution found by the proposed planner. In this case
the total number of cells is 12252303 while the number
of computed cells is only 220980 which represent less
than 2% of the whole workspace.

6 Conclusion

In this paper we presented a new method of path
planning based on lazy grid methods and searching for
path without using a heuristic function. This method
reduces the gap between classic grid methods where all
the grid cells must be computed before searching for a
path, and lazy grid methods where the grid is computed
while searching for the path. The proposed planner is
very general and is guaranteed to find a path if one exists
a given resolution. However, this algorithm depends on
the resolution of the grid. The higher this resolution is,
the closer the robot can squeeze between obstacles.

This method reduces the number of computed cells
and gives the best direction to go around a C obstacle. It
can be combined with quasi-random methods and
replace the A* searching module. Where quasi-random
sampling of the C space appears to offer performance
improvements in path planning [19].

Fig. 8 Results

References:

[1] J.Barraquand and J. C. Latombe, A Monte-Carlo
algorithm for path planning with many degrees of
freedom, International Conference on Robotics and
Automation, 1990, pp. 1712-1717.

[2] L.E. Kavraki, P. Svestka, J-C. Latombe and M.H.
Overmars, Probabilistic roadmaps for path planning
in high dimensional configuration spaces, IEEE
Transacrions on Robotics and Automation, Vol.12,
No.4, 1996, pp. 566-580.

[3] T Siméon J-P. Laumond and C. Nissoux, Visibility-
based probalistic roadmaps for motion planning,
Advanced Robotics Journal, Vol.14, No.6, 2000, pp.
477-493.

[4]1S. A. Wilmarth, N. M. Amato and P. F. Stiller,
MAPRM: A Probabilistic Roadmap Planner with
Sampling on the Medial Axis of the Free Space,
International Conference on Robotics and
Automation, 1999, pp. 1024-1031.

[5]R. Bohlin and L. E. Kavraki, Path Planning Using
Lazy PRM, International Conference on Robotics
and Automation, 2000, pp. 521-528.

[6]P. Leven and S. Hutchinson, A framework for real-
time path planning in changing environements, The
International Journal of Robotics Research, Vol.21,
No.12, 2002, pp. 999-1030.

[71E. Mazer, J.M. Ahuactzin, and P. Bessiére, The
Ariadne’s clew algorithm, Journal of Artificial
Intelligence Research. VVol.9, 1998, pp. 295-316.

[8]S. M. LaValle and J. J. Kuffner, Randomized
Kinodynamic Planning, The International Journal of
Robotics Research, VVol.20, No.5, 2001, pp. 378-400.

[9] T. Lozano-Pérez and M. A. Wesley, An algorithm for
planning collision-free paths among polyhedral
obstacles, Communications of the ACM, Vol.22,
No.10, 1979, pp. 560-570.

[10] J. T. Schwartz and M. Sharir, On the piano mover’s
problem: 1l. General techniques for computing
topological properties of algebraic manifolds,
Advances in Applied Mathemathics, Vol.4, 1983, pp.
298-351.

[11] J. F. Canny, The complexity of Robot Motion
Planning, MIT Press, 1988.

[12] S. Basu, R. Pollack and M. F. Roy, Algorithms in
Real Algebraic Geometry, Springer-Verlag, 2003.
[13] B. Paden, A. Mess and M. Fisher, Path planning
using a Jacobian-based free space generation
algorithm, International Conference on Robotics and

Automation, 1989, pp. 1732-1737.

[14] J. Lengyel, M. Reichert, B. R. Donald, and D. P.
Greenberg, Real-time robot motion planning using
rasterizing computer graphics hardware, Computer
Graphics, Vol.24, No.4, 1990, pp. 327-335.

[15] K. Kondo, Motion planning with six degrees of
freedom by multistrategic bidirectional heuristic free-
space enumeration, International Conference on
Robotics and Automation, 1991, pp. 267-277.

[16] C. Holleman and L. E. Kavraki, A framework for
using the workspace medial axis in PRM planners,
International Conference on Robotics and
Automation, 2000, pp. 1408-1413.

[17] B.Faverjon and P. Touranssoud. A local based
approach for path planning of manipulators with a
high number of degrees of freedom. International
Conference on Robotics and Automation, 1987, pp.
1152-1159.

[18] S. ZEGHLOUL, B. BLANCHARD and M.
AYRAULT, SMAR: A Robot Modeling and
Simulation System. Robotica, Vol.15, No.1, 1997,
pp. 63-73.

[19] M.S. Branicky, S.M. LaValle, K. Olson and L.
Yang, Quasi-randomized path planning,
International Conference on Robotics and
Automation, 2001, pp. 1481-1487.

