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Abstract: The growth in the TCP/IP traffic and the importance of the industrial applications using
Internet (Flexibible Control and Instrumentation, Telecontrol, Telemedecine,...) as communication
medium have made necessary to know better the dynamic behavior of this dynamic system (TCP/IP
flow). The objectif is to reduce the congestion and thus render better service to the user with constant
investments.
Different models and different techniques of congestion control are proposed. These techniques have in
common the necessity to estimate the congestion level of a link and to return this information to the
transmission sources. The results obtained has proved that to reduce the congestion it is necessary to
anticipate it by slowing down the sources before it occurs.
In our paper we present a robust congestion control algorithm based on Smith Predictor (SP). The
advantage of using SP is its capacity to predict the state of a dynamic system (congestion in our case)
and thus reducing the effect of input delay inherent of TCP/IP flows.
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1. INTRODUCTION

During the last ten years the Internet Applica-
tion (Remote Flexibible Control and Instrumen-
tation,Telecontrol, Telemedecine,...) has retained
the attention of Control researchers for modeling
and congestion control of TCP/IP networks.
The congestion in TCP happens when the demand
in resource allocation is greater than the network
capacity or similiary when the packet flow in a
link is greater than the link capacity. In this
case packet drop or retransmission deteriorates
the quality of service offered by the network.
The congestion-control mechanism, necessary in
an under-charged network, becomes indespens-
able in an over-charged network. Without the
congestion-control mechanism, we may not only
miss the quality of service but also fail in per-
forming the service which means that the network
may enter a blocking state. The industustry ap-
plications need a better control of the pass band
by robust congestion control of TCP/IP flows.
Different congestion-control mechanisms exist.

They differ by their level action ( in the network
layer) and their algorithms. They may be classi-
fied into two main families:

• End to end congestion-control
• Closed loop congestion-control

The first class uses only the information sent by
the end extremity to update the packet flow rate.
The second congestion control algorithm update
the source flow rate to maintain a predefined
constant level of gateway buffer and so offering
a better quality of service to the users.
The flow model [5] used in our paper is linearised
around a nominal state which is given by:

• nominal flow of the source
• nominal level of buffer



The controllers proposed in the litterature such
as RED (Random Early Detection) or PI give
good performance under certain conditions. They
loose their efficency in the case of variable delays
(Round Trip Time (RTT) variation) or number of
sessions. This is due to their caracteristics which
are the impossibility to attenuate the delay effects
on the system. So the system becomes unstable
if the input delay or/and the parameters of the
networks change beyond some limits (number of
session, ..).

In this paper, we propose an approach which is
able to attenuate the influence of variable de-
lay increasing the robustness of the system. We
use a simplified dynamic model represented by
n identical sources and a single link combined
with the dynamic model of the buffer [9] [12].
The linearised model is decomposed into a delayed
nominal part and the high frequency uncertainties
[6 ].
The paper is organised as follow. In the follow-
ing section we give the problem formulation. In
section three we give the synthesis of the robust
controller based on Smith Predictor algorithm. In
the fourth section we give the simulation results,
conclusion and perspectives.

2. PROBLEM FORMULATION

The dynamic model of TCP/IP flows developed
by [5] using a fluid flow model is described by the
following non-linear differential equations (1):
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where:

• W : is the average TCP window size (in
packets)

• q : is the average queue length (in packets)
• R(t) : is the round-trip time: R(t) = q(t)

C +Tp

• C : is the link capacity
• N : is the load factor
• p : is the probability of packets mark
• Tp is the propagation delay

To obtain an LTI dynamic model we do following
hypothesis:

• the linear model is obtained by linearising (1)
around the operating point (W0, q0, p0).

• we consider that N(t) ≡ N and C(t) ≡ C

• If R(t) appears as an argumets of a function
we consider it constant and equal to R0

(R(t) = R0)

From the equation (1) and the precedents hypoth-
esis we obtain:

• The nonlinear time invariant model:
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• The LTI model:
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where:

• q0 : is equal to the desired length of the queue
• p0 : is the desired marking probability
• W0 = R0C

N and R0 = q0
C + Tp

• ∆W = W −W0, ∆q = q−q0 are ∆p = p−p0

are the perturbated states ((∆W, ∆q)T ) and
control variable (∆p) about the operating
point.

For practical purposes we decompose the dynamic
model (3) in a nominal part and a high frequency
part [6]. The nominal part will be used as a syn-
thesis model and the high frequency part will be
treated as model error. After some block-diagram
manipulations we obtain the block-diagram rep-
resentation given by figure (1).
We may remark that our LTI dynamic system is

an input delayed system with model uncertainties
under multiplicative form. The mathematical ex-
pression of model uncertainties is given by:

∆(s) =
2N2s

R2
0C3

(1 − e−sR0) (4)

From the LTI open loop model we may formu-
late the AQM Control Problem as Find the
AQM Robust Control capable to stabilise the queue
length at a predifined value with efficient queue
length and robustness with respect to variation of
the propagation delay [6].
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Fig. 1. Block diagram representation of model
unceratinties of TCP/IP flow under multi-
plicative form

3. ROBUST AQM CONTROLLER

As stated in the previous section our problem is
to synthesize a robust controller capable:

• to regulate the queue length at a predifined
value

• to reduce the effect of the input delay
• to be robust to propagation delay
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Fig. 2. Block diagram representation of Smith Pre-
dictor assosiated with a system with model
uncertainties under multiplicative form

The schema block of closed loop system via the
Smith Predictor is given in the figure (2) where:

• P (s) is a linear transfer function of the form
P (s) = P0(s)e−θs

• P0(s) is a stable rational transfer function
• P̂ (s), P̂0(s) are respectively the nominal val-

ues of P (s) and P0(s)

We remark that (SP) controller C(s) is a com-
bination of a primary controller C0(s) ( usually
a PI or a PID) and an error prediction com-
ponent. Whereas the error prediction component
has a predifined structure and parameters, the pa-
rameters and structure of the primary controller
has to be defined. We will treat the case where
the primary controller is a PID controller whose
parameters have to be defined.
From the figure (2) we may see also, that the
signal output of minor feedback loop ( see figure
(2)) contains the output signal prediction which

has as advantages to eliminate the gain reduction
(overcorrection) due to the input delay.
In the rest of this paper, we will consider only the
propagation delay variations ∆θ or ∆R0 and sup-
pose that the other parameters are correctly es-
timated. For clearness of exposition we give some
definitions and theorems necessary for synthesis
of AQM robust controller based on SP.
Definition A system that is asymtotically stable
in the ideal case (in our case P (s) = P̂ (s)) but
became unstable for infinitesimal modeling mis-
matches is called a practically unstable sys-
tem.
Suppose that C0(s) is a primary controller which
stabilize the undelayed system P0(s). In this case
the closed-loop transfer function is given by:

Q(s) =
C0P̂0(s)

1 + C0P̂0(s)
(5)

Theorem 1 [10] For the system with an SP
to be closed-loop practically stable, it is necessary
that:

limω→∞ |Q(jω| <
1
2

(6)

Remark 1 In our case ( only mismatches in
the propagation delay) the condition (6) is also
sufficient.
Theorem 2 [10]
(a) the closed-loop system is asymthotically stable
for any ∆θ if

|Q(jω)| <
1
2

, ∀ω ≥ 0 (7)

(b) If

|Q(jω)| ≤ 1, ∀ω ≥ 0 ∧ limω→∞ |Q(jω| <
1
2

(8)

then there exists a finite positive (∆θ)m such that
the closed-loop system is asymptotically stable for
all |∆θ)| < (∆θ)m.
Remark 2 ∆θ gives the mismatch between the
estimated and real input delay.
From the theorem 1,2 and for a particular struc-
ture choosen of primary controller C0(s) we may
give the following lemma.
Lemma The primary controller given by C0(s) =
K
s P0(s)−1 render the closed loop system:

(1) practically stable
(2) ∃(∆θ)m > 0 such that the closed-loop sys-

tem is asymptotically stable for all |∆θ)| <
(∆θ)m.



Proof:
If we replace in (5) the expression of primary
controller C0(s) = K

s P0(s)−1 we obtain:

Q(s) =
P0(s)C0(s)

1 + P0(s)C0(s)
=

K

K + s
(9)

From (9) we may write:

limω→∞ |Q(jω| = 0(<
1
2

) (10)

and the system is practically stable.
From (9) we have also:

|Q(jω)| < 1, ∀ω ≥ 0 ∧ limω→∞ |Q(jω| <
1
2

(11)

so we prove the second part of lemma .
Remark 3 In [10] it is shown that a conservative
estimation of ∆θ may be given by:
(∆θ)m = π

3ω0
where ω0 ≥ K

√
3.

where ω0 is the frequency above which |Q(jω)| < 1
2

.
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Fig. 3. Association of model uncertainties under
multiplicative form and the closed loop of
TCP/IP flow nominal model

From figure (2) and figure (1) we may derive the
block diagram representation of our robust closed
loop system given in figure (3). The objectifs of
SP robust controller is to stabilise the closed loop
system under input delay variation. The following
theorem gives the sufficient condition over the pri-
mary controller C0(s) parameter K which assure
the robust stability of close loop system (TCP/IP
flow).

Theorem 3: The close loop system is robust sta-
ble if we choose:

(1) C0(s) = K
s P0(s)−1

(2) K = min(
√

2
2R0

, min ( 1
R0
, 2N

R0C ))

Proof:

The input/output closed-loop transfer function of
system without model uncertainties is given by:

Fcl(s) =
P0(s)C0(s)e−sR0

1 + P0(s)C0(s)
(12)

If we replace the expression of primary controller
C0(s) = K

s P0(s)−1 in (12) we obtain:

Fcl(s) =
Ke−sR0

K + s
(13)

We have also:

Q(s) =
P0(s)C0(s)

1 + P0(s)C0(s)
=

K

K + s
(14)

From the figure (2) the transfer function between
the input perturbation signal y(t) and the output
signal ∆q(t) is:

F (s) =
P0(s)

1 + P0(s)C(s)e−R0s
(15)

From the expression of C0(s), P (s), P0(s) and (15)
we obtain:

F (s) =
P0(s)(s + K(1 − e−R0s))

K + s
(16)

From the small gain theorem we have the closed-
loop stability under multiplicative form of model
uncertainties (which is our case) if:

|∆(s)F (s)| < 1; ∀ω > 0 (17)

Combining (4), (15) and (17) we may write:
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From (18) we may write:
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If we choose as dominant root the F (s) pole − 1
K

then from (19) we may write:

∣∣∣∣2R0jω
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2K jω + 1
1
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Let ωc = K be the unique unity-gain crossover
frequency of (20), then we may write:

K <

√
2

2R0
∧ min(

1
R0

,
2N

R0C
) (21)

which prove the theorem.

Remark 4 The controller proposed C(s) has a
predifined structure based on the TCP flow LTI
model and a gain K. So its tunnig is more easy
then P I or P ID controller.

Remark 5 Under condition of the unique unit
gain crossover frequency the phase margin is at
least 1800 (φm). So the delayed margin may be
given by (θm = φm

ωc
≥ 2π

ωc
) .

4. SIMULATION RESULTS

In this section we present the simulations results
obtained by application of the Smith Predictor
controller and we compare them with the results
obtained by PI controller given in [6].

As simulation parameters we take:

• number of sessions: N = 60
• number of packets/sec: C = 3750
• propagation delay: Tp = 0.2 seconds
• and thus a nominal delay R0 = 0.2467

From these simulation parameters and applying
theorem 3 we obtain:

K ∈ {2.866, min(0.52, 4.05)}

thus we may choose K = 0.3.
The primary controller C0(s) is a PID controller
whose values are determined by the nominal
model and the parameter K. So from the nominal
model and the parameters choosed we obtained
the discrete PID coefficients: Kp = 1.1725e− 005,
Ki = 5.4583e − 0.006, Kd = 2.5600e − 006.
In figure 4 and 5 we give the simulation results
obtained by applying Smith Predictor and PI con-
troller [6] on the nominal system. We may see that
the queue response time, measured in number of
sampling period, under Smith Predistor control is
inferior to that needed for the queue controlled by
PI controller.

For the second simulation test we take the same
parameters and we change the propagation delay
at 25-th sampling period from R0 to 3R0. The
results given in figure 6 and 7 respevtively, show
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Fig. 4. The queue length dynamic under Smith
Predictor in function of number of sampling
periods
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Fig. 5. The queue length dynamic under PI con-
troller in function of number of sampling pe-
riods

that the Smith Predictor stabilise the queue dy-
namics in the case where the PI controller fail.
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Fig. 6. The queue length dynamic under Smith
Predictor in function of number of sampling
periods

In the third test we change the system parameters
to : N1 = 100,C1 = 1000, qref = 175 and thus
we obtain R01 = 0.3750 < R0. From figure 8 we
see that the Smith Predictor stabilise the queue
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Fig. 7. The queue length dynamic under PI con-
troller in function of number of sampling pe-
riods

dynamic but the response time is greater.
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Fig. 8. The queue length dynamic under Smith
Predictor in function of number of sam-
pling periods in the case of model parameter
change.

From the simulation results we may conclude that
the the Smith Predictor performs well in the delay
variation situation and has also some robust prop-
erties in the case of system parameter variations.
This is due to its capacity to predict the system
output and so reduce the input delay influence.

As future perspective it is important to work on
robust controller capable to consider the input
delay variation and system parameters variations
at the same time.
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