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Abstract: Together with rapidly developing biotechnology, nanotechnology is a real opportunity to test new,
maybe revolutionary ideas and algorithms of so called ”soft hardware”. Self-assembly feature of transforming
nano-scale structures, such as DNA macromolecules but not only, from one state to another one in a very well
defined way may offer the proper handle for nano-scale computations and play a central role in the development of
nano-tech devices in the near future. The Turing machine analogy to information-encoding biochemical reactions
on information-carrying molecules inspired our neural network experimental approximation. We describe our
original model of molecular neuron network based on genetic laboratory operations.
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1 Introduction

ALGORITHMICS on a nano-scale seems to be
about designing data and an algorithm in such a

way that self-assembly is able to perform the compu-
tation or constructing of molecular devices ”by itself”
with the help of many processing units so called cells.
Their performance cannot be described in the form of
the sequential algorithm, more precisely in the form of
the operation single list suitable for execution on one
processor. Moreover, the NP-difficult problems can be
solved in polynomial time only by non-deterministic
machine utilizing massive parallelism. Choosing in one
moment among millions of solutions ought to be non-
deterministic. So chemical reactions as computational
processes on molecules carrying encoded information
present an obvious analogy to methodologies emerged
from nature such as neural networks, evolutionary al-
gorithms and so on.

It is believed that in future, when traditional silicon
methodologies meet their technological limits in minia-
turization, alternative molecular electronic circuits will
be constructed with the use of molecular transistors
and logic switches, which have been already invented.

A sequence of operations on DNA executed in par-
allel on DNA strings called oligonucleotides or oligos
is an algorithm. But in the typical DNA computing
algorithm this sequence is determined by a model of
DNA strings similar to the soft hardware specialized
architecture driven here by heating, cooling and con-
nected with them operations on DNA. Together the
model and the operation sequence make computation
possible. The essential feature of such approach is hy-
bridization of pairs of complementary DNA strings and
possibility to represent highly parallel selective oper-
ations, which can enable creating alternative, neural
architectures on a nanoscale.

Mills has made the first approach to a neural net
representation by using DNA matrices on DNA chips.
A Hopfield neural network [3] can be realized by im-
plementing memorization and recall. In an experiment
data were presented in the form of images of m pix-
els, which were flashed on a micro-array, whose pixels
made of DNA strings attached with one end to the
array surface matched the image pixels made of ap-
propriate complementary strings. The sum of all such
products becomes the memory matrix. In the exper-
iment roughly two iterations were sufficient to force
the mixture into a steady state answer to the query
e.g. removing white noise from the query image.

In this paper we consider completely another
method in which we focus on modelling a neural net-
work structure made of neural cells presented in [4].
We look for some kind of similarity between real neu-
ral structure and something what can be artificially
created by self-assembling feature of DNA fragments.
The introduced representation requires all the data to
be discrete. In our concept we need to design a sub-
set of all single-stranded DNA strings adequate to the
particular problem and its data.

2 Neural Network Basis

A neural network is defined in [2] as a parallel, dis-
tributed information processing structure consisting of
processing elements (which can possess a local mem-
ory and can carry out localized information process-
ing operations) interconnected via unidirectional sig-
nal channels called connections. Each processing ele-
ment has a single output connection that branches into
as many collateral connections as desired, each carries
the same signal - the processing element output sig-



nal. The processing element output signal can be of
any mathematical type desired.

In the classical neural architecture each processing
element can have multiple input connections (which
can originate from other processing elements or from
outside the network), but only one output signal. The
single output branches into copies (in other words,
multiple connections carrying the same signal), which
are distributed to other processing elements, or which
leave the network altogether. The input to the network
can be viewed as a data array x and the output of the
network is a data array y. When viewed in this way,
the network can be thought of as a function, subrou-
tine, or procedure y(x). The information processing
must depend only on the current values of the input
signals arriving at the processing element via imping-
ing connections and on values stored in the processing
elements’ local memory. Neural networks, can be mod-
eled by a general equation:

y = f(x, w), (1)

where the vectors x, y and w represent inputs, outputs
and adjustable weight parameters.

There is no calculation of an energy function or mod-
ification of weight values during learning mode in our
concept. The main difference from the classical learn-
ing mode is caused by its massively parallel computa-
tion, which results in a set of all possible self-assembled
neural networks architectures being an answer to train-
ing data. This massively parallel computation is a
major advantage and a key to possible utility of this
method. This is a big similarity between our approach
and the Monte Carlo method on molecular level.

3 The McCulloch-Pitts Network Model

McCulloch and Pitts described a simple neuron
model as a two-value treshold element. The model con-
sists of two components: neuron and synaptic links.
The state of the output signal of a neuron is deter-
mined by the linear sum of weighted input signals xin.
The output signal xi+1 of a neuron is 1 if the sum
equals or exceeds the threshold value; otherwise it is
0.

The McCulloch-Pitts neuron model with the thresh-
old is shown in Fig. 1, where xi+1 = g(

∑

n

xin × win).

The traditional scheme of such the neuron has been
created during two steps in Fig. 2. The depicted node
contains the threshold function and the adder.

Fig. 1. The McCulloch-Pitts neuron model.

Fig. 2. Creation of the McCulloch-Pitts neuron

scheme.
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Fig. 3. Neuron network scheme.

Fig. 4. Molecular neuron network. It consists

of three basic cells.

Although its simplicity the McCulloch-Pitts model
is a powerful computing tool. McCulloch and Pitts
showed that the network formed from such elements
as is depicted in Fig. 3 is equivalent to the universal
computing machine.
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Fig. 5. One basic cell with DNA sequences used in the experiment.
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Fig. 6. DNA electrophoretogram of the hy-

bridization experiment.

4 Experimental Approximation of a

Molecular Neuron Network by DNA

Strings

We consider a class of discrete neural networks,
where input and output signals as well as weight co-
efficients are described by discrete values. In our ap-

proach DNA based neuron network model is reported
in which standard neuron connections with weigths
are formed from oligonucleotide strings resulting in a
model that is comparable to that of McCulloch-Pitts
one as is shown in Fig. 4. Our molecular model has
the same layers, connections and weights. It consists
of three basic molecular cells.

The resulting universal basic cell, which can rep-
resent neurons in input, hidden, and output lay-
ers, but here with two inputs and one output sig-
nal was introduced in Fig. 5. It consists of strings
A0, A1, A2, B0, B1, B2, which were built from shorter
synthesized DNA strings shown in Table. 4 e.g. A0 =
A01 + A02 + A03 was hybridized and ligated with
the help of strings: WA012 complementary from the
36th to the 57th nucleotide of A0, WA023 comple-
mentary from the 77th to the 98th nucleotide of A0;
B1 = B11+B12+B13+B14 with the help of strings:
WB112 complementary from the 36th to the 56th nu-
cleotide of B1, WB123 complementary from the 80th
to the 92th nucleotide of B1, WB134 complementary
from the 106th to the 125th nucleotide of B1.

5 Experiment Results

In the first experiment every 15 µl of each oligonu-
cleotide (about 30pM) from a group B0, B1, B2, A1, A2
were hybridized together in typical restriction enzyme
buffer (100mM NaCl , 5mM MgCl2, 10mM Tris HCl ,
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Fig. 8. The diagram of strings before enzyme digestion denoted by big dotes and after cutting

denoted by ”×”.

pH = 0, 8) for 15 min at 50 oC. After adding 15 µl of
the next oligonucleotide B1, the reaction mixture was
incubated for 15 min at 50 oC. The sample of this so-
lution was put in a H1 lane. And after adding 15 µl of
the next oligonucleotide A0, the reaction mixture was
incubated at 50 oC for 15 min, The sample of that
solution was put in a H2 lane.

The results of the hybridization reaction were veri-
fied during electrophoresis (single oligos are put in A

and B lanes; in the H2 lane there is a band of the
complete network cell) and clearly show in Fig. 6 that
A0, A1, A2, B0, B1, B2 oligonucleotides are hybridized
correctly together, because after hybridization reaction
of the last five oligos the unique new band H1 ap-
pears and after hybridization reaction of all six oligonu-
cleotides the next unique new band H2 appears larger
then the previous one.

The results of the second experiment shown in

Figs. 7 and 8 proof that predicted structure (Fig. 5
and Table. 4) really exists in solution. In Fig. 7 the
molecular cell typical one hour digestion electrophore-
togram is shown. In the lane O cell oligos extracted
from the previous experiment H2 band are put be-
fore digestion e.g.: OB0=B0, OA0=A0. In the rest
of lanes after digestion by corresponding enzymes in
their typical buffers: B - BAM, E - Eco RI, H -
Hind III, S - Sal I, X - Xho I fragments of cut
DNA strings are placed and denoted by enzyme sym-
bol connected with the appropriate string name. In
Fig. 8 it is seen the linear dependency between the
whole string positions (measured in gel in mm - seen
in the electrophoretogram and depended on logarithm
of their base pair lengths - log M) denoted by big dots
and positions of their fragments obtained after cutting
by enzymes. Near the fragment names are placed their
lengths in base pairs together with the lengths of their
whole predecessors.



TABLE I

The molecular network strings with their nucleotide sequences

Strings Sequence optimization results
A01 45 AACACAGACACTCACACAACATCTTGTGCTTTTTGATGTGGTAT

A02 43 TTCCAATCTGCTGGCCCGTCCTGGAGGGATCCGGTGGA

A03 40 TGAATATTTTCAGTTGTCTAAGTATGAAGAGCACTTGAGA

B01 44 TCTCAAGTGCTCTTCATACTTAGACAACTGGTGACTGCCGCTGA

B02 44 ATTCTCTGCAGAACCATTTTTAATATCGTCAACTCGAGAAGGTT

B03 43 CTGAGTTGCTGGTCTCATAGTCCGTTACCTAGAGGATCCAGTG

B04 38 CATTCTGGCCTATAAGCCATTGATTTTGATCGAATTGC

B05 42 TAAGCTTGTAGCCTAGTAATTTTTTGTAACTCGGCGTCGACC

B06 41 TACGCGGCATAGCACAAGATGTTGTGTGAGTGTCTGTGTTG

A11 45 CCAGCAGATTGGAATCACAATACCACATCATATGCCGCGTAGGTC

A12 45 GACGCCGAGTTACAAGGTGACATATACCGAGCGTCGGACCTGTTC

B11 45 GAACAGGTCCGACGCTCGGTATATGTCACCGACACAAGGCAAGGA

B12 35 TCCCGACTGAGCAGGCCCTCGTGCGTTAGTTGGCG

B13 35 TCTACAGTCGTGGTTCTGCAGAGAATTCAGCGGCA

B14 35 GTCACTATTCATCCACCGGATCCCTCCAGGACGGG

A21 45 CCTGCTCAGTCGGGATCCTTGCCTTGTGTCTTACTAGGCTACAAG

A22 45 CTTAGCAATTCGATCTAGCACACCGTGAGAGTCGATACACCGCAT

B21 42 ATGCGGTGTATCGACTCTCACGGTGTGCTATCAATGGCTTAT

B22 36 AGGCCAGAATGCACTGGATCCTCTAGGTAACGGACT

B23 37 ATGAGACCAGCAACTCAGAACCTTCTCGAGTTGACGA

B24 35 TATTACGACTGTAGACGCCAACTAACGCACGAGGG
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Fig. 7. DNA electrophoretogram of the cell

cutting experiment.

6 Summary

After constructing in the laboratory the basic cell,
which could be used in building larger and more com-

plex supramolecular structures with many layers like
the depicted in Fig. 4 layer graph, it is proved that
self-assembly of DNA can be utilized to provide the
structure of a adaline-like neural network. Our method
is completely original and emerges from visual inspec-
tion of the idea of neural network connectionism. It
paves a new direction in realization of neural networks
by self-organization at molecular scales. It approxi-
mates in more natural manner a neural system than
simulation by nonlinear operating units, because this
approach is based on biochemical reactions, which are
basis of every biological process.

Further research should extend ideas and give
some approximation of network learning e.g. some
kind of backpropagation learning or interference be-
tween molecular inference and neural systems in self-
assembled macromolecules.
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