
          FPGA Implementation of Digital PID  
                                   
                              Alireza rezaee 
                                Amirkabir University of technology 
                                                       IRAN 
                                                  
 
Abstract: This paper concerns the design of an ASIC with FPGA technology. The 

ASIC function is the PID controller .The design focus on optimization of a silicon 
area and speed operation. 

           This ASIC-PID has been implemented by means of three blocks: Adder, 
Multiplier and control unit. The speed performance of this system is compared to 
design with Digital PID on AVR (AT mega 128L).This hardware implementation 
can be done in three different architectures: Serial, Parallel or Mixed. 

           In all cases this kind of electronic implementation is very fast response than a 
software. 

Keywords: Control, PID, FPGA. 
 
1. Introduction )1)(11()()( pT

pT
KpEpL d

i
p ++=  

 
The modern digital control systems 
require more and more strong and fastest 
calculation components. This  type of 
elements becomes yet indispensable with 
the utilization of some new control 
algorithms control like the fuzzy control, 
the adaptive control, and …. 

 
 
The mixed controller has the equations: 

)11()()( pT
pT

KpEpL d
i

p ++=  

This entire controller has a general 
equation. Although the PID controllers are the 

oldest they represent the most used 
controllers in the industrial control 
systems but it is by far the most 
commonly used control algorithm. 

The textbook version of PID controller 
can be described by the equation 

)1()()()()(
0
∫ ++=
t

dt
tdedssetetu δβα  

Three types of PID controller are 
defined. The parallel controller where 
the action P,I and D are independent the 
equation of this type is 

 
Where u is the control variable and e is 
the control error .The controller 
parameters are: the gain, the integral 
time and the derivative time )1)(()( pT

pT
KpEpL d

i
p ++=  

The purpose of the integral action is to 
increase the low-frequency gain and thus 
reduce steady-state errors. The 
Derivation action adds phase lead, which 
improves stability and increases system 
bandwidth. 

 
The serial controller where the gain 
influence the integral and differential 
actions. This equation is 

mailto:arrezaee@yahoo.com


The feedback loop is then broken and 
the system effectively runs open loop. 
When this happens in a controller with 
integral action, the error will continue to 
be integrated and the integral term may 
become very large. 

Implementation of PID controller using 
an FPGA will be discussed in this paper. 
A lot of experience has been 
accumulated over many years of use of 
algorithm. The discrimination will be 
discussed in section 2. 

 The result is a linear digital algorithm 
that is suitable for implementation on 
general purpose digital computer. The 
algorithm can be implemented in a 
straightforward way in the FPGA 
hardware. 

Using this method the integral term 
becomes 
 

)4()()(
0
∫=
t

dssetI  
An overview of AVR (AT mega 128) 
code for PID controller is described in 
section 5. 

 
To obtain an algorithm that can be 
implemented on a computer, three 
methods can be used for integral 
functions approximation: 

Section 7 describes how the ASIC_PID 
can be validated and tested. 
 

 2. Discretization 

2
))()(()(

)()()(.3

)5()()(

)()()(.2

)()(

)()()(.1

1

0

1

0

1

1

0

11

−

=

−

=

−

−

=

−−

+
=

=−

=

=−

=

=−

∑

∑

∑

kk
k

j
k

kkk

k

j
kk

kkk

k

j
kk

kkk

tetehtI

andthetItI

thetIand

thetItI

thetIand

thetItI

 

 
The algorithm (1) has several 
drawbacks. Significant modifications of 
linear and non-linear behavior are 
necessary in order to obtain a useful 
algorithm. To obtain equations that can 
be implemented using computer, it is 
necessary to replace continuous time 
operation like derivation and integration 
by discrete time operations. 
The proportional term )(teα  is 
implemented simply by replacing the 
continuous time Variables by their 
sampled equivalence. The proportional 
term then becomes 

 )2()()( kk tetP α=  
We use incremental method 

1−−=∆ kkk uuu  to compute the action. With and ukk ete =)( kk ut =)(  
Where denotes the sampling instants.  
When a controller operates over a wide 
range of operating conditions, the 
control variable may reach actuator 
limits. 

The use of three types PID controller 
and three possible approximations of 
integral functions involves nine possible 
equations.  

A pure derivative term can be written as We chose to implement the mixed 
controller with trapezoidal 
approximations for three integral since it 
has the minimum to summarize, we find 

)3(
)()(

)( 1

h
tete

tD kk
k

−
= +δ  

Where h is the sampling period. 



that a practical version of the PID 
algorithm can be described by the 
equations (2), (4) and (5). 

• XC4005PC84-4, which has 196 
CLBs and 192 input/outputs for 
the serial architecture. 

Using these equations, the PID output is 
given by equation 

• XC4006PC84-4, which has 256 
CLBs and 61 input/outputs for 
the mixed architecture. 

))2

2/()2/(

2

11

DKDp

ikIDpkkk

KeKK

KeKKKeLL

−

−−

+−−

++++=

 

 
The choice of those part types is the 
best to have optimal implementation. 
In fact, for a largest part type the 
occupation rate is very weak and the 
number of occupied CLBs is very 
high. In this case a big CLBs number 
is partially used. 

 
3. Implementation of PID 
 
Implementation of PID-controller using 
an FPGA is now discussed. 
It is common practice to estimate 
computation times by a simple operation 
count. To improve the speed and 
minimize the cost while offering clearly 
good performances, one mixed 
architecture is used that includes 
essentially: one combinational logic 
multiplier, two adders, and accumulator. 

 
• For parallel architecture: 512 

CLBs for about 88% 
occupation rates. 

• For serial architecture: 176 
CLBs for about 89.8%. 

• For mixed architecture: 225 
CLBs for about 87% 
occupation rate. One finite state machine is in case 

necessary to manage the whole exchange 
and data transfer operations. The Fig. 1 

• Those rate sill high results of 
the sustained attention 
agreed to logic FPGA blocks 
connection in the placement 
.Indeed, the disposition of 
these CLBs facilitates the 
distribution of registers 
content, which follows the 
privileged data circulation 
direction proper to the 
XC4000 family. Some 
constraints were introduced 
on the location of inputs and 
control lines to optimize the 
implementation. 

gives the adopted architecture  

  
4. The PID Simulation figure 1.Mixed PID Architecture 

  
The routing and the placement of PID is 
done for circuits: 

The performances expected for the PID 
module has normally a direct 
relationship with the imposed time 
constrains. 

• XC4013PQ240-4, which has 576 
CLBs and 192 inputs/outputs for 
the parallel architecture. 



The realization of PID circuit for serial 
and mixed architecture being 
synchronous to a basic clock, the 
execution time to directly a multiple of 
this clock cycle. 

For simplicity and to allow the easy 
modification of the important PID gain 
parameters, the AT mega 10-bit analog to 
digital converter was used to derive 10-bit 
resolution inputs from simple trimmer 
potentiometers. The PWM used to drive the 
motor was chosen as 10-bits so that motor 
speed can be defined to approximately 
0.1%, sufficient for most practical 
application. The ATmega128 high resolution 
dedicated PWM unit could have been used 
to increase this to a supersonic 19.5kHz but 
to allow easy porting to other AT mega 
variants this route was not taken. 
Fortunately the use of a 10 bit resolution on 
the inputs and output makes some of the 
arithmetic easier! 

This clock cycle is dependent of the: 
• Execution time or operators 

propagation 
• The finite state machine cycle 
• Some delays added in routed 

circuit 

 

The Atmega128 IO pins are allocated as 
per:  

P2.0 optical chopper encoder input 

 P2.1 channel 2 - PWM drive output 

 P5.0 analog channel 0 - set point input  

P5.1 analog channel 1 - derivative gain input 
P5.2 analog channel1 proportional gain 
input 

 
Figure2. simulation of PID controller 

 
  P5.3 analog channel 1 - integral gain  
5. AVR microcontroller code  

 

The main PID controller routine was 
designed to be fairly general purpose and 
hence modular. Whilst here it is used to 
control a DC motor, it could be re-deployed 
to other situations where some parameter 
has to be controlled to a set value under 
varying conditions. The actual control 
software is located in a single function and 
its major inputs and output are held in a 
structure. Although it was designed originally 
for a specific job it is really only intended as 
an example of the basic techniques involved 
and to allow those with no control system 
knowledge to experiment with a simple PID 
system. 

figure3. Implementation OF PID on 
AVRAtmega28 

 
 
 
 

The routines that gather the inputs and 
process the output are kept in separate 
functions in another module. The code 
vision compiler was used . 



 

 

 
 
 

 
Figure 4.compare of PID on FPGA and    

                          AVR 
 
 
6. Conclusion 
This paper has given an FPGA 
implementation for PID controller. It has 
also shown how the ASIC-PID can be 
implemented on an FPGA. Such 
implementation necessarily requires 
some operators  
architectures(Adder,Mutiplier). 
The same PID algorithm is implemented 
on a AVR(ATmega128). 
 
REFRENCES 
 
[1]Fargeon C. Commande numerique 
des systemes .444 p,1986,masson. 
[2]BUHLER H,Reglagess echantillones. 
382 p,1986 ,Presses polytechniques 
romande. 
[3]The Programmable Gate Array Data 
Book,Xilinx 1991-94. 
[4]KHARRAT M.W.,MASMOUDI 
N.,SAMET L.,KAMOUN L. 
Integration des additionneurs 
numeriques en technologic FPGA JTEA 
8-9 Novembre 1996 
[5]CLAVEZ J.P Specification et 
conception des ASICs,Paris 
1993,Edition MASSON. 
 
 
 


