
Range image recognition based on statistical multiresolution approach 
 

YULIA KEMPNER 

Department  of Computer Science 
Holon Academic Institute of Technology 

52 Golomb Str., P.O. Box 305, Holon 58102 
ISRAEL 

  
 

Abstract: - This paper proposes a robust multiresolution approach to detecting the structure of a noisy range 
image. It is assumed that the original image, consisting of planar and quadratic surfaces, is corrupted by heavy 
noise composed of Gaussian background noise and impulse noise. A basic principle of our approach is the 
exploitation of the structure of scan lines for detecting the image structure. Thus, the main part of our 
algorithm is essentially one-dimensional, allowing a significant decrease in computational complexity. A new 
curve recognition technique based on multiresolution hypothesis testing is suggested. This technique allows us 
to take into account domain knowledge and to improve the efficiency of the method. Finally, a procedure for 
detection, recognition, and reconstruction of surface patches is introduced.  
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1   Introduction 
Many object recognition algorithms using range 
images, since a range image provides geometric 
information about the object independent of the 
position, direction, and intensity of light source 
illuminating the scene. This paper deals with 
localization 3D objects and their recognition. The 
problem has a wide range of application like 
automated visual inspection of industrial parts or 
radar image analysis. The subject of our interest is 
an image corrupted by heavy noise composed of 
Gaussian background noise and impulse noise 
(outliers). Under such a situation, the problem of 
image understanding is almost unsolvable without 
some prior knowledge about the original structure. It 
is assumed that the real image is the corruption of an 
underlying piecewise smooth image with an 
unknown number of both planar and quadratic 
surface patches. This assumption does not severely 
restrict our problems because a wide class of real 
images can be approximated as a combination of 
these basic forms. Thus the work mainly 
concentrates on localization of smooth regions, 
corresponding to distinct smooth surfaces, and on 
recognition of their surfaces contaminated by 
composite noise.  
   Naturally, there are a lot of methods dealing with 
this problem. One of the classical approaches is the 
image segmentation. The problem is that the heavy 
composite noise prevents from the using of standard 
techniques. Thus, the methods, using the local 
operators (for edge detecting or for smooth regions 
restoring) are not able to cope with heavy noise, 

especially in the case when there are no jumps in 
depth function. Hence for structure detection it 
would be reasonable to use global information about 
the image, but many techniques using a global 
information (e.g. MRF models[6]) lead to 
algorithms of high computational complexity and, 
like the more fast methods based on a model 
selection [3], do not handle outliers.  
       In many works the problem of outliers is solved 
by a noise cleaning, but the different filters, 
removing impulsive noise tend to distort structures 
that are not monotone or linear. In our work, we 
introduce a novel outlier cleaning technique that 
detects and removes impulse noise only, but does 
not smooth non-impulse noise that allows keeping 
the image structure. Note, that no noise cleaning 
method ensures perfect outlier detection (especially 
when the magnitude of outliers is not much larger 
than the signal). Therefore, even after noise cleaning 
we should use methods which are robust enough to 
deal with the remaining outliers.  
   Another alternative is to use some robust methods 
[5], but many of these methods suffer from 
drawbacks in detecting the piece-wise structure [10], 
because highly robust statistical techniques are 
frequently found to be insensitive to the transitions 
between smooth regions, considering samples 
belonging to other regions as outliers for the given 
region. 
    Thus, the highly robust methods are insensitive to 
the changes of the depth function structure, and vice 
versa, the methods, sensitive to the piecewise 
structure is not robust. So, we need a new method, 



providing detection the piece-wise structure 
contaminated by heavy composite noise. It must be 
some combination of high sensitivity to changes in 
piecewise structure and robustness. 
   We propose a novel approach, which is based on 
the following principles: 

• Our algorithm exploits the structure of 
scan lines for detecting the image structure. 
Thus, the main part of out algorithm is 
essentially one-dimensional. This approach 
allows significantly decrease the 
computational complexity and 
simultaneously use a global information of 
the image. 

• The method for detecting the scan line 
structure is based on a procedure of 
statistical hypothesis testing which is 
sensitive to changes in signal structure and 
allows coping with outliers. The suggested 
approach allows to take into account domain 
knowledge and thus to construct the 
problem-oriented algorithm that drastically 
improves efficiency of the method. 

• The outlier detection proceeds in two steps. 
In the preprocessing stage we apply an 
outlier cleaning technique that allows the 
percentage of outliers to be reduced from 
the initial situation of up to 25% to no more 
than 5%. The remaining outliers are handled 
by the algorithm for detecting scan line 
structure. 

    There are another works [8,9 ] based on scan line 
approximation technique. The main difference 
between these works and our approach is the method 
of partitioning each scan line into smooth regions. If 
the works [8,9] are based on the heuristic splitting 
algorithm from [7] improving by merging step ( [9]), 
our method is based on a procedure of statistical 
hypothesis testing which is more precise, non-
parametric and allows coping with heavy noise. 
   The main steps of our method are the following: 

• One-dimensional structure detection. 
The set of edge-points and interior labels is 
obtained as follows: the real image is 
divided into rows and columns, and for 
each row (column) the tree of possible 
approximations is built by using a 
multiresolution procedure of statistical 
hypothesis testing; the optimal 
approximation is found as the minimal cost 
path of this tree; the interior points of 
regions are labeled according to the 
approximation, and with it the boundary of 
the regions are declared to be edge-points.  

• Two-dimensional structure detection. 
The wrong labeling, caused by heavy noise, 
is corrected by using the geometrical 
properties (as boundary continuity and 
correlation between rows and columns). 
Some rough segmentation, as set of smooth 
regions interiors (support regions), is 
defined by final set of labels. The regions 
are classified based on domain knowledge, 
and parameters of approximating surfaces 
are robustly estimated for interested us 
models. Finally, the original image or some 
its parts are reconstructed. 

      The one-dimensional algorithm of image 
labeling, including the multiresolution procedure of 
statistical hypothesis testing, and outlier detection 
algorithm are described in Section 2. The image 
labeling algorithm is based on the signal analysis 
technique investigated in [1,4]. Here the technique is 
improved and extended to image analysis. Section 3 
presents the two-dimensional structure detection 
algorithm and demonstrates experimental results.   

 
 
2   One-dimensional image labeling 
A range image is a 2D array of corrupted values of 
the underlying depth function f. A n x n range image 
is given by the value Z(x,y) of a discrete function Z:  
       Z(x,y)=f(x,y) + εxy ,  
where  
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and εxy is a random variable from a complex noise. 
   A scan line of such image is a quadratic curve 
segment in the x-z (y-z) plane. Consider the problem 
of 1D signal structure detection. Let X = [x1,x2,…,xn] 
be an array of n pixels (a row or a column), and       
Z = [z1, z2,…,zn] be an array of n corrupted values of 
the underlying depth function f. We assume that 
value z has the form  
                       zi=f(xi)+εi+ξi,  
where εi is an i.i.d. Gaussian random variable 
N(0,σ2), and ξi  is an i.i.d. random variable from an 
impulse noise. Our model of the impulse noise is the 
following: with a standard probability π impulse 
noise may appear in any point independently as an 
addition to the image value corrupted by background 
Gaussian noise; the addition may be positive as well 
as negative. 
   The preprocessing stage of our algorithm is outlier 
detection. To do this we need to distinguish between 
outliers and regular values of the image (inliers). 
The problem is that the regular values are not the 



values of the underlying function. They are also 
corrupted values, but only by Gaussian noise. 
Knowledge of the background noise (σ) allows us to 
detect outliers. To estimate σ the algorithm 
described in [2] may be used. 
    We propose a three-stage algorithm for outlier 
elimination. In the first stage, called labeling, each 
point is labeled as an outlier or an inlier. To 
distinguish between inliers and outliers we use the 
simple idea that an inlier z(x) has to be close to a 
line L passing through two nearby points and an 
outlier will be far from it, i.e., the null hypothesis 
that z(x) is inlier is accepted if two values z(x) and 
L(x) are close ((|z(x)- L(x)|/σ)<θ). Parameter θ was 
chosen in such a way that a maximum number of 
real outliers were detected, since in this stage we 
prefer to obtain false outliers (which will be detected 
on the second stage) rather than to miss real outliers.   
To improve the outlier detection we perform this test 
repeatedly for different triplets of points, keeping 
the central point fixed. The type of the point is 
determined according to some consensus rule. 
   On the first stage a large percentage of real 
outliers is detected, but at the same time a number 
(till 5%) of false outliers was included into the 
outlier set. The goal of the correction stage is to 
move them into the inlier set. Since most of the false 
outliers lie in the boundary layers, the one-side 
outlier test was used. The one-side test is similar to 
the test described in the previous stage, but nearby 
points is chosen from one side of the detected point.  
   On the last, elimination, stage we remove impulse 
noise and substitute the outlier value by the result of 
a line fitting to three neighboring inlier points. 

   We demonstrate in Fig. 1 (a,b,c,d) the outlier 
detection algorithm for the real range image 
corrupted by heavy Gaussian noise (σ = 10) with 
15% outliers. We can see that not all outliers were 

removed, but the percentage of undiscovered 

outliers is less than 2%.  

 
 

      
 
 
 
 
    
 
       Polynomial curve identification is the main part 
of the algorithm. First, consider a curve segment, 
represented by a (k-1)-order polynomial corrupted 
only by Gaussian noise N(0,σ²). To estimate their 

Fig.1 (a). Noisy image 

Fig. 1 (b). Cleaned image 

Fig. 1 (c). The 100th row of noisy image 

Fig.1 (d). 100th row of cleaned image 



parameters we take k sample pixels from the 
segment: (x1,z1),…,(xk,zk). If k=1 the leading 
coefficient a0= z1, if  k=2 (line) then the leading 
coefficient a1=( z1- z2)/( x1- x2) and so on. Statistical 
estimation of the leading coefficient ak has Gaussian 
distribution with zero mean and variance depending 
on the distances between xi and xj  (i,j=1,2,…,k) and 
on the variance of noise σ². So, if xi+1-xi=∆ for each 
i=1,2,…,k-1, for the constant, linear, and parabolic 
dependences we obtain  
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Therefore, if we have a pattern of test pixels (PTP) 
and a shifted pattern the values of variances of the 
leading coefficients are the same and do not depend 
on the location of PTP. In this way we can obtain a 
set of i.i.d. estimates of leading coefficients. The 
scattering of the estimates may be evaluated by the 
variance estimate s2. Thus by fixing a sets of PTP's 
we obtain nlin and nprb estimates for linear and 
parabolic case; for constant dependence the values 
of the function z(x) play the role of such estimates. 
For each of these three sets of estimates the values 
s²const, s²lin, and s²prb are calculated. If the segment 
has a constant/linear/parabolic form corrupted by 
i.i.d. Gaussian noise with the given variance σ² then 
the corresponding expressions 
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where form is const or lin or prb corresponding, 
have a chi-square probability distribution with 
(nconst-1), (nlin-1), (nprb-1) degrees of freedom, 
respectively. The three null-hypotheses concerning 
constant, linear and parabolic forms of dependence 
are checked independently and a given null-
hypothesis is accepted if corresponding χ² not great 
than χ²α (where α is a pre-established significance 
level). 
    Now consider the optimal approximation of 1D 
signal corrupted by Gaussian noise and by impulse 
noise. To determine the first smooth region we 
consider the set of growing windows and for each 
one we independently test (by using the above-
described algorithm) three null-hypotheses: the 
window may be approximated by a constant, a line 
or a parabola. 
    The rejection of any of these hypotheses at a 
particular point may be caused by two phenomena:  
(a) the presence of outliers inside the tested window 
(in this case the hypothesis is accepted on the tested 
window without some small cutting segment, then 

the window is extended and the basic algorithm is 
repeated) or (b) the change of the signal form. 
    As a result of the first stage we have the longest 
possible constant - [x1,xconst], linear - [x,xlin], and 
parabolic - [x,xprb] regions.  The first stage is 
repeated from the pixel xconst +1 (xlin +1, xprb +1) and 
in this way a K-level tree of possible approximation 
is obtained. 
    Among all the possible approximations (K-paths 
on the tree) we select one of the "minimal 
complexity", which can be computed as 
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where ci is the complexity of the i-region,  and li is 
the length of this region. The complexities of a 
constant, linear and parabolic region were taken as 
1, 1.75, and 2.5 respectively. The reason for this 
weight assignment is to favor one parabolic region 
over two linear or three constant regions. If we have 
not reached the end of the 1D signal we continue the 
process by constructing a new K-level tree.  
    To demonstrate this algorithm consider the image 
in Fig.2 corrupted by additive Gaussian noise with 
σ=2 and 5% outliers. 

Fig. 2. Corrupted range image 

Fig. 3. The 50th row 



   The algorithm was applied to 50-th row of the 
image (Fig. 3). The obtained tree is shown in Fig. 4. 
 

   For this example the optimal path is const-lin-
const-lin with Ctotal = (1+1.75+1+1.75)/80=0.07. 
Final optimal approximation is shown on Fig. 5. 
 

In many cases we have some prior information 
about the expected form of the signal. These 
constraints may be taken into account easily on the 
stage of the search for a minimal complexity path by 
considering only permitted ones. 
 
 
3 Two-dimensional structure 

detection 
The edge-points obtained in the previous stage do 
not necessarily lie on the boundaries. A heavy noise 
may result in the appearance of false edge-points 
and the disappearance or significant change in 
position of the real ones (overlapping effect). Using 
the region continuity we proceed with cleaning the 
set of labels that includes, in particular, overlapping 
analysis and elimination of solitary boundaries. 

Finally, each pixel is labeled as boundary, or as 
interior pixel with double label corresponding to 
vertical and horizontal approximation (e.g. the label 
CP denotes that the pixel belongs to constant region 
of row approximation and to parabolic regions of 
column approximation). On Fig. 6 we may see the 

edge map of the noisy image shown on Fig. 1.  
    To detect a region it is sufficient to have 
information only about a group of pixels which 
almost certainly belong to the interior of a region. 
We call the union of such pixels support region. The 
process of obtaining support regions consists of 
expanding boundaries by adding all neighbors to 
them and thereby forming boundary layers. By 
deleting these layers and eliminating too small parts, 
we obtain the set of support regions. 

 
    For each support region its form is detected by 
analyzing the interior labels. For known form of the 
support region the parameters of the approximating 
surface are estimated by using the technique of 
Iteratively Reweighted Least Squares (IRSL) [5]. 

Fig.4. 4-level approximation tree 

Fig.5. Optimal approximation of 50th row

Fig. 6. Edge map 

Fig. 7. Support regions 



Knowing these parameters, we can restore the whole 
image or the interested us part of it (see Fig. 8.) 
   The experimental results illustrate the advantages 
of the proposed algorithm, which enables detection 
of the original structure of images, corrupted by 
heavy noise with outliers.  

 
4  Conclusion 
 The suggested approach has the following 
advantages: 

• Robustness – detects and reconstructs 
range image surfaces contaminated by 
heavy composite noise. 

• Validity – model selection procedure 
provides statistically justified image 
structure detection. 

• Efficiency – the total running time 

is )( 2
3

NO , where N is a number of data 
points. The line-by-line analysis of the 
image is suitable for parallel computing 
that may reduce the running time to O(N). 

• Adaptability – multiresolution hypothesis 
testing permits the construction of problem-
oriented algorithm by using of prior 
information.  
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Fig. 8. Reconstructed image 

Fig. 9. Range image corrupted by 
Gaussian noise (σ=2.5) and 5% outliers 

Fig. 10. Reconstructed image 


