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Abstract: This paper presents a faster method for robot modelling by direct kinematics using „Complete Kinematical Structure – CKS”. It is a stucture with 3 revolute joints and 3 prismatic joints which can assure a complete positioning and orientation in space for an object attached to its terminal. Its homogeneous transformation operator between fix frame (RF) and mobile frame (RM) is determined. An algorithm for robot modelling by CKS is enunciated. Finally, two applications of some robotic structures are presented. 
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1. Introduction

[image: image1]
Fig. 1
Usually, in order to deal with the complex geometry of a manipulator and to obtain the kinematical equations of the robot models we will attach frames to the various parts of the mechanisms and then describe the relationship between these frames. Since the links of a robot arm may rotate and/or translate with respect to a reference coordinate frame, the total spatial displacement of the end-effector is due to the angular rotations and linear translations of the links [9]. Denavit and Hartemberg [5] proposed a systematic and generalized approach of using matrix algebra to describe and represent the spatial geometry of the links of a robot arm with respect to a fixed reference frame. The advantage of using the DH representation of linkages is its algorithmic universality in deriving the kinematical equation of the robot arm [1], [2], [3], [4]. By DH method results a homogeneous transformation matrix for every couple of two adjacent rigid mechanical links and all those matrices have to be multiplied. Present method is based on DH approach but decreases drastically the number of the matrices and simplifies a lot the calculations of matrix product [10].
2. Complete Kinematic Structure 
We name the kinematical structure from Figure 1 a “complete kinematical structure” (CKS) because, with 3 rotation joints and 3 translation joints, it can assure a complete positioning and orientation in space for an object attached to its terminal. The above mentioned two operations are not uncoupled. This structure is a useful tool for a faster establishing of the kinematical model (direct problem) for the robot arms and helps to resolve the inverse kinematical problems in some situations. 
3. The homogeneous transforma-tion operator TCKS

[image: image2]
Fig. 2
For determining of the transfer homogeneous operator TCKS we will use the DH approach aplicated to the structure from Figure 1. In Figure 2 we presente the maping of the body-attached coordinate frame over the rigid mechanical links by first steps of the DH algorithm. The next steps establish the sets of the DH para-meters for each transformation between two adjacent frames and these sets are presented in Table 1. The joint coordinate vector has the following structure: 
   
q = [1, 1, 2, 2, 3, 3]T                   (1)
Table 1

	
	ai
	i
	di
	i

	T10
	0
	0
	1
	0

	T21
	0
	-
	0
	1

	T32
	0
	0
	2
	0

	T43
	0
	
	0
	2

	T54
	0
	0
	3
	0

	T65
	0
	0
	0
	3


We obtain the general transfer operator TCKS by product between the six intermediate homogeneous transformation operators obtained from Table 1 and by  DH operator [6], [7]:

TCKS = 
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4. Algorithm for kinematical model 
The next algorithm is established as follows:

- The kinematical structure of the robot is determined.

- A suitable representation with symbols of revolute/prismatic joints is made (kinematical schema).

- On this structure, a minimum number of CKSs is identified in order to cover it.
- For each identified CKS, a set of geometrical and movement parameters is appropriately established to the associated area from the kinematical schema.

- For each CKS, a homogeneous transformation operator (1) is calculated with the set of the parameters established to the previous step: T1CKS, T2CKS … 
- If multiple operators result, we make their product to obtain the general transformation operator T.

The homogeneous transformation operator, which makes the transformation between the coordinates of a point P, related to the mobile coordinate frame RM and the point P coordinates related to the reference frame RF considered fix, is presented bellow:

T = T1CKS ∙ T2CKS ∙ ∙ ∙ ∙

(3)

Remark: Using this procedure, a great part of tedious and time-consumer operations of matrix multiplication (present in classical method) is eliminated.

5. Applications
Application 1.
We want to obtain the kinematical model of the robotic structure from Figure 3. This structure is redrawing in figure 4 for an easier comparing with CKS. In Figure 5 we represented the mapping of the necessary frames. After comparing of the structure from Figure 4 with a CKS and determining of the geometrical and moving parameters from Figure 5, we obtain (4):
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Fig. 5
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Those parameters represent entries for the operator TCKS from (2). The expression of TCKS becomes (5):
TCKS = 
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             (5)
Note: By classical methods we obtain the same operator if we have the same position and orientation for the frames R0 (fix) and R2 (mobile).

Application 2. 

In this second case we want to obtain the kinematical model of the robotic structure from Figure 6.

[image: image14]
This structure is a more complex structure and we need 3 CKSs for cover it because there are 3 joints which have the parallel axis. The first CKS covers the first two joints, the second CKS covers the third joint and the third CKS covers the last two joint of the robot. In this case we need to atach 2 intermediary frames: first  (R’) on link index 2 and the second (R’’) on link index 3.  For the first substructure (Figure 7) we identify the parameters (6) of the CKS1 and the operator T1CKS (7) results applying (2), for the second structure (Figure 8) we identify the parameters (8) of the CKS2 and the operator T2CKS (9) results applying (2) and for the last structure (Figure 9) we identify the parameters (10) of the CKS3 and the operator T3CKS (11) results applying (2).
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Fig. 7
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T1CKS = 
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Fig. 8
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T2CKS = 
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Fig. 9
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T3CKS =

[image: image20.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

-

-

1

0

0

0

0

0

4

5

3

4

5

4

5

4

5

5

4

5

4

5

4

5

4

C

d

a

C

S

S

C

S

C

S

S

d

S

S

C

C

C

 (11)
The operator between the end-effector coordinate frame and the reference coordinate frame is:
T(
T1CKS (∙ T2CKS (∙T3CKS (
TARM( ∙ TTERM(

=
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Notations:
S2 = sin 2;  C2 = cos 2;  S23 = sin (2 + 3);   C23 = cos (2 + 3);  S234 = 
sin (2 + 3 + 4);  C234 = cos (2 + 3 + 4) 

6. Conclusions
The direct kinematics problem is reduced to find a transformation matrix that relates the body-attached coordinate frame to the reference coordinate frame using vector and matrix algebra. By Denavit-Hartemberg method a homogeneous transformation matrix results for every couple of two adjacent rigid mechanical links and all those matrices have to be multiplied. This paper presents a faster method for robot modelling by direct kinematics using „Complete Kinematical Structure” which is a stucture with 3 revolute joints and 3 prismatic joints which can assure a complete positioning and orientation in space for a object attached to its terminal. Its homogeneous transformation operator between fix frame and mobile frame is determined and used in an algorithm for robot modelling. Present method is based on DH approach but decreases drastically the number of the matrices and simplifies a lot of the calculations.
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