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Abstract: 
This paper introduces a soft-computing oriented approach to Takagi-Sugeno fuzzy modelling using the 

evolutionary principles. Genetic algorithms are applied to optimize fuzzy input variables space through genetic fuzzy 
clustering procedure and to identify the fuzzy model. Some advanced    procedures e.g. individuals lifetime limitation 
and redundant genes application are used. The presented algorithm allows also the determination of the relevant 
inputs variables of fuzzy model from theirs potential candidates. To clarify the advantages of the proposed approaches 
the numerical example of modelling of fuzzy non-linear system is also introduced.   
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1. Introduction 
 
New research works focused on soft-computing 
methods namely on exploitation of evolution 
approaches in fuzzy modelling and control were started 
at the Department of Measurement and Control FEI 
VSB Technical University Ostrava. The aim of this 
contribution is to provide information concerning 
results of investigation effort aimed on genetic 
algorithms application and fuzzy model identification 
improvement.  
 
In fuzzy modelling technology the suitable fuzzy 
diversifications of input variable space as well as the 
number of linguistic rules determination and their 
structure and/or parameters identification are of crucial 
importance. To investigate soft-computing methods in 
tasks of Takagi-Sugeno (T-S) predictive model [8], [9] 
identification of the genetic algorithms (GA) was 
applied to find out the optimal distribution of cluster 

centres in data processed and proper T-S fuzzy model 
identification.       

         
 
2. Genetic Algorithm in T-S Fuzzy 
Model Identification 
 
2.1 Advanced Genetic Algorithm (A-GA) 
 

The basic idea of a genetic algorithm is quite simple 
[5]. GA works not only with one solution in time but 
with the whole population of solutions. The population 
contains many (ordinary several hundreds) individuals 
– bit strings representing solutions. The mechanism of 
GA involves only elementary operations like strings 
copying, partially bit swapping or bit value changing. 
GA starts with a population of strings and thereafter 
generates successive populations using the following 
three basic operations: reproduction, crossover, and 
mutation. Reproduction is the process by which 
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individual strings are copied according to an objective 
function value (fitness). Copying of strings according 
to their fitness value means that strings with a higher 
value have a higher probability of contributing one or 
more offspring to next generation. This is an artificial 
version of natural selection. Mutation is an occasional 
(with a small probability) random alteration of the 
string position value. Mutation is needed since, in spite 
of reproduction and crossover effectively searching and 
recombining the existing representations, they 
occasionally become overzealous and lose some 
potentially useful genetic material. The mutation 
operator prevents such an irrecoverable loss. The 
recombination mechanism allows mixing of parental 
information while passing it to their descendants, and 
mutation introduces innovation into the population.  

In spite of simple principles, the design of GA for 
successful practical using is surprisingly complicated. 
GA has many parameters that depend on the problem to 
be solved. In the first, it is the size of population. 
Larger populations usually decrease the number of 
iterations needed, but dramatically increase the 
computer time for any iteration. The factors increasing 
demands on the size of population are the complexity 
of the problem being solved and the length of the 
individuals. Every individual contains one or more 
chromosomes containing value of potential solution. 
Chromosomes consist of genes. The gene in our version 
of Advanced GA (A-GA) is a structure representing 
one bit of solution value. It is usually advantageous to 
use some redundancy in genes and so the physical 
length of our genes is greater than one bit. This type of 
redundancy was introduced by Ryan [2]. The structure 
of gene we use is in Figure 1. 
 

 
Fig.1 - The Structure of Gene 

 
To prevent degeneration and the deadlock in local 
extreme the limited lifetime of individual in A-GA can 
be used. Limited lifetime is realized by the “death” 
operator [3], which represents something like continual 
restart of GA. This operator enables decreasing of 

population size as well as increasing the speed of 
convergence. It is necessary to store the best solution 
obtained separately – the corresponding individual need 
not to be always present in the population because of 
the limited lifetime. 
 
Many GAs are implemented on a population consisting 
of haploid individuals (each individual contains one 
chromosome). However, in nature, many living 
organisms have more than one chromosome and there 
are mechanisms used to determine dominant genes. 
Sexual recombination generates an endless variety of 
genotype combination that increases the evolutionary 
potential of the population. Because it increases the 
variation among the offspring produced by an 
individual, it improves the change that some of them 
will be successful in varying and often-unpredictable 
environments they will encounter. Using diploid or 
“multiploid” individuals can often decrease demands 
on the population size. However the use of multiploid 
GA with sexual reproduction brings some 
complications, the advantage of multiploidity can be 
often substitute by the “death” operator and redundant 
genes coding. 
New individuals are created by operation called 
crossover. In the simplest case crossover means 
swapping of two parts of two chromosomes split in 
randomly selected point (so called one point crossover). 
In A-GA we use the uniform crossover on the bit level 
is used. 
 
The strategy of selection individuals for crossover is 
very important. It strongly determines the behaviour of 
GA. For genetic clustering the ranking selection with 
elite brings satisfactory results. 
 
We must consider the mechanisms linking genetic 
algorithm to the solved problem. It is very important to 
find a good encoding of solutions to the bit strings in 
chromosomes. The Gray code is usually used to 
eliminate the Hamming barrier. The second mechanism 
is represented by an objective function. The evaluation 
of this function is the link between the genetic 
algorithm and the problem to be solved. Most of the 
computer time in GAs is spent by evaluating objective 
functions. 

Genetic algorithms commonly use heuristic and 
stochastic approaches. From the theoretical viewpoint, 
the convergence of heuristic algorithms is not 
guaranteed for the most of application cases. That is 
why the definition of the stopping rule of the GA brings 
a new problem. It can be shown [4] that while using a 
proper version of GA the typical number of iterations 
can be determine.  



A-GA we use has the following scheme: 

1. Generation of the initial population: At the 
beginning the whole population is generated 
randomly, the members are sorted by the fitness 
(in descendent order).  

2. Mutation: The mutation is applied to each gene 
with the same probability, all GAs described here 
use pmut = 0.05. The mutation of the gene means 
the inversion of one randomly selected bit in the 
gene. 

3. Death: Classical GA uses two main operations – 
crossover and mutation (the other operation should 
be migration). In A-GA described in this paper, we 
use the third operation – death. Every individual 
has the additional information – age. A simple 
counter that is incremented in each of GA 
iterations represents the age. If the age of any 
member reaches the preset lifetime limit LT, this 
member "dies" and is immediately replaced by a 
new randomly generated member. The age is not 
mutated nor crossed over. The age of new 
individuals (incl. individuals created by crossover) 
is set to zero. Lifetime limit in our application is 
set to 5. 

4. Sorting by the fitness. 

5. Crossover: Uniform crossover is used for all genes 
(each bit of the offspring gene is selected 
separately from corresponding bits of both 
parent’s genes).  

6. Go to step 2. 

In crossover, we do not replace all members of the 
population. The crossover generates the number of 
individuals corresponding to the quarter of the 
population only. Created individuals are sorted into the 
corresponding places in the population according to 
their fitness in such a way that the size of the 
population remains the same. Newly created offspring 
of low fitness do not have to be involved in the 
population.  

 
2.2 A-GA in Task of Fuzzy Model Identification 
 
The method of fuzzy genetic clustering is inspired by 
[5]. In the beginning the centre of clusters are 
generated. We do not use randomly generated centres, 
but the centres equidistantly cover the space of input 
data. The number of centres is the parameter of the task 
and is entered manually. The second parameter is a 
shape of fuzzy sets. The value bits in chromosomes 
represents if the corresponding cluster is used or not 
(one bit for each cluster) and the parameters of fuzzy 

sets (eight bits for each fuzzy set, the total number of 
bits depends on the dimension of the space of input 
variables and on the number of clusters, in our case 
sixteen bits for each cluster). In our example we use the 
triangular fuzzy sets and the parameters means the 
shape of fuzzy set. Fuzzy sets parameters use the Gray 
code.  

We denote the input data points, nxxx K,, 21 ,  is the 
number of data points, the number of clusters is . The 
objective function we use has the form 
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( )ij xµ  is the membership value of the point ix  to the j-
cluster. We search for minimum of ( )xf .  

The objective function described above does not affect 
all disadvantageous situations possible and we must use 
some penalization. The unacceptable case occurs, when 
we can observe point that does not belong to any 
cluster. The penalty value is 100 for each point. The 
extreme situation occurs when no point belong to any 
cluster, the objective function value for this improbable 
case is 1099. The penalization is also used, when we 
have cluster that does not contain any data point (or 
when any cluster contains very low number of points – 
the value depends on input data). In this case, the 
objective function is multiplied by 4 for each “empty” 
cluster. 

Because we have relatively short chromosomes in our 
example, we can use small population (200 individuals) 
and the convergence is very fast. The typical course of 
convergence is shown in Figure 2. 
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Fig. 2 - The Convergence of A-GA 

Next, the above-mentioned A-GA genetic algorithm we 
use in task of non-linear fuzzy system modelling [7]. 
 
 
 
 



3. Case Study 
 
The A-GA procedures were tested through modelling 
and identification of simple non-linear fuzzy system 
with three inputs and one output variable. The eight 
rules of initial T-S fuzzy system were determined 
(Figure 3) and input/output data set was generated. 
 

IF (x1 is S) AND (x2 is S) AND (x3 is S) THEN 
y1 = 3.2x1 + 2.2x2 + 0.05x3 + 1 

IF (x1 is S) AND (x2 is H) AND (x3 is S) THEN 
y2 = 2.5x1 + 2.3x2 + 0.06x3 + 4 

IF (x1 is H) AND (x2 is S) AND (x3 is S) THEN 
y3 = 0.3x1 + 3.0x2 + 0.05x3 + 5 

IF (x1 is H) AND (x2 is H) AND (x3 is S) THEN 
y4 = 0.9x1 + 0.9x2 + 0.06x3 + 7 

IF (x1 is S) AND (x2 is S) AND (x3 is H) THEN 
y5 = 3.2x1 + 2.2x2 + 0.06x3 + 1 

IF (x1 is S) AND (x2 is H) AND (x3 is H) THEN 
y6 = 2.5x1 + 2.3x2 + 0.05x3 + 4 

IF (x1 is H) AND (x2 is S) AND (x3 is H) THEN 
y7 = 0.3x1 + 3.0x2 + 0.06x3 + 5 

IF (x1 is H) AND (x2 is H) AND (x3 is H) THEN 
y8 = 0.9x1 + 0.9x2 + 0.05x3 + 7 

 
Fig. 3 – Initial Three-Inputs Fuzzy System 

 
Input 1 (x1): S (0, 0, 8), H (4, 10, 10). Input 2 (x2):  
S (0, 0, 7), H (3, 12, 12). Input 3 (x3): S (0, 0, 6),  
H (5, 11, 11). 
 
Firstly the procedure of relevant system inputs selection 
was applied.  
 
3.1 A Relevant Input Variables Selection 
 
If more input variable candidates exist for the inputs to 
the system, we can determine relevant pre-defined 
number of them through procedure using a 
combinatorial approach. We take a heuristic method to 
select some inputs and increase the number of 
combinatorial steps watching a regularity criterion.   
 
Let us consider a fuzzy system with n inputs and one 
output (which is representing a nonlinear function) and 
a set of output values of this system for randomly 
chosen inputs. In general, let X be a set of possible 
input candidates x1, x2, ... , xn  then the total number of 
cases is the number of subsets except an empty subset 
of X, i.e., 2n - 1. Here we take a heuristic method to 
select some inputs from among the candidates. We 
increase the number of inputs one by one, watching a 
suitable criterion [6]. First, we divide the data into two 
groups: A (first half of the data) and B (second half of 

the data). As a criterion to this purpose, we use the so-
called regularity criterion RC, in GMDH (group 
method of data handling), which is defined as follows 
[6]: 
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where kA and kB are the number of data of the groups A 
and B, yi

A and yi
B are the output data of the groups A 

and B. Next the yAB represents the model output for the 
group A input estimated by the model identified using 
the group B data and yBA the model output for the group 
B input estimated by the model identified using the 
group A data. Therefore, we build two models for two 
data groups at each stage of the identification. First, we 
begin with a fuzzy model with one input. We make n- 
models: one model for one particular input. After the 
identification of the models using the data groups A and 
B, we calculate RC of each model and select one model 
to minimize RC from among the one-input models. 
Next, we fix the one input selected above and add 
another input to our fuzzy model from among the 
remaining three candidates. Our fuzzy model has two 
inputs at this stage. We select the second input as we do 
at the first step, according to the value of RC. We 
continue the process until the value of RC increases. If 
the value of RC becomes bigger in all cases in some 
step then in the previous one, the process is terminated 
and the combination of inputs with the smallest RC 
value is the result of our selection. 
 
In our case, we find out 2 relevant input variables from 
3 possible candidates. The minimum of RC criterion 
was calculated (RC=1.9303) and relevant inputs x1 and 
x2 were determined for future model identification 
(Figure 4). 
 

IF (x1 is S) AND (x2 is S) THEN 
y1 = 3.2x1 + 2.2x2 + 1 

IF (x1 is S) AND (x2 is H) THEN 
y2 = 2.5x1 + 2.3x2 + 4 

IF (x1 is H) AND (x2 is S) THEN 
y3 = 0.3x1 + 3.0x2 + 5 

IF (x1 is H) AND (x2 is H) THEN 
y4 = 0.9x1 + 0.9x2 + 7 

    
Fig. 4 – Rules of Initial Reduced Fuzzy System 

Input 1 (x1): S (0, 0, 8), H (4, 10, 10). Input 2 (x2):  
S (0, 0, 7):  H (3, 12, 12). 
 
The shape of input/output dependence of determined 
two-dimensional non-linear system is shown in Figure 
5. 



 
Fig. 5 – Shape of Two-Dimensional Function 

 
Using values of two inputs x1, x2 the initial two-
dimensional fuzzy input space was defined using data-
points in Figure 6.  
  

 
Fig. 6 – Two-Dimensional Input Space 

 
3.2 Data Fuzzy Clustering and Rule Premise Part 
Determination  
 
The data set of initial input space diversification 
(Figure 4) was investigated using fuzzy clustering A-
GA algorithm to find out the suitable number and fuzzy 
approximation of input variable terms. The results of 
this procedure are shown in Figure 7 and Figure 8. Both 
of two inputs variables x1, x2 are expressed using two 
linguistic terms – namely SMALL (S) and HIGH (H).   

 

 
 

Fig. 7 – Linguistic Terms of x1 

 
Fig. 8 – Linguistic Terms of x2 

 
Using results of genetic fuzzy clustering the premises 
structure and parameters of 4 rules was done and 
antecedent part of identified fuzzy T-S model was 
obtained.    
 
3.3 Rule Consequent Parts Determination 
 
Next, the consequent part of T-S model was identified 
using GA procedure of genetic toolbox of MATLAB 
and final fuzzy T-S model was obtained (Figure 9). 
 

IF (x1 is S) AND (x2 is S) THEN 
y1 = 3.507x1 + 1.736x2 + 0.1082 
IF (x1 is S) AND (x2 is H) THEN 
y2 = 2.487x1 + 2.163x2 + 5.497 

IF (x1 is H) AND (x2 is S) THEN 
y3 = 0.7395x1 + 4.142x2 + 1.019 

IF (x1 is H) AND (x2 is H) THEN 
y4 = 0.1535x1 + 1.766x2 +4.076 

 
Fig. 9 – Rules of Final Fuzzy Model 

 
Input 1 (x1): S (-7.808, 0.0362, 7.881), H (3.888, 9.999, 
16.11). Input 2 (x2): S (-8.985, 0.0063, 8.997),  
H (-2.763, 11.98, 26.72). 
 
The GA algorithm of MATLAB we used started with 
next parameters: size of population N = 800 
individuals, generation number limit t = 1500 
generations, information was coded into chromosomes 
as a chain of real numbers with 16 genes. As a selection 
method the tournament selection between 2 individuals 
was used, as a crossover method the arithmetic 
crossover and as a mutation method the uniform 
mutation were used. As a termination condition the 
generation limit reached is used. Fitness function has 
the following formula 
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where N is the number of samples. The value y is an 
output of the reference fuzzy model. yGA is an output 
value of the fuzzy model being designed by the genetic 
algorithm.  
 
The course of fitness function convergence we can see 
in Figure 10. 
 



 
Fig. 10 – Course of Fitness Convergence 

 
The shape of final model input/output non-linear 
function is shown in Figure11. 
 

 
Fig. 11 – Shape of Final Function  

 
3.4 Final Fuzzy Model Testing 
 
The final results of identification process can be judged 
subjectively to compare both of the function shapes in 
the Figures 5 and Figure 11. To calculate the error 
criterion 
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we can obtain the relative error of final model of value 
1.659%. 
 
4. Conclusion 
 
The main problem of fuzzy data clustering is to find out 
a suitable number and shape of data clusters to achieve 
satisfying results of next fuzzy modelling.     

In approach presented the input data fuzzy 
partition is modified in such a way that the suitable 
fuzzy clusters are determined using the advanced 
genetic algorithm. Some effective procedures namely 
individual lifetime limitation and the redundant genes 
application are used. In this method, the computational 
effort is bigger when conventional iterative methods 
rarely fall in local extreme. The method delivers 

sufficient convergence speed with initial equidistant 
data clusters centre distribution.   

The results of genetic fuzzy clustering 
procedure and the suitable diversification of fuzzy 
model input space is done including the number of 
input variable linguistic values and appropriate 
approximation of their membership functions as well. 
The numerical example proved effectiveness of 
proposed methods. The model identification algorithms 
include the procedure of pre-defined relevant number 
of input variables selection.   

The future research works will be focused on 
hierarchical and parallel GAs application to increase 
the necessary computational effort.  
 
Acknowledgments: 
 
This work has been supported by the GACR project 
102/05/H525: “The Postgradual Study Rationalization 
at Faculty of Electrical Engineering and Computer 
Science VSB-TU Ostrava”. 
 
References: 
 

[1] Golgberg,D.E.: Genetic Algorithms in Search, 
Optimization and Machine Learning, Addison-Wesley 
Pub. Comp., INC, 1989, ISBN 0-201-15767-5 

[2] Ryan, C.: Shades. Polygenic Inheritance Scheme. In 
Proceedings of MENDEL ’97,Brno, 1997, pp.140-147. 

[3] Roupec, J.: Design of Genetic Algorithm for 
Optimisation of Fuzzy Controllers Parameters. (In 
Czech) Ph.D. Thesis, Brno University of Technology, 
Brno, 2001. 

 [4] Roupec, J. – Popela, P. – Ošmera, P.: The 
Additional Stopping Rule for Heuristic Algorithms. In 
Proceedings of Mendel ’97, Brno, 1997. pp. 135–139 

[5] Pistauer,M.: Clustering Algorithms for process data 
Analysis, Proc.15-th IASTED, Innsbruck, 1996, 
pp.137-139 

[6] Sugeno,M.,Yasukawa,T.: A Fuzzy-Logic Based 
Approach to Qualitative Modelling, IEEE Trans. on 
Fuzzy Systems, 1, No.1, 1993, pp.7-31 
 
[7] Pokorný,M.: Umělá inteligence v modelování a 
řízení, BEN Praha, 1996, ISBN 80-901984-4-9  
 
[8] Sugeno,M., Kang,G.T.: Structure Identification of 
Fuzzy Model, Fuzzy Sets and Systems, 28, 1988   
 
[9] Takagi,T., Sugeno,M.: Fuzzy Identification of 
Systems and Its Application to Modelling and Control, 
IEEE Trans. on Systems, MAC, Vol.15, No.1, 1985  


	Acknowledgments:

