
Impact of priority levels on the efficiency of priority switching

KAROL MOLNÁR, PAVEL RAJMIC
Department of Telecommunications, Faculty of Electrical Engineering and Communication

Brno University of Technology
Purkyňova 118, Brno
CZECH REPUBLIC

Abstract: - The paper deals with a neural network controlled switch fabric with frame prioritization support. The
impact of priority levels on the functionality and efficiency of this switch fabric was deeply investigated. The results of
the studies related to the impact of the amount of priority levels are published in this paper.

Key-Words: - Hopfield neural network, switch fabric, prioritization, priority levels

1 Introduction
Our first results in designing a neural network controlled
switch fabric with priority support were published in [1].
The model presented there was further analyzed and
optimized. The analysis, focused on the impact of the
amount of priority levels on the system, just has been
finished and evaluated. This paper summarizes the
results.
The paper is organized in the following way: In the next
chapter the priority switching problem is introduced
form the mathematical point of view. The third chapter
introduces the switch fabric model used during our
analysis. The fourth chapter describes the requirements
on priority level analysis, and the fifth chapter
summarizes the results.

2 Priority switching
In the case of classical data switches all the frames are of
the same priority. This means that a classical switch is
not able to process selected frames prior to processing
others. The processing order of the frames is derived
from their receiving order. This property has a very
undesirable effect on real-time network applications. In
the case of such an application, correct timing is
essential and blocking the frames in the switch fabric can
cause an incorrect function of the application.
Modern multimedia applications require the network to
support Quality of Service (QoS). The physical
realization of QoS support in a switch can be realized by
assigning different priority levels to the frames received.
The assignment procedure depends on the QoS
technology implemented and is beyond the of scope of
this work. Based on the assigned priority the switch can
decide which frames must be processed first. Since the
switch has usually several ports, the decision process is
quite complex. During our work a switch with a crossbar
switch fabric and input buffers was modeled.

2.1 Mathematical model of the switch
The input buffer of each port of the switch can be
described by a vector. Each element of the vector
corresponds to one output port in the switch. This means
that the number of elements in the vector is equal to the
number of ports. The first element corresponds to the
first output port, the second element to the second one,
etc. The value of the elements is equal to the priority of
the frame that must be forwarded to this port. If there is
no frame for the given output port, the element will be
equal to the lowest priority level.
For example, if 0 corresponds to the highest and 255 to
the lowest priority, vector (0, 5, 255, 255) means that in
a four-port switch there is buffer that contains a frame
with priority 0, which must be forwarded to the first
output port, and another frame with priority 5, which
must be forwarded to the second port. There are no
frames for the third and fourth output port. In this
example there are 256 priority levels. The impact of the
amount of priority levels on the efficiency is the main
interest of this work.
Each port of the switch can be described in this way.
Collecting these vectors we get a matrix expressing the
recent state of all buffers. This matrix will be used for
our optimization process and it will be called
optimization matrix and marked C.

2.1 The optimization process
The aim of the optimization process is to find the
optimal combination of frames that can be sent out
through the output ports. This means that we must derive
from the optimization matrix a configuration matrix
describing the optimal configuration (on and off states)
of the switches in the switch fabric. The configuration
matrix can be thought of as a filter matrix containing
elements with value 1 in the places corresponding to the
selected elements in the optimization matrix and value 0
for all the other elements. It is important to realize that at

mailto:molnar@feec.vutbr.cz
mailto:rajmic@feec.vutbr.cz

one time only one frame can be forwarded from one
input to one output. Thus, the configuration matrix must
contain just one element with value 1 (on-state of the
switch) in each row and each column. These limitations
express the confinement criteria of the priority switching
problem.













































=

10...010...01...0
.....
.....
.....
0010...010...010
0...010...010...01
1...110......0
..
..
..
0...01...110...0
0...01..11

A

 (3)

There are several combinations fulfilling these
confinement criteria. From this set of valid solutions we
must select the best one. If 0 is assigned to the highest
priority and larger values correspond to lower priorities,
it is considered to be the best solution when the sum of
the selected priority values is minimal.
Works [2] and [3] contain useful information on how to
express confinement criteria so that they may be suitable
for processing by the Hopfield neural network.

All elements in vector b will be ones.

The Hopfield neural network is based on solving an
iteration process. In our case the result of this iteration
process is a configuration matrix, containing only values
0 and 1 and fulfilling the previous confinement criteria.
This configuration matrix is the final state of the neural
network state matrix V updated in each iteration cycle.
Before the first iteration step this state matrix is
generated randomly.

b = (1, 1, …, 1)T (4)

If equation (2) is valid, the first n rows of matrix A will
guarantee that only one active element will be in each
row of the output matrix. The following n rows will
guarantee that only one active element will be in each
column of the output matrix, and their combination into
matrix A will guarantee that the total number of active
elements will be n. In many cases the rows of matrix A
will be linearly dependent. Since the determinant of
matrix A will be calculated later, the number of rows of
matrix A (and vector b correspondingly) must be
reduced to make them linearly independent.

The state matrix V can be transformed into a state vector
v using operation vec. Operation vec takes the columns
of the matrix in the argument and arranges them one by
one in vertical direction into a vector. The relation
between output matrix V and the vector form of the
output can be expressed by (1):

v = vec (V) = [v1, v2, … , vn]T (1) The object function of the optimization problem is used

to evaluate the suitable solutions. Depending on the
optimization problem the object function is either
minimized or maximized. In our case the object function
equals the sum of the priorities of the frames selected for
transfer. During the solution of the priority switching
problem we seek an object function with the lowest
value. The object function f(v) can be expressed as

>∈<≥ nivi ;1 allfor 0

Using the state vector v the confinement criteria can be
expressed in matrix form by (2):

A.v = b (2)
 f(v) = cTv (5) In the case of the priority switching problem the
dimension of matrix A will be 2n x n2, where n is the
number of the ports. The structure of the first n rows is
as follows: the first row will start with a block of n ones
continued with n-1 blocks of n zeros. The second row
will start with a block of n zeros, continued with a block
of n ones and n-2 blocks of n zeros. The third row will
start with 2 blocks of n zeros, a block of n ones and n-3
blocks of n zeros, etc. Beginning with the (n+1)th row
the structure will be different. In the (n+1)th row there
will be ones at the 0th, nth, 2nth, etc. positions. In the
(n+2)th row there will be ones at the 1st, (n+1)th, (2n+1)th,
etc. positions. All the other elements will be zero. This
structure is shown in (3).

where vector c contains weights assigned to the
corresponding frames. Vector c is derived from the
optimization matrix C using operation vec. If the frame
is selected, the corresponding weight value is added to
the total sum.
From the knowledge of matrix A (3) and vector b (4) the
transformation function (6) can be constructed

svv +← .zsT . (6)

Transformation matrix Tzs is defined by (7) and vector
s is defined by (8).

Tzs = I – AT(AAT)–1A (7)

s = AT(AAT)–1 b (8)

Transformation matrix (6) ensures the convergence of
the iteration process to a solution fulfilling the
confinement criteria. Of course, fulfilling the
confinement criteria is not enough. The solution also
must minimize object function (5). This is achieved
when the state vector v is updated during the iteration
process by dv, where

Fig. 2 Block diagram of the neural network

dv/dt = Top.v + iop (9)

and Top and iop are expressed by (10) and (11)

Top = γ (Tzs - I) (10)

iop = γs - c (11)

The block diagram of the neural network consists of two
loops. The upper loop is responsible for the confinement
criteria and the lower loop is responsible for minimizing
object function (5). The operations related to the
confinement criteria can be separated into two parts. The
first part, defined by (6), ensures that the sum of all
elements of the state matrix V in each row and each
column will be equal to 1. The second part, the neurons
activation function (7)

 More details about these transformations can be found in
[2] and [3].









>
≤≤

<
=

1for 1
10for

0for 0
)(

xi

xixi

xi

xi

u
uu

u
ug

 (7)

3 Neural network controlled switch fabric
A neural network controlled switch architecture is shown
in Fig 1. Such an architecture but with another type of
neural network was presented in [4].

ensures that the output values will remain in the range
<0; 1>.

4 Analysis of priority levels
The aim of the analysis was to specify the impact of the
amount of priority levels on the efficiency of the
iteration process. There are two contradictory
requirements on the amount of priority levels. First, the
larger the amount of priority values the finer the division
of the traffic processed by the switch. From another
point of view, increasing the number of priority levels
increases the hardware requirements. It also substantially
increases the number of required iteration steps. This
leads to an increase in operation time, which is very
critical in the case of fast frame switching.
As it came out from the results of the analysis, an
extremely small amount of priority values messes up the
algorithm and leads to invalid solutions. The amount of
priority levels was determined by the number of bits
used to express the elements of optimization matrix C.

Fig. 1 Neural network controlled frame switch

From the previous chapter it can be seen that the neural
network realizes two separate operations. The first
operation is related to the confinement criteria and the
second is related to the object function. The neural
network can be modelled by a block diagram shown in
Fig. 2.

The Matlab environment was used to create the
simulation model used for the analysis. The results
generated by the Matlab model were evaluated from two
points of view. First, the number of iteration steps
needed to converge to a stable state value was evaluated.

Second, the successfulness of the iteration process was
tested. The iteration process was considered successful if
the generated result fulfilled the criteria specified earlier.

5 Impact of the amount of priority levels
The next charts summarize the results of extended
testing focused on the impact of the amount of priority
levels. The analysis was performed for several numbers
of ports n in the range <3; 15>. For each value of n, 14
different numbers of bits were tested in the range <1;
20>. With each number of bits, 40 independent tests
were executed with randomly generated state and
optimization matrixes.
The first chart in Fig. 3 shows the relation between the
number of bits used to express priority levels and the
average number of iterations needed to reach the stable
state for n = 3, 9 and 15. Only successful iteration
processes, i.e. those whose final stable state fulfilled the
confinement criteria, were considered.

Fig. 3 Dependence of the average number of iterations
on the number of bits

The second chart in Fig. 4 shows the relation between
the number of bits used to express priority levels and the
successfulness of the iteration process for n = 3, 9, 15.

Fig. 4 Dependence of the successfulness of iteration on

the number of bits
The previous charts show that by increasing the number
of bits up to a certain value (7 or 8, depending on n) the

successfulness is rapidly increasing, but still further
increase has no significant effect on the successfulness.
It also can be seen that for very large values of bits
(about 18 or 20) the successfulness starts to decrease. On
the other hand, by increasing the number of bits the
average number of iterations is increased. At the
beginning this rise is quite steep, but for larger values it
becomes more moderate.

6 Conclusion
Based on the results of the analysis some general
statements about the behaviour of the system can be
formulated: As the number of nodes is increasing, the
overall successfulness of processes is decreasing. Within
the scope of a given number of nodes with 1 byte used to
express the priority values the neural network operates
effectively and the number of required iteration steps is
relatively low. As the number of bits increases, the
average number of iteration cycles increases. This trend
culminates at about 10–14 bits and for more bits the
average number of iteration cycles tends to decrease
moderately.
If a single process does not reach the solution within the
number of about four-five times the average number of
iteration cycles, it is highly probable that the process will
not converge to a solution at all.

References:
[1] Karol Molnár, Vít Vrba, Frame priorization support

for switch fabrics, 3rd International Conference on
Networking, Gosier, 2004, pp. 141 - 146, ISBN 0-
86341-326-9

[2] Sreeram V. Balakrishnan-Aiyer, Solving combinato-
rial optimization problems using neural networks
with applications in speech recognition, University
of Cambridge, United Kingdom, 1991

[3] Andrew H. Gee, Problem solving with optimization
networks, University of Cambridge, United
Kingdom, 1993

[3] Kate A. Smith, Solving combinatorial optimization
problems using neural networks, University of
Melbourne, Australia, 1996

[4] Terry Troudet, Stephen M. Walters, Neural Network
Architecture for Crossbar Switch Control, IEEE
Transaction on Circuits and Systems, vol. 38, No. 1,
1991

This paper has been supported by the Grant Agency of
the Czech Republic (Grant No. 102/03/0560) and the
Ministry of Education of the Czech Republic (projects
No. 1K03026 and 1K04116).

