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Abstract: - The paper deals with a neural network controlled switch fabric with frame prioritization support. The 
impact of priority levels on the functionality and efficiency of this switch fabric was deeply investigated. The results of 
the studies related to the impact of the amount of priority levels are published in this paper. 
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1   Introduction 
Our first results in designing a neural network controlled 
switch fabric with priority support were published in [1]. 
The model presented there was further analyzed and 
optimized. The analysis, focused on the impact of the 
amount of priority levels on the system, just has been 
finished and evaluated. This paper summarizes the 
results. 
The paper is organized in the following way: In the next 
chapter the priority switching problem is introduced 
form the mathematical point of view. The third chapter 
introduces the switch fabric model used during our 
analysis. The fourth chapter describes the requirements 
on priority level analysis, and the fifth chapter 
summarizes the results. 
 
 
2   Priority switching 
In the case of classical data switches all the frames are of 
the same priority. This means that a classical switch is 
not able to process selected frames prior to processing 
others. The processing order of the frames is derived 
from their receiving order. This property has a very 
undesirable effect on real-time network applications. In 
the case of such an application, correct timing is 
essential and blocking the frames in the switch fabric can 
cause an incorrect function of the application. 
Modern multimedia applications require the network to 
support Quality of Service (QoS). The physical 
realization of QoS support in a switch can be realized by 
assigning different priority levels to the frames received. 
The assignment procedure depends on the QoS 
technology implemented and is beyond the of scope of 
this work. Based on the assigned priority the switch can 
decide which frames must be processed first. Since the 
switch has usually several ports, the decision process is 
quite complex. During our work a switch with a crossbar 
switch fabric and input buffers was modeled. 
 

2.1 Mathematical model of the switch 
The input buffer of each port of the switch can be 
described by a vector. Each element of the vector 
corresponds to one output port in the switch. This means 
that the number of elements in the vector is equal to the 
number of ports. The first element corresponds to the 
first output port, the second element to the second one, 
etc. The value of the elements is equal to the priority of 
the frame that must be forwarded to this port. If there is 
no frame for the given output port, the element will be 
equal to the lowest priority level. 
For example, if 0 corresponds to the highest and 255 to 
the lowest priority, vector (0, 5, 255, 255) means that in 
a four-port switch there is buffer that contains a frame 
with priority 0, which must be forwarded to the first 
output port, and another frame with priority 5, which 
must be forwarded to the second port. There are no 
frames for the third and fourth output port. In this 
example there are 256 priority levels. The impact of the 
amount of priority levels on the efficiency is the main 
interest of this work. 
Each port of the switch can be described in this way. 
Collecting these vectors we get a matrix expressing the 
recent state of all buffers. This matrix will be used for 
our optimization process and it will be called 
optimization matrix and marked C. 
 
 
2.1 The optimization process 
The aim of the optimization process is to find the 
optimal combination of frames that can be sent out 
through the output ports. This means that we must derive 
from the optimization matrix a configuration matrix 
describing the optimal configuration (on and off states) 
of the switches in the switch fabric. The configuration 
matrix can be thought of as a filter matrix containing 
elements with value 1 in the places corresponding to the 
selected elements in the optimization matrix and value 0 
for all the other elements. It is important to realize that at 
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one time only one frame can be forwarded from one 
input to one output. Thus, the configuration matrix must 
contain just one element with value 1 (on-state of the 
switch) in each row and each column. These limitations 
express the confinement criteria of the priority switching 
problem. 
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There are several combinations fulfilling these 
confinement criteria. From this set of valid solutions we 
must select the best one. If 0 is assigned to the highest 
priority and larger values correspond to lower priorities, 
it is considered to be the best solution when the sum of 
the selected priority values is minimal. 
Works [2] and [3] contain useful information on how to 
express confinement criteria so that they may be suitable 
for processing by the Hopfield neural network. 

 
All elements in vector b will be ones. 

The Hopfield neural network is based on solving an 
iteration process. In our case the result of this iteration 
process is a configuration matrix, containing only values 
0 and 1 and fulfilling the previous confinement criteria. 
This configuration matrix is the final state of the neural 
network state matrix V updated in each iteration cycle. 
Before the first iteration step this state matrix is 
generated randomly. 

 
b = (1, 1, …, 1)T (4) 

 
If equation (2) is valid, the first n rows of matrix A will 
guarantee that only one active element will be in each 
row of the output matrix. The following n rows will 
guarantee that only one active element will be in each 
column of the output matrix, and their combination into 
matrix A will guarantee that the total number of active 
elements will be n. In many cases the rows of matrix A 
will be linearly dependent. Since the determinant of 
matrix A will be calculated later, the number of rows of 
matrix A (and vector b correspondingly) must be 
reduced to make them linearly independent. 

The state matrix V can be transformed into a state vector 
v using operation vec. Operation vec takes the columns 
of the matrix in the argument and arranges them one by 
one in vertical direction into a vector. The relation 
between output matrix V and the vector form of the 
output can be expressed by (1): 
 
v = vec (V) = [v1, v2, … , vn]T (1) The object function of the optimization problem is used 

to evaluate the suitable solutions. Depending on the 
optimization problem the object function is either 
minimized or maximized. In our case the object function 
equals the sum of the priorities of the frames selected for 
transfer. During the solution of the priority switching 
problem we seek an object function with the lowest 
value. The object function f(v) can be expressed as 
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Using the state vector v the confinement criteria can be 
expressed in matrix form by (2): 
 
A.v = b  (2)  
 f(v) = cTv (5) In the case of the priority switching problem the 
dimension of matrix A will be 2n x n2, where n is the 
number of the ports. The structure of the first n rows is 
as follows: the first row will start with a block of n ones 
continued with n-1 blocks of n zeros. The second row 
will start with a block of n zeros, continued with a block 
of n ones and n-2 blocks of n zeros. The third row will 
start with 2 blocks of n zeros, a block of n ones and n-3 
blocks of n zeros, etc. Beginning with the (n+1)th row 
the structure will be different. In the (n+1)th row there 
will be ones at the 0th, nth, 2nth, etc. positions. In the 
(n+2)th row there will be ones at the 1st, (n+1)th, (2n+1)th, 
etc. positions. All the other elements will be zero. This 
structure is shown in (3).  

 

where vector c contains weights assigned to the 
corresponding frames. Vector c is derived from the 
optimization matrix C using operation vec. If the frame 
is selected, the corresponding weight value is added to 
the total sum. 
From the knowledge of matrix A (3) and vector b (4) the 
transformation function (6) can be constructed 

 

svv +← .zsT . (6) 

Transformation matrix Tzs is defined by (7) and vector 
s is defined by (8).  



 
Tzs = I – AT(AAT)–1A (7) 

s = AT(AAT)–1 b (8) 

 

 

Transformation matrix (6) ensures the convergence of 
the iteration process to a solution fulfilling the 
confinement criteria. Of course, fulfilling the 
confinement criteria is not enough. The solution also 
must minimize object function (5). This is achieved 
when the state vector v is updated during the iteration 
process by dv, where  

Fig. 2 Block diagram of the neural network 
 

 
dv/dt = Top.v + iop (9) 

 
and Top and iop are expressed by (10) and (11) 
 
Top = γ (Tzs - I) (10) 

iop = γs - c (11) 

The block diagram of the neural network consists of two 
loops. The upper loop is responsible for the confinement 
criteria and the lower loop is responsible for minimizing 
object function (5). The operations related to the 
confinement criteria can be separated into two parts. The 
first part, defined by (6), ensures that the sum of all 
elements of the state matrix V in each row and each 
column will be equal to 1. The second part, the neurons 
activation function (7)   

 More details about these transformations can be found in 
[2] and [3]. 
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3 Neural network controlled switch fabric 
A neural network controlled switch architecture is shown 
in Fig 1. Such an architecture but with another type of 
neural network was presented in [4]. 

 

ensures that the output values will remain in the range 
<0; 1>.  
 

 

 
4   Analysis of priority levels 
The aim of the analysis was to specify the impact of the 
amount of priority levels on the efficiency of the 
iteration process. There are two contradictory 
requirements on the amount of priority levels. First, the 
larger the amount of priority values the finer the division 
of the traffic processed by the switch. From another 
point of view, increasing the number of priority levels 
increases the hardware requirements. It also substantially 
increases the number of required iteration steps. This 
leads to an increase in operation time, which is very 
critical in the case of fast frame switching. 
As it came out from the results of the analysis, an 
extremely small amount of priority values messes up the 
algorithm and leads to invalid solutions. The amount of 
priority levels was determined by the number of bits 
used to express the elements of optimization matrix C. 

 
Fig. 1 Neural network controlled frame switch 

 
From the previous chapter it can be seen that the neural 
network realizes two separate operations. The first 
operation is related to the confinement criteria and the 
second is related to the object function. The neural 
network can be modelled by a block diagram shown in 
Fig. 2. 

The Matlab environment was used to create the 
simulation model used for the analysis. The results 
generated by the Matlab model were evaluated from two 
points of view. First, the number of iteration steps 
needed to converge to a stable state value was evaluated. 



Second, the successfulness of the iteration process was 
tested. The iteration process was considered successful if 
the generated result fulfilled the criteria specified earlier. 
 
 
5   Impact of the amount of priority levels 
The next charts summarize the results of extended 
testing focused on the impact of the amount of priority 
levels. The analysis was performed for several numbers 
of ports n in the range <3; 15>. For each value of n, 14 
different numbers of bits were tested in the range <1; 
20>. With each number of bits, 40 independent tests 
were executed with randomly generated state and 
optimization matrixes. 
The first chart in Fig. 3 shows the relation between the 
number of bits used to express priority levels and the 
average number of iterations needed to reach the stable 
state for n = 3, 9 and 15. Only successful iteration 
processes, i.e. those whose final stable state fulfilled the 
confinement criteria, were considered. 
 

 
Fig. 3 Dependence of the average number of iterations 
on the number of bits 
 
The second chart in Fig. 4 shows the relation between 
the number of bits used to express priority levels and the 
successfulness of the iteration process for n = 3, 9, 15. 

 
Fig. 4 Dependence of the successfulness of iteration on 

the number of bits 
The previous charts show that by increasing the number 
of bits up to a certain value (7 or 8, depending on n) the 

successfulness is rapidly increasing, but still further 
increase has no significant effect on the successfulness. 
It also can be seen that for very large values of bits 
(about 18 or 20) the successfulness starts to decrease. On 
the other hand, by increasing the number of bits the 
average number of iterations is increased. At the 
beginning this rise is quite steep, but for larger values it 
becomes more moderate. 
 
 
6   Conclusion 
Based on the results of the analysis some general 
statements about the behaviour of the system can be 
formulated: As the number of nodes is increasing, the 
overall successfulness of processes is decreasing. Within 
the scope of a given number of nodes with 1 byte used to 
express the priority values the neural network operates 
effectively and the number of required iteration steps is 
relatively low. As the number of bits increases, the 
average number of iteration cycles increases. This trend 
culminates at about 10–14 bits and for more bits the 
average number of iteration cycles tends to decrease 
moderately. 
If a single process does not reach the solution within the 
number of about four-five times the average number of 
iteration cycles, it is highly probable that the process will 
not converge to a solution at all. 
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