
Building robust persistent layer on .NET platform

WISZCZOR TOMÁŠ, ČERNOHORSKÝ JINDŘICH
Department of Measurement and Control

Faculty of Electric Engineering and Computer Science
VSB – Technical University of Ostrava
17.listopadu 15, 708 33 Ostrava-Poruba

CZECH REPUBLIC

Abstract: The article describes how metadata can be used for development of a robust basic IO like layer for a control
system based on OPC DA. The article describes importance and basic features of metadata in the first part. In the
second there is the practical example shows the creation of a persistent layer part. All code is written in C# language.
Result layer simplifies working with OPC DA server. Items from OPC DA server can be mapped by persistent layer to
objects in the code. The object “knows” how to send or load appropriate items to/from data fields or property fields. No
other additional code is needed for creating a new object.

Key-Words: .NET, attribute, metadada, persistent, business object, OPC.

1 Introduction
In this article we very often talk about metadata. The
metadata are data about data. They have got main
utilization in database systems (DBS). DBS collects raw
data. Storing data don’t say about what they are,
therefore DBS needs some metadata to express this
information. For example metadata says which data
express the name of person, the age of person and so on.
 The metadata are important in programming
languages as well. The classic example is COM
(Component Object Model) technology. A COM
component is a binary code in fact. The binary code can
be called from various programming languages. The
possibility is based on metadata. After COM component
is written in a programming language then it can’t be
using in another programming language. Programmer
must make description of component in description
language for this reason. Ability of multilanguage
calling is based on type library, which is written in IDL
(Interface Definition Language). The IDL describes all
components (classes, methods ...). Any language that
wants to use a component must read information from
the type library. Therefore the development tools or
special functions of an operating system (OS) must
understand IDL language. Most development
instruments create special proxy object from the
information collected from IDL about COM component.
 The .NET framework provides advanced support for
operation with metadata. CLR (Common Language
Runtime), CLS (Common Language Specification) and
CTL (Common Type System) allow that one class
(written e.g. in Delphi) can be extended in C# language.
This interaction in programming languages is unique and
is based on using metadata, CLS and CTS as well.

 Another important property is the possibility of
extending the set of metadata within .NET platform.
Programmer can define his own marks and after that he
can work with these marks. This is very powerful feature
of .NET framework. Web services use this principle for
example [2], [3], [4]. Every class that provides methods
marked as [WebMethod] (in C# language) can publish
these methods on intranet/internet. Any client can call
these methods after. .NET special marks – labeled as an
attribute [1] – say how to handle them. However our
attributes .NET does not know. Therefore the
programmer has to develop some layer – environment –
through witch our attributes will be processed and make
available to .NET.

2 OPC persistent layer
The theory of attributes allows using effective attributes
in data source – for example an OPC DA (Ole for
Process Control) data source. An attribute establishes an
association between element of code and any data
source. A class can be connected to OPC DA server and
properties or fields with a tag in OPC server by the same
way. Thus, for example, a class can have two methods
defined. One for loading tags to objects a second one for
saving properties or fields to the OPC DA server. The
scenario shows persistent objects, where all important
data are in the OPC DA server.
 Definition of new attribute is very easy and a
principle of definition is in fig.1.

[AttributeUsage(AttributeTargets.Class)]

public class
 OPCServerAttribute:Attribute

{

 private string _opcsn;
 public OPCServerAttribute(string

 OPCServerName)
 {

 _opcsn=OPCServerName;
 }

 public string OPCServerName
 {

 get
 {

 return _opcsn;
 }

 }
}

Fig.1. Definition of a new attribute.

 An attribute in .NET is a class de facto [1]. The class
extends abstract class Attribute. Over the class
programmer can preface usage of attribute. Fig.1.
demonstrates the attribute that it can be used only by
class. This using is defined by attribute AttributeUsage.
.NET supports various elements of code. Definition of
attribute for OPC DA’s tag is made the same way.
 A second part consists in creation of a special layer
for working with attributes defined by user. Any class
that can use this principle must extend basic class of
persistent layer. In the basic class programmer defines
elaboration mechanism. If extended object calls refresh()
or save() method, the persistent object parses object for
our–defined attributes and makes appropriate actions
according to what it finds. So persistent object works
with metadata of object using so called reflex
mechanism.
 Fig.2. shows short code of save method in C#. It finds
our attributes and post data to OPC DA server via OPC
XML DA gateway.

public void Save()
{

 arItems.Clear();
 OPCServerAttribute osa =

t.GetCustomAttributes(typeof(OPCServerAttribute),

 false)[0] as OPCServerAttribute;
 if(osa!=null)

 {
 ro.ClientRequestHandle=osa.OPCServerName;

 foreach(FieldInfo fa in t.GetFields())
 {

 foreach(Attribute at in
 fa.GetCustomAttributes(

 typeof(OPCNameItemAttribute),false))
 {

 ItemValue itv = new ItemValue();
 itv.ItemName=((OPCNameItemAttribute)at).

 OPCItemName;
 itv.Value=fa.GetValue(this);

 arItems.Add(itv);

 }
 }

 wril.Items =
 (ItemValue[])arItems.ToArray(typeof(ItemValue));

 rb=server.Write(ro,wril,true,out ril, out oes);

 if((oes!=null)&&(oes.Length>0))

 {
 string error_message="";

 for(int i = 0;i<oes.Length;i++)
 error_message=error_message+oes[i].Text+" ";

 }
 throw new Exception(error_message);

 }
 }

}

Fig.2. An example of Save() method.

 The save() method from the persistent layer analysis a
derived class. The analysis says what OPC DA server
will be required and what fields will be associated with
OPC DA server. All data are extracted from the class by
reflex mechanism. The same principle is used in
refresh() method.
 A next source code (fig. 3.) shows definition of a new
class that uses our persistent layer represented by
OPCPersistendData class which implements refresh()
and save() methods.

[OPCServer("KEPware.KEPServerEx.V4")]
public class OPCTest:OPCPersistenceData

{
 [OPCNameItem("Channel_1.Device_1.Bool_1")]

 public bool a1;

 [OPCNameItem("Channel_1.Device_1.Tag_1")]
 public short s1;

 [OPCNameItem("Channel_1.Device_1.Tag_2")]
 public short s2;

 [OPCNameItem("Channel_1.Device_1.Tag_3")]
 public short s3;

}

Fig.3. A new object is described by our attributes.

 As parameter in constructor of attribute
OPCServerAttribute programmer passes ProgID of OPC
DA server and in attribute OPCNameItemAttribute
(associate fields with tag in OPC server) a full name of
tag (item).
 This is advantage of the persistent layer. A
programmer can create any class that it has got mapped
any element of code to variable (tag) in OPC DA server.
Fig. 3. demonstrated the solution. A public field a1 has
got association with tag Channel_1.Device_1.Bool_1
within OPC DA server. If is called refresh() method then
fields a1 gets an actual value and if is called save()
method then value form a1 is stored in the OPC DA. It is
very simple. The programmer need not write any code
from read/write from/to OPC DA server.

3 Conclusion
The concept of metadata is useful not only for building
development tools but also for creating robust

framework not only for control systems. The
programmer can establish associations with various data
sources through attributes. A framework designed for
new attributes processes these attributes by the reflex
mechanism making appropriate actions accordingly.
 The article describes fields/class association with
OPC DA’s tags. This scenario simplifies the using OPC
DA servers. Only one piece of a code for read/write
operations from/to OPC DA server is defined in one
place. There is no need to write the new code for OPC
DA partnership for another new class because older one
can be reused (defined in persistent layer). Therefore
every object must always extend the persistent object (as
persistent layer). After each changing of work with OPC
DA server it is necessary to make only a modification of
the persistent layer – no modify the objects.
 Persistent layer can provide a cache for tags. So
refresh() and save() method need not communicate
directly with OPC DA server for modification of tags in
the server.

References:

[1] S. Robinson, C# Programujeme profesionálně,
 Computer Press, 2003.

[2] T. Wiszczor, J. Černohorský, S. Slíva, .NET
 technology in manufacturing and control, IWCIT‘03

 p.155-161, ISBN 83908409-7-9.
[3] T. Wiszczor, J. Černohorský, Mobile access to

 Xfactory from devices designed for OS PocketPC,
 PDS 2004, p.111–115, ISBN 83-908409-8-7.
[4] M. MacDonald, Microsoft .NET distributed

applications: integrating XML web services and
.NET Remoting, Microsoft Press, 2003.

 Acknowledgement: The work and the
contribution were supported by the project GAČR
102/05/0571 – Architectures of embedded system
networks.

