
DISTRIBUTED PROCESSING APPLICABLE TO
EMBEDDED SYSTEMS

STANISLAV SLIVA, VILEM SROVNAL

Department of Measurement and Control
Faculty of Electric Engineering and Computer Science

VSB-Technical University of Ostrava
 17. listopadu 15, 708 33, Ostrava-Poruba

CZECH REPUBLIC

Abstract: - This paper describes several possibilities of using distributed computation in an embedded environment.
Distributed processing plays an important role in applications whose parts (procedures) are executed outside the local
node in remote nodes distributed in a network. A major part of the paper is focused on a description of web services
and related protocols (SOAP, XML-RPC). QNX Transparent Distributed Processing is mentioned as an alternative to
standard distributed processing based on RPC (Remote Procedure Call).

Key-Words: - embedded system, remote procedure call, Qnet, SOAP, XML, network, TCP/IP.

1 Introduction
One of the motivations of using distributed processing
mechanisms in designing embedded system is to extend
the possibilities of such a system to have an access to
the resources and services of other systems in a
distributed environment. The aim of future work
consists in the right choice of distributed system, which
will be able to implement into resource limited
embedded systems and which will provide an
environment for remote procedure execution regardless
of the platform used of a remote service provider. An
example of such functionality should be the execution
of a resource intensive algorithm on some data which
are generated by an embedded system. This algorithm
may be too difficult to its local implementation in an
embedded device or its implementation needs too much
memory. Such an algorithm would be implemented in
other more powerful equipment like a network server in
the form of service. This service would be called by an
embedded system if necessary.
 The next section addresses the description of several
existing distributed processing mechanisms.

• RPC (Remote Procedure Call)
• Qnet (QNX Networking)
• Web services

2 Remote Procedure Call
RPC is an easy and popular paradigm for implementing
a communication model client – a server of distributed
environment. Briefly described, the RPC mechanism is

initiated by calling – client, which sends the request
message to a remote node (server) to execute a certain
procedure using sent arguments. The resultant message
is returned to the caller. Lots of various implementations
of RPC exists, some of them use different protocols and
due to it they could be incompatible with each other. In
order to allow servers to be accessed by different clients,
a number of standardized RPC systems have been
created. Most of these use an IDL (Interface Description
Language) to allow various platforms to call the RPC.
Sun RPC (ONC RPC), Distributed Computing
Environment (DCE), Microsoft DCOM, CORBA are
examples of different implementations of a RPC
mechanism. The actual trends in distributed processing
are web services, which use XML (eXtended Markup
Language) instead of IDL and which use Internet
protocols such as HTTP or SMTP as transport protocols.
An example of such a RPC mechanism is SOAP (Simple
Object Access Protocol) or its predecessor XML.

3 Qnet – QNX Networking
Qnet is native network distributed processing
mechanism used in the real-time operating system QNX.
This scalable operating system is aimed not only at
powerful workstations and servers but also at embedded
systems based on various microprocessors. This
distributed processing mechanism, also called
Transparent Distributed Processing, is realized using
passing message. The message passing mechanism is a
fundamental part of Inter Process Communication (IPC)
of QNX system. The core of this system consists of a
microkernel surrounded by modules (managers) and they

communicate with each other mainly by using message
passing. Qnet extends the capabilities of message
passing to a local area network (LAN). Qnet also
provides transparent access to all Qnet nodes resources
in a local network. Qnet messages could be encapsulated
into network protocol IP (TCP/IP) in the case of
distributed processing beyond the local area network.
 To understand how a network-wide message passing
works, consider two processes who want to
communicate with each other: a client process on one
node named lab1 and a server process (serial port
manager /dev/ser1) on another node named lab2. A
client simply calls open() function [2].

fd =open("/net/lab2/dev/ser1",O_RDWR....);
/*Open a serial device on node lab2*/

 The Figure 1. shows message passing
communications necessary for the successful opening of
a remote serial port.

Fig.1 Message passing between client (application) and

server (serial driver)

Here are the interactions:

1. A message is sent from the client to its local
process manager, effectively asking who should
be contacted to resolve the pathname
/net/lab2/dev/ser1.

 The process manager returns a redirect message,
 saying that the client should contact the local
 network manager.
2. The client then sends a message to the local

network manager, again asking who should be
contacted to resolve the pathname. The local
network manager then replies with another
redirect message, giving the node
 descriptor, process ID, and channel ID of the

 process manager on node lab2 -- effectively
 deferring the resolution of the request to node
 lab2.

3. The client then creates a connection to the
process manager on node lab2, once again
asking who should be contacted to resolve the
pathname. The process manager on node lab2
returns another redirect - node descriptor,
channel ID, and process ID of the serial driver
on its own node.

4. The client creates direct connection to the serial
driver on node lab2, and returns a connection
ID that can then be used for subsequent
message-passing operations. After this point,
from the client's perspective, message passing to
the connection ID is identical to the local case.

 The main advantage of this type of distributed
processing is high efficiency. It’s because a message
passing mechanism is supported by the microkernel and
the message transfers between a client and server are
binary.
 The disadvantage of Qnet is its tight couple to the
QNX operating system so its implementation to other
platforms is very difficult. Qnet isn’t an open standard
and that’s also the reason why it’s used only in a QNX
operating system.

4 Web services
Web services (WS) were created because of the need to
have standard way of accessing and using a distributed
mechanism regardless of the platform used. A web
service is any service that is available over the Internet,
uses a standardized XML messaging system, and is not
tied to any one operating system or programming
language [1]. The application in model of web services
consists of small building blocks – functions regardless
of their locations in Internet servers or their particular
implementations. Such an application is easy to create,
change and dynamically modify. The web services as a
model of distributed processing and is very popular due
to looser couples in comparison to traditional models
such as DCOM, CORBA, etc. Web services are based on
three standards (Fig.2):

• Data exchange is realized by SOAP protocol or
XML-RPC both based on a XML standard

• WS provide uniform methods of service
interface description. This description is usually
provided in the form of an XML document using
WSDL (Web Services Description Language). A
user must be able to create a client application
by using a WSDL description.

• WS are registered so the other users can find
them easily using UDDI (Universal Discovery
Description and Integration)

Fig.2. Relations between WS standards

 Fig.3. reflects four steps which should be done in the
case of service requestor perspective and Fig.4. shows
five steps which should be done in case of service
provider perspective.

Fig.3. Service requestor steps

Fig.4. Service provider steps

To summarize, a complete web service is any service
that [1]:

• Is available over the Internet or private (intranet)
network

• Uses a standardized XML messaging system
• Is not tied to any one operating system or

programming language
• Is self-describing via a common XML grammar
• Is discoverable via a simple find mechanism

4.1 XML-RPC
XML-RPC is a very simple concept with a limited set of
capabilities used to remote procedure invocation. Those
limitations are in many ways the most attractive feature
of XML-RPC, as they substantially reduce the difficulty
of implementing the protocol and testing its
interoperability [1]. Procedure call request is encoded
into XML form and transferred via HTTP POST. After
execution of a remote procedure, the results are returned
via HTTP reply also in XML form. In cases where a
wide variety of different systems need to communicate,
XML-RPC may be the most appropriate lowest common
denominator. XML-RPC is in many ways easier than
SOAP so it’s easier to implement it, but on the other
hand XML-RPC does support neither service description
WSDL nor service searching using UDDI. The data
model of XML-RPC consists of six basic data types and
two compound data types that represent
combinations of types. All data types are
represented by simple XMP elements. Here is an
example of a string and integer element:

<string>Hello !</string>
<int>31</int>

4.2 SOAP
SOAP is a base protocol of web services. SOAP
provides a simple and lightweight mechanism for
exchanging structured and typed information between
peers in a decentralized, distributed environment using
XML [1]. Other types of frameworks – CORBA, DCOM
or Java RMI provide similar functionality like SOAP,
but the difference is that SOAP messages are represented
in XML form so they are platform independent. SOAP
doesn’t define a program model or implementation.
Instead of this, it defines modular packaging model end
encoding mechanisms to code data in modules. Other
standards (WSDL, UDDI....) were created later after the
release of SOAP and extend SOAP possibilities. SOAP
specification consists of three main parts:

• SOAP envelope specification – rules for
encapsulation of data transferred between
computers. Called method names, their

Step 1: Create function to be provided as
 a service

Step 2: Create SOAP or XML-RPC
 service wrapper

Step 3: Create WSDL service descript.
 or XML-RPC instructions

Step 4: Deploy service

Step 5: Register new service via UDDI

Step 1: Find service via UDDI

Step 2: Retrive service description file
 WSDL or XML-RPC instructions

Step 3: Create XML-RPC or SOAP client

Step 4: Invoke remote service

service
searching

Makes
service

interface

Client using
web service

web service
SOAP

WSDL

UDDI
registry Reference to

service
description

Service
interface

description

Communication using
XML messages

parameters or return values are specified there.
Envelope specification also includes information
about who should process the content of
envelope and how to encode error messages.

• Data encoding rules – set of conventions (based
on XML) for encoding different data types

• RPC convention - SOAP can be used in a
variety of messaging systems, including
one-way and two-way messaging (Fig.5). For
two-way messaging, SOAP defines a simple
convention for representing remote
procedure calls and responses.

Fig.5. Example of SOAP conversation

 One-way message, client request or server
response, is referred to a SOAP message. Every
SOAP message has mandatory and optional
elements (Fig.6).

Fig.6. SOAP message main elements

4.3 Web services and embedded devices
Embedded systems in contrast of workstations dispose of
limited resources. They usually have less memory and

processor performance. Implementation of web services
means additional load from the perspective of resources.
 The necessary component of every embedded device
supporting web services must be TCP/IP stack. The
stack provides standard transport mechanisms (TCP,
HTTP, SMTP...) for web services. An efficient TCP/IP
stack is essential for building web services infrastructure
especially on small 8 and 16 bit systems. SOAP protocol
isn’t fixed only to HTTP protocol, SOAP can be used in
conjunction with other internet protocols. Direct
insertion of a SOAP message into a TCP segment can
save some necessary computing and memory.
 XML is a text-oriented language and its advantage is
platform independence. On the other hand, XML data
transfer is less effective than a binary transfer. Therefore,
it’s necessary to implement larger incoming and
outgoing buffers. The important part of the system
supported by WS is XML parser/generator and the
SOAP message encapsulation/extraction service. Well-
pared XML parser that fully supports SOAP can be
under 20KB in size [4]. This could be still too much for
integration to 8 or 16 bit systems. In this case, it’s
possible to use web services without SOAP protocol.
You can use a simpler XML-RPC mechanism, which
needs less memory and it’s easier to implement.

5 Conclusion
The paper describes some essentials about several
distributed processing mechanisms. The possibility of
using web services in branch of an embedded system
was discussed here. Our future plan will be the
implementation of some mentioned features of web
services into an embedded system represented a by
microcontroller. First prototype based on Rabbit
microcontroller will be able to understand XML-RPC
conversations.

Acknowledgement:
The work and the contribution were supported by the
project GAČR102/05/0571 – Architectures of embedded
system networks.

References:
[1] Cerami.E., Web Services Essentials,O’Reilly, ISBN
0-596-00224-6, 2002.

[2] QNX Developer support centre, Native networing
(QNET), www.qnx.com.

[3] Short S., Building XML Web Services for the
Microsoft .NET Platform, Microsoft Press, ISBN
0735614067, 2002

[4] Canosa J., Introduction to Web Services,

www.embedded.com, 2002.

SOAP
client

SOAP request

„What was today
temperature at 9:00?“

SOAP
server

SOAP
 reply

„Temperature was

13.7°C “

HTTP

HTTP

SOAP message

SOAP document
(mandatory)

SOAP header
(optional)

Body of SOAP
(mandatory)

Data part

<SOAP Envelope>

<SOAP Header>

<SOAP Body>

Methods
parameters,
results of call,
error codes ...

HTTP

