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Abstract: - Thermionic emission and tunnelling currents at the abrupt heterojunction are investigated. The energy and quasiimpuls conservation laws are applied and the domains of integration for the current density calculation are found. It is found that different effective masses at the heterojunction affect dominantly the tunnelling current.
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1   Introduction

The Np-heterojunction or the metal-semiconductor junction belongs to the basic building block of modern semiconductor devices. Although the theory of charge transport across these junctions is presented in different textbooks or papers on semiconductor devices, it appears to be useful to carry out a numerical evaluation of thermionic emission and tunnelling current components with a special emphasis to the fact that the electron effective masses in the N- and p-type semiconductor are in general different. The effect of electron effective mass difference was discussed since the beginning of sixtieth as the so-called effective mass problem, i.e. what should be the correct effective mass in the Richardson constant in the thermionic-emission formula [1], [2]. Recently Grinberg and Luryi reinvestigated the effective mass rule in [3] both for continuous and discontinuous potential at the heterointeface. Their main conclusion is that the Richardson constant is governed by the effective mass of the material containing the potential maximum. The effective mass problem is closely related to the electron energy and quasiimpuls conservation at the heterointerface, see e.g. [4].

2   Conservation laws

Consider an abrupt Np+-heterojunction drawn in Fig. 1 with the heterointerface situated in the plane 
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. We investigate the forward electron transport from the quasi-neutral part of the N-type semiconductor (region 1) into the p+-semiconductor (region 2) through the inserted barrier region 3 that is formed by the depletion layer of the N-type semiconductor and the backward electron transport in the opposite direction. The impurity concentration in p+-semiconductor is assumed to be at least one order of magnitude higher than that in N-type, thus the depletion layer of such hetrojunction extends almost whole in the low doped N-type semiconductor and it is negligible in p+-type region; just this type of heterojunction is frequently used in semiconductor devices.  We assume that electron energy bands in both semiconductors are spherical and parabolic, thus the electron kinetic energy in regions 1, 2 and 3 obeys the simple dispersion relations
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where 
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 is the electron effective mass in N-type and p+-type semiconductor, respectively (in the barrier region 3 it is 
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). The wave vectors 
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 are decomposed into the component parallel to the interface (labelled by //) and perpendicular to the interface (labelled by ()
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The special form of dispersion relation Eq. (1) enables to define the parts of electron kinetic energy related to the perpendicular to heterointerface and parallel to heterointerface motion
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At the heterointerface should be valid the energy conservation law 
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and the parallel-to-interface quasiimpuls component conservation law (see Fig.1 for the notation) 
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Fig. 1. The energy band diagram of the abrupt Np+-heterojunction.
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In Eqs. (4), (5) 
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 denotes the height of the potential step between quasi-neutral regions 1 and 2, it is the difference between the bottoms of the conduction bands 
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 can be positive, zero or negative. The maximum height of the potential barrier 3 between regions 1 and 2 is 
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 is the heterojunction built-in voltage and V is the external applied voltage; the barrier height 
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 can be positive or zero.

3   Charge transport
Because of the discontinuity of energy levels at the heterointerface the carrier transport mechanisms at the abrupt Np+-heterojunction are thermionic emission or tunnelling; the possible drift, diffusion, generation and recombination in the depletion layer are not considered in this paper. The net electric current density is the difference of electron fluxes from right to left and backward form left to right in any crossection of the device and can be evaluated using the well-known integral formulae where the integration domain can be or in ki-space or in Ei-space (T denotes the barrier transmittance, 
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 are the Fermi-Dirac distribution functions in regions 1, 2 and the subscript 
[image: image18.wmf]2

,

1

=

i

)


[image: image19.wmf]òò

òò

^

^

^

-

=

-

=

//

1

2

3

2

*

//

//

1

2

*

2

)

(

2

   

 

)

(

2

1

i

i

i

i

i

i

i

i

dE

dE

f

f

T

em

dk

dk

k

f

f

T

m

k

e

j

h

h

p

p


(6)

4   Domains of integration
It is necessary to specify exactly the integration domains in Eqs. (5). For the abrupt Np+-heterojunction it is usually valid 
[image: image20.wmf]*

2

*

1

m

m

>

, i.e. the electron effective mass in N-type semiconductor with larger energy gap is larger (the opposite case will be discussed later). Consider at first the electron injection from N-type semiconductor (region 1) across the barrier (via emission or tunnelling) into the p+-type region 2. If an electron in region 1 should move towards the barrier, it is obvious that its wave vector and kinetic energy should satisfy
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Using Eqs. (1), (3), (4) we find the electron wave vector components in regions 2 and 3
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and the corresponding parts of electron kinetic energy
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We note that terms in round brackets in Eqs. (8), (9) are positive, the sign of the quantity 
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 depends on the external applied voltage and the sign of terms in square brackets is determined by 
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 and by the parallel electron motion. Passing the junction, the electron should move through the p+-region 2 away from the barrier; its wave vector and energy are characterized by set of inequalities
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In this case the electron wave 
[image: image27.wmf])

exp(

2

x

ik

^

µ

 is propagating without damping. The opposite inequality 
[image: image28.wmf]0

2

2

<

^

k

 means that the component 
[image: image29.wmf]^

2

k

is pure imaginary, 
[image: image30.wmf]^

^

=

2

2

k

i

k

, the electron wave 
[image: image31.wmf])

exp(

2

x

^

-

µ

k

 in region 2 is damped, the quantum mechanical reflection at the heterointerface between regions 1-2 occurs, and the electron does not penetrate into the region 2. Thus the relation 
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With some knowledge of analytical geometry of conic sections (see e.g. [5], chap. 9.6) we see that for 
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If 
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 both hyperbolas degenerate into their asymptotes. If 
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the relations Eq. (10) with the substitution of Eq. (8) are satisfied by all points of the 
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characterizes its outer part. Thus, only electrons that move towards the heterointerface in a direction limited by the asymptotes Eq. (11) can pass the interface and penetrate in region 2, see Fig. 3 (keeping in mind Eq. (2), the direction in three dimensional space is limited by a corresponding cone). On the opposite, if 
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the outer part of the hyperbola corresponds to Eq. (10). Thus, in Fig. 2 all electrons with wave vector 
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Eq. (8) enables also to distinguish the thermionic emission over the barrier and the tunnelling through the barrier. In the thermionic emission case the electron wave vector and energy in the barrier region 3 should satisfy
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while in the case of tunnelling it should be
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The boundary between tunnelling and thermionic emission is defined by 
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, which with the aid of Eq. (8) represents a straight line with the equation
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in the 
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-plane. The domains of electron thermions emission and tunnelling in Fig. 2 are distinguished by light and dark colour, respectively. The following parameters are used in Fig. 2:
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Eq. (9) together with inequalities Eqs. (10), (13), (14) enable to find the corresponding domains in the 
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To find the integration domains of Eq. (5) in the 
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for the wave vector component and by
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for the corresponding kinetic energy parts.

[image: image99.bmp]
Fig. 2. The integration domains in the wave vector planes 
[image: image65.wmf])

,

(

//

i

i

k

k

^

 and in the energy planes 
[image: image66.wmf])

,

(

//

i

i

E

E

^

,  
[image: image67.wmf]2

,

1

=

i

, for different external voltage applied to the abrupt Np+-heterojunction. Light gray and dark gray shade fill the thermionic emission domain and the tunnelling domain, respectively (see Eq. (17) for the meaning of the parameters).

[image: image100.bmp]
Fig. 3. Heterojunction barrier transmittance as a function of the energy parts (see Eq (3)).

5   Numerical evaluation
If the integration domains are found, it is possible to calculate the electron current density according to Eq. (6). The numerical evaluation was carried out for an abrupt Np+-heterojunction with the following parameters: donor concentration in N-type AlxGa1-xAs 
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 was calculated under the assumption of parabolic potential barrier the N-region (within the depletion layer approximation). The electron wave functions outside the barrier are plane waves and inside the parabolic barrier they are linear combination of the parabolic cylinder functions 
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 for the above-mentioned Np+-heterojunction and for external forward bias of 1.0 V is drawn in Fig. 3. In this case the band diagram of the heterojunction corresponds to Fig. 2b and the barrier parameters are (see Fig. 1 for the notation) 
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Fig. 4. The differential current density (the integrand of Eq. (6)).

If the electron current density is calculated according to Eq. (6) the transmittance should be multiplied by the difference of Fermi-Dirac distribution functions that depends on the Fermi level positions in regions 1 and 2 and on the sum 
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To evaluate the effect of effective mass difference on the tunnelling and thermionic emission electron current densities were calculated for 
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Fig. 5. The evaluation of the effective mass difference on the tunnelling and thermionic emission electron current densities.

important. Thermionic emission occurs for higher electron energy where the Fermi-Dirac distribution function nearly vanishes, thus the different shape of integration domains for 
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6   Conclusions
The main results of this paper can be summarized as follows. We have investigated the electron thermionic emission and tunnelling across the abrupt Np+-heterojunction. Our aim was to find whether and how the difference in electron effective masses affects the value of the tunnelling a thermionic emission currents; both currents were calculated according to Eq. (6). To define correctly the domains of integration in Eq. (6), the electron energy conservation law and the parallel-to-interface quasiimpuls component conservation law Eqs. (4), (5) were applied to both junctions. The conservation laws together with the methods of analytical geometry of conic sections enabled to find relations that define the domains in the 
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; the domains for both types of junctions are drawn in Fig. 2 for different external applied voltage. The numerical evaluation was carried out for an abrupt N-AlxGa1-xAs/p+-GaAs heterojunction. The barrier transmittance 
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 was calculated using an analytical formula under the assumption of parabolic potential barrier the N-region, see Figs 3, 4. To evaluate the effect of effective mass difference on the tunneling and thermionic emission, electron current densities were calculated for different and equal effective masses and their ratio was drawn as a function of the forward bias for three different temperatures in Fig. 5. We can see that the ratio is very close to unity for the thermionic emission components, but varies approximately within the interval (1,2) for the tunneling component. This result is related to the fact that although the shape and the area of tunneling and thermionic emission integration domains is considerably changed if the effective masses are not equal, the barrier transmittance defined over the domain is multiplied by the Fermi-Dirac distribution function (see Eq. 4) that tends very rapidly to zero for high energy. To generalize the result, we state that the tunneling current component (that corresponds to electrons with lower energy) is sensitive to the difference of electron effective masses while the thermionic emission component (that corresponds to electrons with higher energy) is much less affected. 
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