
NEURO-CONTROLLER DESIGN USING
GENETIC OPTIMIZED POLE PLACEMENT METHOD

CORNEL RENTEA

Department of Automation and Computer Science
University “Lucian Blaga” Sibiu

Str. E. Cioran, No. 4, Sibiu-550025
ROMANIA

Abstract: - In this paper, in order to improve the training of a neural controller implemented using a direct
inverse scheme we use pole placement design enhanced with the help of a genetic algorithm. We discuss this
optimization of training a neural network controller for the Inverted Pendulum problem, considered an
acknowledged benchmark in nonlinear system control.

Key-Words: - Pole placement, Genetic algorithm, Inverted pendulum, State-space representation, Neural
network control

1 Introduction
Artificial Neural Networks (ANN) are an emerging
technology, yet, in continuous dynamic behavior,
much work has been done to attempt to generate a
formal method to design a controller based on this
technology. We have various methods for training
such network, how can we improve them? One
solution would be improving the feedback control
system which models the system to be controlled.
 Modern control theory gives us a number of
analytical tools for finding feedback controls. The
method we chose for optimization of a controller
designed using pole placement method, is a genetic
algorithm. There are many optimization algorithms
but they have a hard time finding the optimal
(global) solution in multi-parameter search space. A
genetic algorithm is a parallel, global search
technique that emulates natural genetic operations.
Because it simultaneously evaluates many points in
the parameter space, it is more likely to converge
toward the global solution. We used a genetic
algorithm that modifies parameters for the pole
placement method of design for a feedback control
system.
 As an example of application for this method, we
will develop a pole placement designed feedback
control system that automatically stabilizes an
inverted pendulum system while moving the cart to
its commanded position. After that, we will use it a
direct inverse architecture of a neuro-controller used
for our problem.
 We used Matlab implementation for all the
needed components: the control system, the genetic
algorithm and the neuro-controller [1].

2 Inverted Pendulum Problem
The inverted pendulum system is a typical
benchmark for dynamic non-linear systems. The
classic example consists of either a point mass at one
of its end of an ideal rod or a rod without a point
mass at one of its ends. In each of these two cases,
the other end of the rod is attached, through a joint
that can pivot in a plane, to a moving cart. The cart
can move on the x axis, in the plane of motion of the
pendulum’s pivot point. The cart accelerates due to a
force (F) applied to it. The acceleration of the cart
induces a rotation in the pendulum’s pivot. The
pendulum can be made to balance at the top of its arc
by controlling the acceleration of the cart.
 The system we considered consists of a uniform
distributed mass rod attached to the cart.
 For our example we assume that:

 M – mass of the cart 0.5 kg
 m – mass of the pendulum 0.5 kg
 b – friction of the cart 0.1 N/m/sec
 l – length to pendulum 0.3 m
 center of mass
 I – inertia of the pendulum 0.006 kg·m2
 F – force applied to the cart 1 N
 x – cart position coordinate
 θ – pendulum angle from the vertical
 g – gravitational acceleration 9.8 N/m2

 To linearize the equations regarding the pivot
angle of the pendulum, we assume that the rod does
not reach a value of the angle (θ) bigger than 0.05
radians from the vertical. By doing this, we have

sinθ ≈ θ. Bellow we represent a schematic of an
inverted pendulum:

Fig.1 The inverted pendulum system.

 The linearized system equations can be
represented in state-space form:

+

++
+

++
−

++++
+−

=

.

.

22

2

22

2

2

..

.

..

.

0
)(

)(
)(

0
1000

0
)()(

)(0

0010

θ
θ

θ
θ

x
x

MmlmMI
mMmgl

MmlmMI
mlb

MmlmMI
glm

MmlmMI
bmlI

x
x

u

MmlmMI
ml

MmlmMI
mlI

++

++
+

+

2

2

2

)(

0
)(

0

u
x
x

y

+

=

0
0

0100
0001

.

.

θ
θ

 This problem is especially interesting because
without control, the system is unstable. This is a
fourth order nonlinear system, which is linearized
about the vertical equilibrium. In this example, the
angle of the vertical pole is the controlled variable,
and the horizontal force applied by the cart is the
actuator input. The goal of the controller is to move
the cart to its commanded position without causing
the pendulum to tip over

3 Control design using pole placement
method
The design is formulated in terms of obtaining a
closed-loop system with specific pole locations. We
build a controller for this system using pole
placement design [2]. The controller generates a
control signal that is going to be applied to the
inverted pendulum in order to control the arm in a

vertical position.
 The schematic of a full-state feedback system is
the following:

Fig.2 Full-feedback system schematic.

 The characteristic polynomial for this closed-loop
system is:

det(sI – (A – BK)).

 In this problem R represents the commanded step
input to the cart. The 4 states represent the position
and velocity of the cart and the angle and angular
velocity of the pendulum. The output y contains both
the position of the cart and the angle of the
pendulum. We want to design a controller so that
when an step input is given to the system, the
pendulum should be displaced, but eventually return
to zero (i.e. the vertical) and the cart should move to
it's new commanded position.
 The C matrix is 2 by 4, because both the cart's
position and the pendulum's position are part of the
output. For the state-space design problem we will
be controlling a multi-output system so we will be
observing the cart's position from the first row of
output and the pendulum's with the second row.
 Since the matrices A and B*K are both 4 by 4
matrices, there will be 4 poles for our control system.
By using full-state feedback we can place the poles
anywhere we want. For example, the poles can be
chosen as the eigenvalues of the A matrix. We know
that the size of the real parts of our chosen poles
have an effect on the rate at which the linearised
system is fully damped and the imaginary
components have an effect on the oscillatory
behavior of the system.
 Nevertheless, as these poles can be placed
anywhere we want, one cannot guarantee the
correction and optimality of the obtained control
system for the considered problem. Thus, in order to
improve the control system performance we used a
genetic algorithm to help choosing these poles that
help designing a control system and effectively and
efficiently optimize it’s performance.

4 The Genetic Algorithm
Choosing control parameters for the pole placement
method can be done in various ways, but none of
them gives the best solution. Thus, we can use a
genetic algorithm to optimize these choices and try
to find the best solution we can. Problems of control
can be viewed as requiring the discovery of a
controller or a control strategy that takes the state
variables of a problem as its inputs and produces the
values of the control variable(s) as its outputs.
Genetic programming is well suited to difficult
control problems where no exact solution is known
and where an exact solution is not required.
 The genetic algorithm is a probabilistic algorithm,
which maintains a population of individuals.
Each individual represents a potential solution to
the problem at hand, and is implemented as some
data structure. Each solution is evaluated to give
some measure of fitness. Then selecting the more fit
individuals forms new population. Some members of
the new population recombine by means of “genetic”
operators to form new solutions. There are unary
transformations like mutations, which create new
individuals by a small change in only one individual,
and binary transformations, like crossovers, which
create new individuals by mixing traits from the
two parents. After some number of generations the
search converges and is successful if the best
individual represents the optimum solution [4].
 In our genetic algorithm, we use real encoding.
An individual is a vector of four numbers that define
the four poles of the system described in the previous
section. If we denote (Re1, Im1, Re2, Im2) one such
individual, we can write the poles of the control
system like:

(Re1 + i * Im1, Re1 – i * Im1,
 Re2 + i * Im2, Re2 – i * Im2).

 The testing data that we have chosen for
calculations of the fitness value in the genetic
algorithm include a 0.2 m step input for the cart and
some design criteria as follows:

 Settling time for x and theta of less than 5
seconds;

 Rise time for x and theta of less than 1
second;

 Overshoot of theta less than 20 degrees (0.35
radians);

 Steady-state error within 2%.

 After recording the results for the control system,
we compute the fitness value as

() θθθ Ossrtrtf xx ⋅++++⋅=
1225.0
2525 2222 ,

where f = fitness value for current individual;
 rtx, rtθ = rise time for x and theta;
 sx, sθ = settling time for x and theta;
 Oθ = overshoot of theta.

 Our genetic algorithm uses an elitist strategy,
Monte Carlo method of selection, convex crossover
and uniform mutation.

5 Neuro Controller architecture
 The first step in constructing the architecture of
the neural network controller is system identification
for the inverted pendulum model. Then, a neuro-
controller is then designed using neural network
model for the pendulum.
 For our implementation we used a MLP network
with the Levenberg-Marquart backpropagation
learning algorithm. The MLP network has three
layers, with 4 units at its input layer, 3 units at the
hidden layer and 1 unit at the output level. All
activation functions are linear.
 We use the direct-inverse architecture for the
neuro-controller [1], [5]. In Fig.3 we show the
graphical representation of the direct-inverse neuro-
controller for our problem.

Fig.3 Direct inverse neuro-controller architecture

 Were the inputs for the network are the state
variables of our system: angle, angle derivative, car
position and its derivative, as described in section 2,
and the output is the control force acting on the
inverted pendulum cart.
 The input/output data pairs which were generated
using the linearized model are used now in order to
train the network.
 The inverted pendulum neuro-controller is trained

with a linear controller made via the pole placement
design method first, and then with the genetic
enhanced pole placement design. The input to the
model receives signals from states of the plant and
its output is a control signal directed towards the
inverted pendulum.

5 Experimental results
The tests we ran had 85% probability of crossover
and 10% or 15% probability of mutation.
 We used different combinations of number of
individuals in a generation and number of
generations such as: 100, 200, 250 or 500 individuals
in a generation that evolved during 100, 250, 500 or
1000 generations. We observed that our genetic
algorithm tends to continuously improve the control
system performance.
 After the requested number of generations, the
algorithm returns the best-fit individual.
 The best individual from all the experiments was:

(-18.7617 -6.3227 -18.9177 -4.0390),
and had the fitness value of 4.8722.
 In the training process of the neuro-controller we
used the control system designed with simple and
then enhanced pole placement method for generating
the training data.
 The network had 3 neurons in the hidden layer,
5000 data points generated for training and it was
trained on 100 epochs. The neural network plant
model is trained with static Levenberg-Marquardt
backpropagation and is reasonably fast.
 We represented the obtained performance of the
network with the two training data sets (Fig.4 and
Fig.5).

Fig.4 Performance of the network during the simple

training process

Fig.5 Performance of the network during the genetic

enhanced training process

 We can see that genetic enhanced data set is more
efficient in the training process of the network. It
achieves higher performance and in shorter time.

6 Conclusions
This work shows results from two neurocontrol
systems for the inverted pendulum, one trained based
on a pole placement design of the system and the
other trained based on a genetic improved pole
placement design. We have shown the enhanced
performance achieved in the training process based
on genetic improvement design of a part of the
neurocontroller using a direct inverse scheme.
 This optimization using a genetic algorithm can
be successfully applied for the optimization of any
non-deterministic design method for a control
system, as long as there exists a mathematical model
to describe the dynamics of the system to be
controlled.
 Furthermore, we could use the genetic algorithm
to help improving the other parts of the
neurocontroller , for example the most appropriate
structure for the neural network, training method,
and number of samples in a data set, etc.

References:

[1] Kuo, B. C. and Hanselman, D. C., 1994, Matlab
Tools for Control System Analysis and Design,
Prentice Hall, Englewood CliÆs, New Jersey

[2] Franklin, G. F., Powell, J. D., and Emani-Naeini,
A., 1994, Feedback Control of Dynamic Systems,
3rd edn., Addison-Wesley, Reading, Massachusetts

[3] Koza, J. R., Genetic Programming: On the
programming of computers by means of natural

selection, Cambridge, MA: MIT Press, 1992
[4] Hunt K.J., Sbarbaro-Hofer D., Zbikowski

R.,Gawthrop P.J., Neural Networks for Control
Systems- A survey, Automatica, Vol. 28, pp. 1083-
1112, 1992.

[5] Åström K.J., Wittermark B., Adaptive Control,
Addison Wesley, Reading, MA., 1989.

