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Abstract: - In this paper, in order to improve the training of a neural controller implemented using a direct 
inverse scheme we use pole placement design enhanced with the help of a genetic algorithm. We discuss this 
optimization of training a neural network controller for the Inverted Pendulum problem, considered an 
acknowledged benchmark in nonlinear system control. 
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1 Introduction 
Artificial Neural Networks (ANN) are an emerging 
technology, yet, in continuous dynamic behavior, 
much work has been done to attempt to generate a 
formal method to design a controller based on this 
technology. We have various methods for training 
such network, how can we improve them? One 
solution would be improving the feedback control 
system which models the system to be controlled. 
     Modern control theory gives us a number of 
analytical tools for finding feedback controls. The 
method we chose for optimization of a controller 
designed using pole placement method, is a genetic 
algorithm. There are many optimization algorithms 
but they have a hard time finding the optimal 
(global) solution in multi-parameter search space. A 
genetic algorithm is a parallel, global search 
technique that emulates natural genetic operations. 
Because it simultaneously evaluates many points in 
the parameter space, it is more likely to converge 
toward the global solution.  We used a genetic 
algorithm that modifies parameters for the pole 
placement method of design for a feedback control 
system. 
     As an example of application for this method, we 
will develop a pole placement designed feedback 
control system that automatically stabilizes an 
inverted pendulum system while moving the cart to 
its commanded position. After that, we will use it a 
direct inverse architecture of a neuro-controller used 
for our problem. 
     We used Matlab implementation for all the 
needed components: the control system, the genetic 
algorithm and the neuro-controller [1]. 

 
 
2   Inverted Pendulum Problem 
The inverted pendulum system is a typical 
benchmark for dynamic non-linear systems. The 
classic example consists of either a point mass at one 
of its end of an ideal rod or a rod without a point 
mass at one of its ends. In each of these two cases, 
the other end of the rod is attached, through a joint 
that can pivot in a plane, to a moving cart. The cart 
can move on the x axis, in the plane of motion of the 
pendulum’s pivot point. The cart accelerates due to a 
force (F) applied to it. The acceleration of the cart 
induces a rotation in the pendulum’s pivot. The 
pendulum can be made to balance at the top of its arc 
by controlling the acceleration of the cart. 
     The system we considered consists of a uniform 
distributed mass rod attached to the cart. 
     For our example we assume that: 

 M – mass of the cart  0.5 kg 
 m – mass of the pendulum 0.5 kg 
 b – friction of the cart  0.1 N/m/sec 
 l – length to pendulum  0.3 m 
 center of mass 
 I – inertia of the pendulum 0.006 kg·m2 
 F – force applied to the cart 1 N 
 x – cart position coordinate 
 θ – pendulum angle from the vertical 
 g – gravitational acceleration 9.8 N/m2 

     To linearize the equations regarding the pivot 
angle of the pendulum, we assume that the rod does 
not reach a value of the angle (θ) bigger than 0.05 
radians from the vertical. By doing this, we have    



sinθ ≈ θ. Bellow we represent a schematic of an 
inverted pendulum: 
 

 
Fig.1 The inverted pendulum system. 

 
     The linearized system equations can be 
represented in state-space form: 
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     This problem is especially interesting because 
without control, the system is unstable. This is a 
fourth order nonlinear system, which is linearized 
about the vertical equilibrium. In this example, the 
angle of the vertical pole is the controlled variable, 
and the horizontal force applied by the cart is the 
actuator input. The goal of the controller is to move 
the cart to its commanded position without causing 
the pendulum to tip over 
 
 
3   Control design using pole placement 
method 
The design is formulated in terms of obtaining a 
closed-loop system with specific pole locations. We 
build a controller for this system using pole 
placement design [2]. The controller generates a 
control signal that is going to be applied to the 
inverted pendulum in order to control the arm in a 

vertical position.  
     The schematic of a full-state feedback system is 
the following:  

 
Fig.2 Full-feedback system schematic. 

 
     The characteristic polynomial for this closed-loop 
system is:  

det(sI – (A – BK)). 
 

     In this problem R represents the commanded step 
input to the cart. The 4 states represent the position 
and velocity of the cart and the angle and angular 
velocity of the pendulum. The output y contains both 
the position of the cart and the angle of the 
pendulum. We want to design a controller so that 
when an step input is given to the system, the 
pendulum should be displaced, but eventually return 
to zero (i.e. the vertical) and the cart should move to 
it's new commanded position. 
     The C matrix is 2 by 4, because both the cart's 
position and the pendulum's position are part of the 
output. For the state-space design problem we will 
be controlling a multi-output system so we will be 
observing the cart's position from the first row of 
output and the pendulum's with the second row. 
     Since the matrices A and B*K are both 4 by 4 
matrices, there will be 4 poles for our control system. 
By using full-state feedback we can place the poles 
anywhere we want. For example, the poles can be 
chosen as the eigenvalues of the A matrix. We know 
that the size of the real parts of our chosen poles 
have an effect on the rate at which the linearised 
system is fully damped and the imaginary 
components have an effect on the oscillatory 
behavior of the system. 
    Nevertheless, as these poles can be placed 
anywhere we want, one cannot guarantee the 
correction and optimality of the obtained control 
system for the considered problem. Thus, in order to 
improve the control system performance we used a 
genetic algorithm to help choosing these poles that 
help designing a control system and effectively and 
efficiently optimize it’s performance. 
 
 



4   The Genetic Algorithm 
Choosing control parameters for the pole placement 
method can be done in various ways, but none of 
them gives the best solution. Thus, we can use a 
genetic algorithm to optimize these choices and try 
to find the best solution we can. Problems of control 
can be viewed as requiring the discovery of a 
controller or a control strategy that takes the state 
variables of a problem as its inputs and produces the 
values of the control variable(s) as its outputs. 
Genetic programming is well suited to difficult 
control problems where no exact solution is known 
and where an exact solution is not required. 
     The genetic algorithm is a probabilistic algorithm, 
which maintains a population of individuals.        
Each individual represents a potential solution    to 
the problem at hand, and is implemented as some 
data structure. Each solution is evaluated to give 
some measure of fitness. Then selecting the more fit 
individuals forms new population. Some members of 
the new population recombine by means of “genetic” 
operators to form new solutions. There are unary 
transformations like mutations, which create new 
individuals by a small change in only one individual, 
and binary transformations, like crossovers, which 
create new individuals by    mixing traits from the 
two parents. After some number of generations the 
search converges and is successful if the best 
individual represents the optimum solution [4]. 
     In our genetic algorithm, we use real encoding. 
An individual is a vector of four numbers that define 
the four poles of the system described in the previous 
section. If we denote (Re1, Im1, Re2, Im2) one such 
individual, we can write the poles of the control 
system like: 

( Re1 + i * Im1, Re1 – i * Im1, 
    Re2 + i * Im2, Re2 – i * Im2 ). 

     The testing data that we have chosen for 
calculations of the fitness value in the genetic 
algorithm include a 0.2 m step input for the cart and 
some design criteria as follows: 
 

 Settling time for x and theta of less than 5 
seconds; 

 Rise time for x and theta of less than 1 
second; 

 Overshoot of theta less than 20 degrees (0.35 
radians); 

 Steady-state error within 2%.  
 
     After recording the results for the control system, 
we compute the fitness value as 
 

( ) θθθ Ossrtrtf xx ⋅++++⋅=
1225.0
2525 2222 , 

 
where f = fitness value for current individual; 
 rtx, rtθ = rise time for x and theta; 
 sx, sθ = settling time for x and theta; 
 Oθ = overshoot of theta. 
 
     Our genetic algorithm uses an elitist strategy, 
Monte Carlo method of selection, convex crossover 
and uniform mutation.  
 
 
5   Neuro Controller architecture 
     The first step in constructing the architecture of 
the neural network controller is system identification 
for the inverted pendulum model. Then, a neuro-
controller is then designed using neural network 
model for the pendulum.  
     For our implementation we used a MLP network 
with the Levenberg-Marquart backpropagation 
learning algorithm. The MLP network has three 
layers, with 4 units at its input layer, 3 units at the 
hidden layer and 1 unit at the output level. All 
activation functions are linear. 
     We use the direct-inverse architecture for the 
neuro-controller [1], [5]. In Fig.3 we show the 
graphical representation of the direct-inverse neuro-
controller for our problem.  

 

 
Fig.3 Direct inverse neuro-controller architecture  

 
     Were the inputs for the network are the state 
variables of our system: angle, angle derivative, car 
position and its derivative, as described in section 2, 
and the output is the control force acting on the 
inverted pendulum cart. 
     The input/output data pairs which were generated 
using the linearized model are used now in order to 
train the network. 
     The inverted pendulum neuro-controller is trained 



with a linear controller made via the pole placement 
design method first, and then with the genetic 
enhanced pole placement design. The input to the 
model receives signals from states of the plant and 
its output is a control signal directed towards the 
inverted pendulum. 
 
 
5   Experimental results 
The tests we ran had 85% probability of crossover 
and 10% or 15% probability of mutation. 
     We used different combinations of number of 
individuals in a generation and number of 
generations such as: 100, 200, 250 or 500 individuals 
in a generation that evolved during 100, 250, 500 or 
1000 generations. We observed that our genetic 
algorithm tends to continuously improve the control 
system performance. 
     After the requested number of generations, the 
algorithm returns the best-fit individual.  
     The best individual from all the experiments was: 

(-18.7617 -6.3227 -18.9177 -4.0390), 
and had the fitness value of 4.8722. 
     In the training process of the neuro-controller we 
used the control system designed with simple and 
then enhanced pole placement method for generating 
the training data.  
     The network had 3 neurons in the hidden layer, 
5000 data points generated for training and it was 
trained on 100 epochs. The neural network plant 
model is trained with static Levenberg-Marquardt 
backpropagation and is reasonably fast.  
     We represented the obtained performance of the 
network with the two training data sets (Fig.4 and 
Fig.5). 
 

 
Fig.4 Performance of the network during the simple 

training process 

 
Fig.5 Performance of the network during the genetic 

enhanced training process 
 
     We can see that genetic enhanced data set is more 
efficient in the training process of the network. It 
achieves higher performance and in shorter time. 
 
 
6   Conclusions 
This work shows results from two neurocontrol 
systems for the inverted pendulum, one trained based 
on a pole placement design of the system and the 
other trained based on a genetic improved pole 
placement design. We have shown the enhanced 
performance achieved in the training process based 
on genetic improvement design of a part of the 
neurocontroller using a direct inverse scheme. 
     This optimization using a genetic algorithm can 
be successfully applied for the optimization of any 
non-deterministic design method for a control 
system, as long as there exists a mathematical model 
to describe the dynamics of the system to be 
controlled.  
     Furthermore, we could use the genetic algorithm 
to help improving the other parts of the 
neurocontroller , for example the most appropriate 
structure for the neural network, training method, 
and number of samples in a data set, etc. 
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