
Design of a Remote Controlled Caching Proxy System:
Architecture, Algorithm and Implementation

Khaled E. A. NEGM and MARYAM A. AL-ALY

Etisalat College of Engineering
Sharjah, POB 980

UAE

Abstract: - A caching proxy server acts as an invisible intermediary between browsing clients and the internet
servers. In the case of a Web cache, cacheable objects are always separate and are always read in their entity
with no pre-fetching. In the present study we present a novel design for a system to remote control an array of
proxy system. The administrator can monitor and configure the caching array system from any normal client
computational facility. The current system emphasizes on the fact that the administrator can change the
configuration of the system with no need either to start the system or alter the clients’ statuses. This is
achieved by implementing the concurrency control system under the system hierarchy. The primarily local
testing of the system shows promising results to get implemented on large scale of enterprise systems..

Key-Words: - : proxy, cache, web caching, least recently used (LRU), proxy array selector

1 Introduction
The World Wide Web has become the general
environment for information sharing. The
increasing usage of the WWW results in the
network congestions and the slow response. The
unparalleled growth of the Internet in terms of total
bytes transferred among hosts; coupled with the
sudden dominance of the HTTP protocol; suggest
much can be leveraged through Web caching
technology [1-4].
User-perceived retrieval latencies in the World
Wide Web can be improved by preloading a local
cache with resources likely to be accessed. A user
requesting content that can be served by the cache
is able to avoid the delays inherent in the Web,
such as congested networks and slow servers. The
difficulty, then, is to determine what content to
prefetch into the cache.
Caching proxies are usually installed where many
clients are accessing the Internet through a single
path. A proxy keeps a copy of objects (most of the
time) of Web documents and FTP downloads that
passed through it. When a client requests an object
from the network, the proxy may be able to serve a
local copy of that object instead of fetching the
object from its original source. By serving a local
copy of an object, a proxy saves bandwidth on
outbound network connections and potentially
reduces response time. There have been many
works regarding the proxy caching algorithms to
achieve such goals and there are several cache
implementations available from software and

appliance vendors as well as the Squid open source
cache software, which is designed to run on Unix-
like systems only [5].
The Remote Controlled Caching Proxy Server is a
novel approach that aims to design a caching proxy
server that can be configured remotely over the
Internet and can run on any machine under any
operating systems. The system is capable to support
an array system of proxy servers and it is a caching
protocol independent [7-9]. This makes it
independent on the vendor, operating system and
the caching protocol in operation.
The purpose of the current work is to achieve the
following tasks: First, facilitate a remote
administration of the proxy server while running
from a “normal client” computing facility (as an
administrator) through a user-friendly graphical
user interface (GUI) while serving transparently
several clients concurrently. Second, enhance
overall performance by using cache [10-12]. Third,
use Java technology for portability between
operating systems.

2 System Overview
The current system under study is designed as an
object oriented structure and implemented in Java.
The system is structured in a modular form to
guarantee portability, manageability,
maintainability and to perform best efficiency. The
system utilizes the client-server paradigm where
each connection is passed to a separate thread that
is handled exclusively. Each module has its own

design, implementation and process control.
The system is composed of two main parts: the first
part is the “main application”, to run the proxy
engine. The second part is the “remote
administration”. The second part depends on built-
in data types of Java to simplify the development
process and simplify the codes [13-15].
The administrator can perform all of the proxy
management processes remotely from any
computing facility.

2.1 The Main Proxy Application
The main proxy consists of a portable Java proxy,
including threading, configuration and caching
modules. These components are sufficient to
accomplish all the tasks if there are no network
restrictions to block the proxy requests. The main
proxy module receives an HTTP proxy request and
return the data associated with the request on behalf
of the host site. In case of an HTTP error message,
it propagates as if no proxy is present to the
requesting client from one of the caches present
within the caching array [16]. If the requested
object has been previously cached to the direct
caching server attached to the client system, the
object will be returned. In this case an update will
be performed to register an update of the requested
object by date, time, size, number of requests, and
type, etc. (including all the characteristics flags
given to the object for future usage) [17].
If the object is not present within the cache server
attached to the client system, the request is
forwarded to a main proxy director (caching
director) leading to the other proxy that do have the
object existed within its storage domain. The
feature of forwarding requests to another web
proxy, along with caching behavior, enables one to
use a hierarchy of caching proxy servers, which
reduces the latency for the requested object [18-
20]. If the requested object could not be found
throughout the cache array, the request is finally
forwarded to the web server, which delivers the
object back through the chain of proxies, enables
each of them to cache the replay for future use.
If this is not the case, i.e., the object is not currently
present in any of the caches within the array, the
request is forwarded to the internet and once on
getting a reply, the previous step will be performed
accordingly. This is of course in parallel to
processing the client request to browse the object.
All theses steps are performed in transparent,
parallel, with no latency sensed of the normal
browsing client from any computing system served
by this array.

The proxy application contains the following
components: daemon, cache,
configuration, administration,
proxy, httpRequestHdr and
httpReplyHdr. In the following we will state
the functionality of each component of the main
proxy architecture.

Daemon: This is the main thread that launches
the application and never dies. At its start it
performs a general initialization such as creating
the config, cache and admin objects as well
as creating a special socket of type
ServerSocket in java. This in addition to it
enters an endless loop of listening to the main
socket including for each request it creates a new
thread called a proxy thread.
proxy: This component handles all
communication between client and proxy and
between proxy and web servers. It posses all the
fundamental proxy function as disused before.
Once it finishes its thread gets terminated.
cache: This component encapsulates all the
details of caching from the other components in
the application (i.e., DocumentInfo). When it
is executed to cache an object, first, it generates a
file name out of the URL of the object and
enumerates the hash table that has two fields. The
first field is the filename (the key) and date (the
value). If the file name is found in the cache it
will be returned it to the proxy thread; otherwise,
it will return a status message indicating ‘not
cached’ and off course will be cached.
config: When the administrator changes proxy
parameters and sends it to main application, the
applet will forward the object to the proxy and
proxy gets it. Consequently, the proxy alters its
behavior. To support both the proxy and the
applet to process the job of getting and setting
parameters; this component is designed. It will
appear in both the applet and proxy code and
handle all get/set methods involved with the
configurable parameters.
admin: This thread handles all communications
with remote administrator. It creates a socket and
listens on a special admin port.
httpRequestHdr: This class is used to help
proxy thread using HTTP protocol. It creates the
http header fields upon sending.

httpReplyHdr: This class receives the http
header fields upon arrival. For example, if the
proxy fails to forward a request because the web
server could not be reached, it generates an HTML
web page with a proper message and constructs an

HTTP message to send back to client, informing
him of the error and giving him the correct headers
of this error.
The cache handles DocumentInfo objects that
correspond to files in the proxy director local cache
directory and contain information about their
creation date, size, and number of times they have
been referred to a DocumentInfo object is
created and inserted into the cache after the
successful receipt and saving of the desired
document.
In this case of a newly received documents are
always copied to into the cache (they replace older
versions if such exist). Since storage space is
bounded, when there is no room to copy a new
document, cache cleanup must be performed. In our
application, the upper bound to the size of the
cache directory is determined by the High Water
Mark parameter. The current size of the cache
directory is indicated by the Current Water Mark
parameter. Upon cleanup, documents are removed
until the size of the cache directory is below the
Low Water Mark parameter. The High and Low
water marks are customizable. The algorithm that
chooses documents for removal is called the
removal algorithm. The algorithm that we chose to
implement is the Least Recently Used (LRU)
algorithm [21-22]. The LRU algorithm is used
when the cache is full and a file needs to be
deleted.

2.2 The Remote Administration System
The second part of the system is the remote control
part. The part is implemented as a Java applet to
enable the proxy administrator to remotely manage
the proxy from his or her machine via the web
browser. The remote administration contains the
following components: administrator,
configuration, and
AuthenticationDialog.
In the following we will define the functionality of
each module within this part:
admin thread: This thread handles all
communications with remote administrator. When
the administrator accesses the proxy, the proxy
thread traps the event and sends it back to get
displayed at the admin web page with the admin
applet. The applet starts by presenting an
authentication dialog box and waits for the
administrator to enter the appropriate credentials
needed for this process, e.g, ID, and password.
Then it sends these credentials to the proxy
application (to the admin port) and thus the admin

thread at the main application can copy that request
without interfering the handling of all other clients’
requests. The admin thread in the main application
processes the password and sends back an
authentication acceptance to the applet, on the
admin port, an answer (Ack/Nack).
config: This component is same as config
component in proxy application.

configDialog: This component displays the
configuration dialog box. This allows the
administrator to allocate the current configuration
and change it.

AuthenticationDialog: This component
displays the dialog box with message “wrong
authentication” if the administrator enters incorrect
credentials.

This part is a platform specific GUI configuration
tool allowing configurations and options to be
changed on the remote proxy server on-a-fly using
java applet implementations. This human user
interface will accept a user-friendly input and
forward it to the main proxy director for updates. If
the administrator wants to change proxy
configuration, he or she can access any of the proxy
servers present in the array by requesting the proxy
machine via its authenticated address and
credentials, i.e, IP address, MAC address, digital
certificate, SSL3, VPN connection or cross site
certification. In our case we started by a very
simple step, that is the IP address or the machine
URL address window in the browser plus the suffix
‘/admin’ or based on any person/machine
authentication mechanism on the implemented
within the system.
The browser considers this to be valid client
request, and forwards it on to the proxy or the
proxy array. When the proxy monitors this request,
it compares it to the IP address of the host machine
on which it runs. If they do not match the proxy
forwards this as normal request on to the main
proxy. But if they do match, the proxy assumes that
an administrator is requesting to login. The module
responses by sending back a Java applet which
request an authentication processes from the
administrator which is implemented in the
AuthenticationDialogue. Once it the
administrator inputs the credits, the processes
reaches the proxy application control program.
Once passing the authentication session, the proxy
replies by an acknowledgement (ACK) to the
applet, and the applet responses by presenting all
the parameters and status of the proxy. This
enables the administrator to alter parameters, thus

change the proxy behavior and sending the new
parameters to the proxy. The status of the changes
will be confirmed and used to display the current
proxy status and parameters. This will ensure that
the indicated configuration is truly the
configuration being executed.

3 Concurrency Control and Proxy

Hierarchy Advantages
Several data structures are common to all running
threads, and must be protected to ensure their
consistency. The cache, which handles
DocumentInfo objects that correspond to files in
the cache directory, features a two-level locking
scheme that enables concurrent reading, writing
and checking the existence of documents in the
cache, while retaining the consistency of the
structure. A thread that wishes to insert a
document into the cache must perform the
following actions:
a. Save the appropriate file to the cache

directory.
b. Acquire a lock on the cache.
c. Insert a corresponding DocumentInfo

object into the cache.
d. Release the lock on the cache.
For a thread that wishes to read a cached document
must perform the following actions:
a. Acquire a lock on the cache.
b. Retrieve the appropriate DocumentInfo

object from the cache.
c. Release the lock on the cache.
d. Acquire a lock on the retrieved

DocumentInfo object.
e. Read the corresponding file.
f. Release the lock on the DocumentInfo

object.
For a thread that wishes to check if a document
exists in cache must:
a. Acquire a lock on the cache.
b. query the cache.
c. Release the lock on the cache.
This is a novel scheme that will afford several
properties and enhancements, the first, are that,
several files may be read and written to the cache
directory concurrently. Concurrent reading is
enabled as different threads may hold locks on
different DocumentInfo objects
simultaneously and read the corresponding files.
Note that when a specific DocumentInfo
object is held by one thread for reading, other
threads that need the corresponding document
will wait in queue for it to be released. Concurrent

writing is enabled as no locking is involved
during the writing of the files to the cache
directory. Note that a corresponding
DocumentInfo object is copied into the cache
only after the completion of the writing of the file,
and therefore documents may be read from the
cache only after they have been successfully
written to the disk.
The second is the consistency of the cache is kept
during cleanup. The cleanup procedure is invoked
when an attempt to insert a new document into
the cache fails due to lack of room. At this point,
the cache is held by the thread that attempted the
coping, and thus other threads may not access the
cache until cleanup is done. Nevertheless, some
cached documents may be in the midst of their
reading. However, their corresponding
DocumentInfo objects are locked, and if the
cleanup procedure, which must acquire a lock
over the DocumentInfo object before
removing the document, wishes to delete one of
them, it will wait on it until reading is done and
the lock is released.
Third, that several other structures are common to
all threads, namely the servers statistics database,
the list of servers that are accessible without
proxy, the configuration object that stores all the
parameters of the application and the components
of the graphical interface. Synchronization of
threads accessing these objects is achieved simply
by requiring the acquisition of a lock on the
object before using its services, and releasing the
lock when done. Threads hold the discussed
objects for negligible intervals of time as they
only offer simple operations and they all reside in
main memory; thus, the scheme will not affect
parallelism of the application to any significant
degree.
On of the advantages of the current
implementation, is the usage of a hierarchical
proxy system. In which the administrator can
access each proxy uniquely and alter its behavior
without affecting other proxies. In case of a single
proxy X, only one administrator can control it at a
given time, thus protecting proxy X from being
handled by different administrators at the same
time.
All clients’ requests plus the administrator remote
configuration are done in parallel. This facilitates
the application to be multithreaded. For instance,
in a certain time frame, the proxy can handle a
request from client A, a request from client B,
two requests from client C (this could be happen
because a modern browsers use threads too) and

Table 1: Remote Proxy Cache Control Algorithm
Read Http Request from clientIf request is from administrator then

Send web page with appletElse
If URL is accessible then

If web page is cached then Get page from cache and send it to client
Else

Open socket to proxy or web server

Send URL
Send Http reply to client

If web page is cacheable then Cache the web page
End if

End if
End if

Client

Proxy

send
http

request

cached not cached

not
accessible

not cached

send applet

send error

send reply

send reply

send error

cached

Admin
request

normal
request

accessible
send
http

request

Proxy

accessible

cachedopen
conn

Proxy

send error

Figure 1: Block Diagram for the Flow control of the

System Configuration and Functionality

communication with a remote applet running on
the administrator machine. None of these users
would notice the difference. The control algorithm
is shown in table 1. The block diagram of the
system along with the control flow of data is
shown in figure 1.

4 Summary and Conclusion
In this work we present a novel design for a
remote control of caching proxy arrays. The
advantage of this is that it can be configured
remotely by its administrator over the Internet

from ant normal computing facility. The system
contains two main parts: a main application for
the proxy engine, and an applet for remote
administration. The design of the system is an
object-oriented and multithreaded implementation
using Java. This will ease the control of the
system as a platform independent function. One
of the advantages of the current system is that it
allows concurrent administrators to configure the
system in parallel with affecting each other or
affecting the clients’ operations. Such
functionality was achieved by using a two-level-
lock algorithm.
The primarily testing of the system is performed
in a simulated environment and showed proper
functionality. Also it is tested with a local
environment (loop back) and showed promising
results.
Within these testing the server is able to cache the
documents, handle multiple clients’ requests at
the same time and forward the request to other
proxies or to web servers. The main goal of this
project is to allow remote administration of the
proxy server, while running, from a client
machine through a user-friendly graphical user
interface (GUI) via web browser [23-25].

Future Work
Currently the system is under full review and
testing in a real environment. Also some other
improvements are in progress for the
authenticationDialogue to afford full
secure functionality in relation to the sensitivity
of data processed [26-27].
References
[1] D. Wessels, K. Claffy, Internet Cache

Protocol (ICP), version 2, RFC 2186, 1997.
[2] L. Fan, et. al., Summary Cache: A Scalable

Wide-Area Web Cache Sharing Protocol,
Proc. of SIGCOMM'98, 1998, pp. 254-265.

[3] O. Sptscheck et. al., Optimizing TCP
Forwarder Performance, IEEE/ACM
Transactions on Networking, Vol. 8, 2000,
pp. 146-157.

[4] B. Davison, A Web Caching Primer, IEEE
Internet Computing, Vol. 5, 2001, pp. 38-45.

[5] Squid Web Proxy, http://www.squid-
cache.org/.

[6] V. Duvvuri, Adaptive Leases: A Strong
Consistency Mechanism for the World Wide
Web, Master's thesis, Univ. of
Massachusetts, 1999.

[7] Khaled E. A. Negm, Distributed Proxy
Cache Cluster Optimization Simulation
System, WSEAS Transactions on
Computers, Vol. 3, 2004, pp. 1161-1166.

[8] Khaled E. A. Negm, CARP Compliant Proxy
Enforcer Frame Work, Proceedings of the
IEEE/WIC International Conference on Web
Intelligence (WI 2003), 2003, pp. 118-124,
2003.

[9] Khaled E. A. Negm and Maryam A. Al-Aly,
Design and Implementation of An Intelligent
Proxy Server, Proc. of the 14th International
Conference on Control Systems and
Computer Science- CSCS14- 2003, pp 329-
333, 2003.

[10] B. Davison and B. Wu, Implementing a web
proxy evaluation architecture, In Proceedings
of the 30th International Conference for the
Resource Management and Performance
Evaluation of Enterprise Computing Systems
(CMG), 2004.

[11] J. Almeida, V. A. F. Almeida, and D. J.
Yates. Measuring the behavior of a World
Wide Web server, Proceedings of the
Seventh Conference on High Performance
Networking (HPN), 1997, pp. 57–72.

[12] J. Almeida and P. Cao. Measuring proxy
performance with the Wisconsin Proxy
Benchmark. Computer Networks and ISDN
Systems, Vol. 30, 1998, pp. 2179–2192.

[13] S. Freund, and J. Mitchell, A Type System
for the Java Bytecode Language and
Verifier, J. of Automated Reasoning, Vol.
30, 2003, pp. 271–321.

[14] G. Bigliardi, and C. Laneve, A type system
for JVM threads, in Workshop on Types in
Compilation, 2000.

[15] G. Czajkowski, and T. von Eicken, JRes: A
resource accounting interface for Java,
Proceedings of the ACM Conference on
Object Oriented Languages and Systems,
1998, pp. 21–35.

[16] C. Zhang, X. Zhang, Y. Yan, Two fast and
high- associativity cache Schemes, In: IEEE
Micro, Vol. 17, 1997, pp. 40-49.

[17] R. Wooster and M. Abrams, Proxy Caching
that Estimates Page Load Delays, WWW6,
Computer Networks and ISDN Systems,
Vol. 29, 1997, pp. 1497-1505.

[18] P. Rodriguez, et. al, Analysis of web caching
architectures: hierarchical and distributed
caching, IEEE/ACM Transactions on
Networking (TON), Vol. 9, 2001, pp. 404-
418.

[19] H. Che, et. al, Hierarchical Web Caching
Systems: Modeling, Design and
Experimental Results, IEEE Journal on
Selected Areas in Communications, Vol. 20,
2002, pp. 1305-1314.

[20] A. Fiat, R, Karp, M. Luby, L. McGeoch, D.
Sleator, N. Yong, Competitive paging
algorithms, Journal of Algorithms, Vol. 12,
1991, pp. 685-699.

[21] P. Barford and M. Crovella, Generating
representative Web workloads for network
and server performance evaluation,
Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling
of Computer Systems, pp. 151–160, 1998.

[22] A. Rousskov. Web Polygraph: Proxy
performance benchmark. Online at
http://www.web-polygraph.org/, 2004.

[23] J. Almeida and P. Cao, Wisconsin Proxy
Benchmark 1.0. Available from
http://www.cs.wisc.edu/~cao/wpb1.0.html,
1998.

[24] Y. Sato. DeleGate home page. Online at
http://www.delegate.org/, 2004.

[25] J. Dilley and M. Arlitt, Improving Proxy
Cache Performance-Analyzing Three Cache
Replacement Policies, IEEE Internet
Computing, Vol. 3, 1999, pp. 44-50.

[26] G. Barish and K. Obraczka, World Wide
Web Caching: Trends and Techniques, IEEE
Communications Magazine Internet
Technology Series, Vol. 2000, pp. 178-185.

[27] M. Busari and C. Williamson, Simulation
Evaluation of Web Caching Hierarchies,
Proc. IEEE MASCOTS 2001, 2001, pp. 379-
388.

