
 
 

 

 

Abstract- This paper presents a comparative study of a Fuzzy Model Reference Self-Tuning Controller (FMRSTC) 
algorithm with two major fuzzy adaptation algorithms. These two algorithms are the Fuzzy Model Reference Control 
(FMRLC), and the Fuzzy Self-Tuning Control (FSTC). Simulations and real time implementation using induction 
motor speed control system have been performed for the algorithms performance comparison. The field oriented 
control technique is used in both simulation and implementation. 
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1. INTRODUCTION 

Many fuzzy adaptive techniques have been proposed to 
solve two major problems in the fuzzy control field. The 
first problem is the selection and optimisation of the 
fuzzy controller parameters, while the second problem is 
the adaptation of these parameters as the process 
parameters change during the real time operation. The 
optimization of the fuzzy controller parameters in an off-
line process has been proposed using both genetic 
algorithms [1,2] and neural networks [3]. In this paper 
the focus will be on the analysis of the adaptation 
mechanism that can compensate for process parameters 
variation. 
Fuzzy Self-Tuning Controllers (FSTC) [4,5] are 
controllers with adaptation algorithms that tune the 
output scaling factor of the fuzzy controller. Its structure 
consists of two parallel fuzzy processors. The first acts 
as the main fuzzy controller and the second is used as the 
performance testing and scaling factor (SF) regulator. 
This structure would improve the controller accuracy 
with a reduced number of membership functions. 
However it would not provide the adaptation mechanism 
that compensates for the parameter variation of the plant.  
 
Another adaptation alternative is to target the rules at the 
rule base of the fuzzy controller (adaptation of the 
centres of the output membership function). This 
adaptation technique (called Fuzzy Model Reference 
Learning Control (FMRLC)) has the ability to memorize 
the control surface; which justify the term “learning” in 
its name. This technique has been proposed and 

implemented by Passino et al. in [6,7,8,9], Silva el. al in 
[10] and Mayhan et al. In [11].  
In real time implementation, FMRLC may delay in 
providing the desired control action especially at the 
start (when the controller has to collect the information 
about the control surface). FMRLC also requires a long 
time to adapt to parameter variation. The adaptation of 
the output-scaling factor has a faster and more 
significant effect on system performance. 
This paper demonstrates that the fuzzy model reference 
self-tuning controller (FMRSTC) is faster and simpler 
adaptive control algorithm than the FMRLC. It also 
provides the controller with an adaptation mechanism 
not found in STFC.  
Analysis and comparison of the techniques and 
performance between the proposed algorithm 
(FMRSTC) and the other two algorithms (FMRLC and 
FSTC) will be introduced. 
The paper is organized as follows: Section II introduces 
the structure and adaptation algorithm for the 
conventional fuzzy self-tuning controller. Section III 
discusses the fuzzy model reference learning controller. 
Section IV is devoted to the description of the newly 
proposed adaptation algorithm and the advantages of this 
approach over the previous two algorithms. Section V 
discusses simulation results of the three algorithms of 
the controller parameters respectively. The experimental 
results of the three algorithms applied to speed control of 
an induction motor are introduced in section VI.  
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2. FUZZY SELF-TUNING CONTROLLER 

The Fuzzy Self-Tuning Controller (FSTC) consists of 
two parallel fuzzy processors. The first is the main fuzzy 
controller; the second (which is called fuzzy 
performance testing and SF regulator) is designed to 
adapt the output-scaling factor or the input scaling 
factors of the first fuzzy controller. Tuning the input 
scaling factors is a complex process and has a less 
significant effect on the system performance. Figure (1) 
shows the block diagram of the STFC when the output-
scaling factor is the target for the adaptation.  Both fuzzy 
controllers used in this work are PD fuzzy controllers. 
The inputs of the two fuzzy controllers are given by: 

)()()( kykrke −=            (1-a) 

T
kekekc )1()()( −−

=           (1-b) 

where )(kr  is the set point, )(ky  is the output of the 
process, and T  is the sampling time. Triangle 
membership functions were used for all inputs and 
outputs of the two fuzzy controllers. The rule-base of the 
fuzzy controller is built based on the information about 
the process. The basic structure of such a rule-base is 
shown in table (1). The rule-base of the fuzzy 
performance testing is shown in table (2).  

 
 

Figure (1) structure of fuzzy self-tuning controller. 
 

Table (1) rule-base for the fuzzy controller and inverse 
model. 
 

∆e/e NB NE ZE PO PB 
NB NB NB NB NE ZE 
NE NB NB NE ZE PO 
ZE NB NE ZE PO PB 
PO NE ZE PO PB PB 
PB ZE PO PB PB PB 

 

Table (2) rule-base for the fuzzy the fuzzy performance 
testing and SF’s regulator 
 

∆e/e NB NE ZE PO PB 
NB PB PB NB PO ZE 
NE PB PB PO ZE PO 
ZE PB PO ZE PO PB 
PO PO ZE PO PB PB 
PB ZE PO PB PB PB 

 

The primes membership value is given by: 

),min( 21
kAjA
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where i is the index of the rule, jA  is the linguistic 
value for the input (the center of the jth  input 
membership function i.e. =0A  negative large, =1A  

negative … etc), 1
jA

µ  is the membership value of the 1st 

input to the jA  linguistic value. The output of the fuzzy 
controller is given by the following equation: 
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similarly,  the output of the fuzzy performance testing 
and SF regulator is given by: 
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Where crispy andα  are the crisp outputs, ib  and lb  
are the centers of the ith and lth output membership 
functions, R1 and R2 are the numbers of the rules at the 
rule base, (sup (x) denotes supremum value of µ(x) 
which can be assumed as the upper bound of the 
chopped output membership function) and iB̂

µ  and 

lB̂
µ are the implied fuzzy sets for the ith  and lth rules for 
the fuzzy controller and the fuzzy performance testing 
and SF regulator respectively. The implied fuzzy set 

iB̂
µ  is given by: 

)(*)(ˆ yy iAi B
i

B
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where )(yiB
µ  represent the membership function of the 

output (Triangle membership function was used in this 
paper). Assuming the use of minimum and maximum 
function for the inference mechanism then: 
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and hence equation (3) and (4) would be: 
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The adaptation of the output-scaling factor of the 
fuzzy controller is given by: 

α*uu Gg =                 (9) 

where ug  is the output-scaling factor, uG  is the 
maximum value for the output-scaling factor, and α  is 
the adaptation factor. According to table (2) α  has a 
value between 0 and –1. In this work α  was shifted by 
0.7 to ensure a minimum value for the output-scaling 
factor. This would also reduce the steady state error. The 
control signal (u) is given by: 

α**)()( u
crisp Gkyku =            (10) 

Hence )(ku  at a given sample can be rewritten as 
follow: 
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where nmi bbb *= , n
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1:1 Rm = , and 2:1 Rn =  . From equation (12) it can be 
noted that FSTC with the proposed structure in [4,5] can 
be simplified as a single fuzzy controller with rules at 
the rule-base 21 * RRR =  followed by integrator. The 
total control surface including the effect of the integrator 
is shown in figure (2). 

 

 

 

As a result, the previous analysis shows that the 
FSTC represent an enhanced fuzzy controller with fewer 
rules (two parallel fuzzy controller with total rules 

= 21 RR +  instead of single fuzzy controller with 

21 * RR  rules) however this controller has no adaptation 
capabilities. In other words, the control surface that 
describes the input output mapping is fixed  even when 
the process parameters change (Figure (4)). Accordingly, 
the system performance would change if the process 
parameters changes and there would be no guarantee that 
this performance would be acceptable. 

 

 
Figure (2) the control surface using FSTC algorithm  

3. FUZZY MODEL REFERENCE LEARNING CONTROL 

Fuzzy Model Reference Learning Control (FMRLC) 
is based on the conventional model reference adaptive 
control (MRAC) algorithm. MRAC shows stability and 
good performance for non-linear systems. FMRLC was 
first proposed by Mamdani [12] in 1979.  

Figure (3) shows the structure of FMRLC. In this 
control scheme the system (the plant together with the 
controller) is asked to follow certain performances given 
by a reference model. Normally, the reference model is a 
linear first or second order system. In this work a 2nd 
order system is used as a reference model given by: 
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Where )(sRref  is the reference input, )(sYref is the 

output of the reference model, nω is the desired nature 
frequency and η  is the desired damping ratio.  

 



 
 

 
 
Figure (3) structure of fuzzy model reference learning 
control. 

 

The learning and adaptation mechanism is 
responsible for forming the rules at the rule-base of the 
fuzzy controller. These rules describe the non-linear 
control surface that compensates and linearizes the 
overall system to match the reference model.  It is also 
responsible to keep adapting the control surface to 
compensate according to the process varying parameters. 
The inputs of the main fuzzy controller (FC) are as in 
equations (1-a) and (1-b). Triangle membership 
functions are used for this work for the controller inputs 
and output for both the main fuzzy controller and the 
inverse model (The inverse model is a fuzzy controller 
with dynamics inverse to the process dynamics). The 
structure of the rule-base and the inverse model are 
identical to the one used for the main fuzzy controller in 
the FSTC for simplicity and are shown in table (1). If 
more information about the process is available it is 
possible to describe it in the rule-base of the fuzzy 
controller and the inverse model. The output of the main 
fuzzy controller is given by equation (2); however, the 
centres of the output membership function are subjected 
to the adaptation as follow: 

)()1()( kpGkbkb pii +−=         (14) 

where pG  is the adaptation gain and )(kp  is the 
output of the inverse model. The inverse model inputs 
are given by 

)()()( kykykye ref −=           (15-a) 

T
kyekyekyc )1()()( −−

=          (15-b) 

where )(kyref  represent the output of the reference 
model at the sample k. The output of the inverse model 
( )(kp ) is similar to the output of the fuzzy controller 
that is similar to equation (4). To avoid generating 

control actions exceeding the limits of the process input 
the following 2 equation are added: 

max)( bkbi =     max)( bkbi ≥      (16-a) 

min)( bkbi =      min)( bkbi ≤     (16-b) 

where minb  and maxb  are the minimum and maximum 
control action values. Equation (14) shows that the 
FMRLC algorithm provide both adaptation and learning 
capabilities. This is because the adaptation process is 
independent of the inputs of the main fuzzy controller. 
Also the adaptation process is seeking a certain 
performance defined by the reference model regardless 
of the change of the process parameters. Figure (5-a) 
shows the control surface using FMRLC for the system 
including the induction motor in speed control loop 
without load. Figure (5-b) shows the same control 
system when a load is added to the machine. The figure 
shows that the control surface has changed as the 
machine torque load changes. It shows that the algorithm 
not only adapt to the parameter variation but also 
memorize these changes in the rule-base of the 
controller.  

However, if the parameters of the process are kept 
constant and the system faces the same conditions more 
than once, the performance will be the same without any 
necessary adaptation. This is only true on the condition 
where the inverse model is matching exactly the non-
linearity of the process. If this condition is satisfied then 
the only adaptation is to compensate for the process 
parameter variation. However, if the inverse model does 
not match the inverse characteristics of the process, the 
adaptation process will be active indefinitely to adapt 
and minimise the error between the inverse model and 
the optimum inverse model. In most cases, the inverse 
model does not match the inverse characteristics of the 
process. This is because if the process parameter 
changes, the inverse model does not describe the inverse 
characteristics of the process any more. It is required to 
add identifier to keep changing the inverse model 
parameters as the process parameters change. This would 
add complexity to the system mechanism and slow down 
the adaptation process.  
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(b) 

Figure (4) shows the control surface using FMRLC 
(a) machine is unloaded (b) machine loaded. 

The FMRLC has a complex and slow adaptation 
process. This can be clearly noted if the rule-base of the 
fuzzy controller is set to zero or to certain values that are 
far from the optimum control surface. However after the 
system collects the optimum control information, 
however, it can adapt reasonably fast for process 
parameter variation if such a variation is limited within 
certain values (values that will not completely change 
the system performance). 

4. FUZZY MODEL REFERENCE SELF-TUNING CONTROL 
Based on the structure of STFC and FMRLC, a 

possible combination of the two algorithms can provide 
an easier and more efficient adaptation algorithm. The 
proposed structure is shown in figure (5). It can be noted 
that it is very close to the FMRLC structure in that it 
includes a reference model that describes the desired 
performance. However, the target for the adaptation is 
the output-scaling factor of the fuzzy controller. This 
will provide the system with a fast adaptation 
mechanism. The main fuzzy controller is a PI fuzzy 
controller. The inputs to the fuzzy controller are given 
by: 
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where )(kr  is the set point, )(ky  is the output of the 
process and k  is the current sample. The integral output 
is limited according to the following: 

min2)( ckc =  min2)( ckc ≥          (18-a) 

max2)( ckc =  max2)( ckc ≥          (18-b) 

where minc  and maxc  are the centers of the c  
membership function. The inputs of the inverse model 
are identical to the ones used in the FMRLC algorithm 
(given by equation (15)). Triangular membership 
functions were selected for the inputs and the output of 
both the fuzzy controller and the inverse model. The 
rules at the rule-base were built based on rough 
information about the process under control. The rule-
base of the fuzzy controller and the inverse model are 
similar to the one used by FMRLC and given by table 
(1).   

 

 

The output of the fuzzy controller and the inverse 
model is the same as equation (2). For the proposed 
algorithm the centers of the output membership function 
are fixed. The target of the adaptation is the output 
scaling factor of the fuzzy controller. The output of the 
inverse model describes the desired correction to the 
control action to achieve the desired performance.  

 
Figure (5) the structure of the proposed FMRSTC algorithm.  

 

The output of the inverse )(kp  is given by: 

crisp
Invp ygkp *)( =              (19) 



 
 

where crisp
Invy  represent the crisp output of the inverse 

model and calculated similar to equation (7) and pg  is 
the output scaling factor of the inverse model (adaptation 
gain). The adaptation mechanism changes the output-
scaling factor as follow: 

)()1()( kgkgkg uuu ∆+−=         (20) 

where )(kgu∆  is the incremental amount of the 
output scaling factor. The calculation of )(kgu∆ is 
related to the output of the inverse model and the current 
state of the output of the process. Figure (6) shows all 
possible patterns of the output of the processes with 
reference to both the set point and the reference model. 
Consider the pattern shown in figure (7-a) where the 
error between the output of the process and the set point 
( e ) is positive, the error between the output of the 
process and the reference model ( ye ) is positive and the 
set point is positive. The output of the inverse model 
( )(kp ) at this case is positive. It is clear that in this case 
the process is slower than desired and more control 
action is required. To magnify the control action, it is 
necessary to increase the output scaling factor and hence 

)(kgu∆ should be: 

)()( kpkgu =∆                (21) 

To achieve this, a simple fuzzy controller is 
embedded on the adaptation mechanism to gradually 
switch between )(kp  and )(kp− . This fuzzy controller 
has a single input ( e ) and five membership functions for 
both the input and the output. Figure (7) shows the input 
and the output membership function used for the 
adaptation fuzzy controller. The output membership 
function has the centers of three  membership functions 
set to zero. This is to avoid the oscillation of the output 
of the process around the set point. By adding this fuzzy 
controller, the adaptation of the output scaling factor will 
be reduced to zero as the output of the process 
approaches the set point. It is not possible to plot the 
total control surface when the adaptation information is 
not saved (the target of the adaptation is the OSF not the 
rule-base). 
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ZZ Z )(kp−
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Z PO PB NB NE 

Figure (6) Membership function for (a) the input and (b) the 
output of the adaptation fuzzy controller 

5. SIMULATIONS 
A periodic reference speed between –1000 to 1000 

rpm was applied to the three algorithms under 
investigation (FSTC, FMRLC, and FMRSTC). A load 
was applied after 10.3 sec for duration of one complete 
period of speed change to study the effect of the load 
change for both transient and steady state performances. 
Figures (7), (8) and (9)) show the response of the 
induction motor when the FMRLC and FMRSTC 
algorithms were applied respectively. The figures (8) 
and (9) includes the reference input, the output of the 
reference model and the speed of the induction motor. In 
figure (9), the Adaptation Factor (AF) is plotted in figure 
(OSF is fixed in FMRLC algorithm). In figure (9) both 
OSF and AF are plotted where the FMRSTC algorithm 
adapt the OSF.  
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Figure (7) Control system response using optimized FSTC 
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Figure (8) Control system response using FMRLC  
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Figure (9) Control system response using FMRSTC  

 

The speed curves of figures (8) and (9) show that the 
newly developed algorithm has faster adaptation 
capabilities. It can be noted also that the AF for the 
FMRLC is active indefinitely, which indicates that the 
learning process is not 100% efficient. This is due to the 
mismatch between the inverse model and the inverse 
characteristics of the induction motor. However, this 
does not affect the performance of the system but, in 
fact, indicates less effectiveness of the learning process.  

6. EXPERIMENTAL RESULTS 
In addition to simulations, experiments have been 

conducted to verify the proposed algorithm and to 
compare it with the other two algorithms (FSTC and 
FMRLC). An induction motor speed control system was 
used. The motor parameters are given in table (3). 
Indirect field oriented control scheme was used. The 
controller was applied in the speed control loop. Figure 
(10) shows the control test bench where DSPACE 
DS1102 was used as the control board. The speed 
operating range was set to 1000 rpm to avoid the 
saturation of the inverter. 

Figures (11), (12) and (13) show the response for the 
system when FSTC, FMRLC, and FMRSTC are applied 
respectively. The measured results show very close 
agreement with the ones obtained by simulations.  

Figures (12) and (13) show that the FMRSTC has less 
error than FMRLC. The maximum speed error between 
the machine and the reference model is less than 60 rpm 
while in FMRLC it was less than 100 rpm. The OSF 
pattern changed at transient after adding the load to keep 
the transient performance constant. The FMRLC has 
similar performance but much slower which results in 
some oscillation around the reference model at transient.  

Table (3) induction motor parameters. 
 

Description Value Units 
Rated Power 0.5 Hp 
Rated current 1.3 Amp 
Rated speed 1500 rpm 
Rated line voltage 208 Volts 
Stator inductance 0.397416 H 
Rotor inductance 0.378417 H 
Mutual inductance 0.372084 H 
Stator resistance 9.652065 Ω 
Rotor resistance 0.378417 Ω 
Moment of inertia 0.00439811 kg-m2 

viscous damping  0.00028587 N-m-s 
Number pole pairs 2  

 



 
 

The oscillation was a result of the high adaptation 
gain. To reduce the oscillation, lower adaptation gain 
should be used. Lower adaptation gain reduces the 
system performance at the transient.   

 
Figure (11) control test bench. 

 

7. CONCLUSION 
An algorithm simpler and more effective than FMRLC and 

FSTC adaptation algorithms was developed and presented. A 
comparison between the newly developed algorithm and the 
other two algorithms has been introduced. The results show 
that the newly developed algorithm has a faster adaptation 
performance than FMRLC as well as simpler adaptation 
algorithm. The results for both the simulation and real time 
implementation confirm the superiority of the FMRSTC. 
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Figure (11) Control system response using FSTC  
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Figure (12) Control system response using FMRLC  
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Figure (13) Control system response using FMRSTC  
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