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Abstract: Current models of semiconductor devices are very sophisticated, especially ones for BJT and MOS-
FET. The equations of such models contain typically one hundred parameters. Therefore, a measurement and
particularly identification of full set of parameters is very difficult. In the paper, an optimization method is pre-
sented which is usable for identifications of even very complicated models with a relatively small number of
iterations. The algorithm has been implemented into the original software tool called C.I.A. (Circuit Interactive
Analyzer) into its static and dynamic analysis modes. Hence, the identification is able to identify both DC and
capacitance models of semiconductor devices. The process is demonstrated in the paper using various transistors.
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1 Introduction
The C.I.A. optimization algorithm seeks to find up to 25
(in the current stable version of the program) unknown
parameters of the circuit for fulfillment of user-specified
requirements. The algorithm starts the analyses sequen-
tially and changes these parameters after each of them
to gradually fulfill the user’s requirements.

2 The C. I. A. Optimization Algorithm
Let us assume that some two circuit outputs are to be
monitored in three points as seen in Fig. 1. The cir-
cles mark user-specified requirements for the outputs
and the squares mark values of the outputs obtained af-
ter an analysis. The algorithm seeks to minimize the
sum of squares of differences between them

S (x1, . . . , xn) =

m
∑

k=1

R2
k (x1, . . . , xn) , n 5 m, (1)

where the unknown optimized parameters of a circuit
are marked byx1, . . . , xn, andRk, k = 1, . . . ,m are
the differences.

An extreme of the function ofn variables (1) can be
found in the standard way, i. e.

∇S =
m
∑

k=1

2Rk∇Rk = 0. (2)
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Figure 1: A diagram of a typical optimization task.

After a standard derivation [1], the generalized least-
squares procedure is obtained applying the condition (2)

J
t
J∆x

(l) = −J
t
r, x

(l+1) = x
(l) + ∆x

(l),

l = 1, . . . , lmax, (3)

wherel is the iteration index and
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k = 1, . . . m, i = 1, . . . , n.



.01 .02 .05 .1 .2 .5 1 2 5 10

8

10

14

24

60
50

20

40
30

.0001

.0002

.0005

.001

.002

.005

.01

.02

.05

.1

i B
A

(
)

µ

v
CE
V( )

i
i

C(i
d
en
t)
C(m
ea
s)

A
,

(
)
(
)

Quasisaturation
region

Figure 2: Forward DC characteristics of BJT KC508.
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Figure 3: Reverse DC characteristics of BJT KC508.

The generalized least-squares procedure is very fast,
but sometimes insufficiently stable. For this reason, the
method is combined with the gradient one

∆x
(l) = −2J

t
r, l = 1, . . . , lmax

to the reliable Levenberg-Marquardt modification of (3)

[

J
t
J + λ(l)

1

]

∆x
(l) = −J

t
r, x

(l+1) = x
(l)+∆x

(l),

l = 1, . . . , lmax, (4)

where1 is unit matrix andλ(l) is a scalar iteration-
dependent factor. There are many ways to optimally de-
termine that factor for each iteration – the most sophisti-
cated ones use an estimation based on eigenvalues of the
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Figure 4: Impact of quasisaturation model for BJT identification.
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Figure 5: Input characteristic of KC508 (collector disconnected).

Jacobian in (4) [2]. However, simpler empirical ways
are mostly also successful [1]. The C.I.A. program also
contains a version of the empirical methods (however,
a way based on the eigenvalues is also possible) which
seeks to minimize theλ(l) factor sequentially (i. e., to
make the generalized least-squares method more influ-
ential at the end of the process, which is natural):

λ(1) = 1,

λ(l+1) =
λ(l)

5
.

(5)

However, this monotone decay must be interrupted (and
therefore the gradient method must be sometimes made
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Figure 6: Collector and emitter junction capacitances of KC508.
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Figure 7: Identification of transit time model parameters of KC508.

more influential) when the method seems to diverge:

if l > 1 ∧ S(l) =
l−1
min
j=1

S(j) then

x
(l) := x

(l−1), λ(l) := λ(l)52,

where the first multiplication by5 compensates the di-
vision by 5 in (5) and the second multiplication by5
increases that scalar factor.

Unfortunately, the method described above is insuf-
ficient for the majority class of the circuit optimization
problems. Thus, an improved method has been imple-
mented to the CIA program.

The improvement consists in the following steps:
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Figure 8: Forward DC characteristics of microwave BJT KT391.
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Figure 9: Relative identification errors in the selected stable area.

• The differences defined in (3)mustbe nor-
malized;

• These differences should also be weighted;

• The JacobianJ in (4) mustbe normalized
too;

• The Jacobian can quickly be evaluated by
sensitivities;

• Evaluating the Jacobian is not necessary in
each iteration;

• Possible divergence of iterations (4) can be
damped.



-12 -10 -8 -6 -4 -2 0

-6

-7

-8

-9

-10

-.006

-.005

-.004

-.003

-.002

-.001

0

v
G
S
V(
)

v
DS
(V)

i
i

D(i
d
en
t)

D(m
ea
s)
(
)
(A
)

,

Figure 10: Forward DC characteristics of enh PMOSFET 2N3608.
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Figure 11: Forward DC characteristics of enh NMOSFET BUZ345.

2.1 Normalization of the System of Equations

The models of BJT and MOSFET contain values of ex-
treme orders (tiny ones together with the huge ones).
For such systems, the standard optimization algorithms
are unstable. Therefore, a normalization of differences
is included in the C.I.A. program as a new feature (to-
gether with their weighting, of course)

R′

k

[

x
(l)
]

,wk

y
(output)
k

[

x
(l)
]

− y
(input)
k

∣

∣

∣
y

(input)
k

∣

∣

∣
+ y

(null)
k

,

k = 1, . . . ,m, (6)

where(input) and(output) mark measured and opti-
mized values if the optimization is used for the iden-

i
i

D(i
d
en
t)
D(m
ea
s)
(
)
(A
)

,

v
DS
(V)

v
G
S
V(
)

-0.75

-0.5

-0.25

0.25

0.5

0.75

1.25

1

0

-1

.1 .2 .5 1 2 5 10

.0001

.0002

.0005

.001

.002

.005

.01

Figure 12: Forward DC characteristics of dep NMOSFET KF521.

0 1 2 3 4 5 6 7 8

1

1.25

1.5

1.75

2

2.25

2.5
c

c
c

c
S(i
d
en
t)

S(m
ea
s)

D(i
d
en
t)

D(m
ea
s)

(
)

(
)
(p
F
)

,
,

,

− −v v
BS BD

(V),

c
S

c
D

Figure 13: Drain and source junction capacitances of KF521.

tification purposes. However, many numerical experi-
ments have proved that a normalization of the Jacobian
is also necessary:

∂R′

k

[

x
(l)
]

∂xi

:=wk

∂y
(output)
k

[

x
(l)
]

∂xi
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(max)
i − x

(min)
i
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∣
y
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k

∣

∣
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+ y

(null)
k

,

k = 1, . . . ,m, i = 1, . . . , n, (7)

where∂y
(output)
k

/

∂xi is a result ofsensitivityanalysis.

The equation (6) is a definition. However, the equa-
tion (7) represents an assignment. Therefore, a solution
of the system (4) must be modified by the assignment

∆x
(l)
i :=∆x

(l)
i

[

x
(max)
i − x

(min)
i

]

, i = 1, . . . , n



after each iteration, wherex(min)
i andx

(max)
i represent

minimum and maximum allowable values, respectively
– they are specified by the user.

The optimization is one of the most important ad-
vantages of the C.I.A. program in comparison with the
SPICE ones. The total number of optimized circuit pa-
rameters is limited to 25. However, there is no problem
to increase that number arbitrarily. The optimization
may be applied upon the operation point, direct current
transfer, frequency, and even transient analyses.

3 The Results of Model Identifications
All the model equations which have been used for the
model identifications have been defined in the appendix
of The SPICE book [3]. A detailed physical theory on
modeling the semiconductor devices is available in [4].

3.1 BJT

3.1.1 A Low Frequency Transistor
The first identified BJT was KC508 which is a Czech
equivalent of BC108. The transistor has been firstly
identified without the quasisaturation part of the model
which is simpler, of course. The results of the identifi-
cation are shown in Figs. 2 and 3 – the first one (forward
mode) with the root mean square (rms) error9.61 % and
maximum absolute value of relative differences (δmax)
43.1 %, and the second one (reverse mode) with these
valuesrms = 4.85 % andδmax = 20.0 %.

The optimization has given the values of the model
parametersIS = 7 × 10−13 A, ISE = 2.98 × 10−11 A,
ISC = 1.5 × 10−11 A, βF = 974, βR = 50, nF = 1.1,
nR = 1.1, nE = 2.06, nC = 1.69, VAF = 14.9 V,
VAR = 4.9 V, IKF = 1.2 A, IKR = 1.28 mA, and
rC = 3.2 Ω.

As shown in Fig. 2, the saturation part of the charac-
teristics is not modeled optimally. Therefore, the equa-
tions for modeling the quasisaturation must also be con-
sidered. The results of such improved identification are
shown in Fig. 4 (they are drawn in natural linear coor-
dinates here in comparison with the two previous log-
arithmic ones). The optimization has given the addi-
tional model parametersrCO = 10 Ω, VO = 100 V,
andγ = 10−7 [5]. With the inclusion of the quasisat-
uration, the errors of the identification are lesser than
those above –rms = 3.51 % andδmax = 14.9 %.

The parameters of the nonlinear base resistance
model are identified using the input characteristic of the
transistor as shown in Fig. 5. The input characteris-
tic has been identified with the errorsrms = 13.5 %

and δmax = 35.0 % and the optimization has given
the model parametersrB = 26 Ω, rBM = 37 mΩ,
IrB = 3.4 µA, andrE = 0.53 Ω.

The dynamic part of the model has also been identi-
fied. Firstly, both junctions capacitances have been de-
termined as shown in Fig. 6. The identification has had
the errorsrms = 1.57 % (E), 1.64 % (C) andδmax =
2.51 % (E), 2.73 % (C) and the optimization has given
the model parametersCJE = 4.38 pF, φE = 0.65 V,
mE = 0.4, CJC = 3.11 pF, φC = 0.4 V, andmC =
0.273. Secondly, the transit time model parameters
have been identified as shown in Fig. 7. The optimiza-
tion has given the model parametersτF = 0.249 ns,
IτF = 0.35 A, VτF = 8.52 V, andXτF = 0.33 with
the errorsrms = 31.8 % and δmax = 94.4 %. The
last ones seem to be large – however, the differences
are determined using the “vertical” distances which are
not optimal here, of course (actually, the identification
can be considered quite successful). The reverse transit
time has been identified in the same way with the result
τR = 23 ns.

3.1.2 A High Frequency Transistor
The second identified BJT was the microwave one: Rus-
sian KT391. In Fig. 8, its forward characteristics are
shown. The irregularities are probably caused by oscil-
lations during the measurement – it is very difficult to
perform the DC measurements for the microwave tran-
sistors due to problematic stability of such transistors.

The optimization has given the values of the model
parametersIS = 10−8 A, ISE = 4.7 × 10−9 A, ISC =
10−7 A, βF = 133, βR = 1.6, nF = 1.15, nR = 1.13,
nE = 1.86, nC = 1.75, VAF = 123 V, VAR = 2 V,
IKF = 18 mA, IKR = 86 mA, rC = 2 Ω, rB = 10 Ω,
rBM = 1 Ω, IrB = 100 µA, andrE = 1.6 Ω with the
identification errorsrms = 16.0 % andδmax = 61.7 %.
However, if only the triangular “stable” region is used
as shown in Figs. 8 and 9, then the errors are lesser:
rms = 5.99 % andδmax = 22.2 % (and the microwave
linear transistors are mainly used in such regions...).

3.2 MOSFET

3.2.1 Enhancement Mode Transistors
Firstly, let us identify the models of enhancement tran-
sistors. The first one has been the low power stan-
dard P-channel 2N3608 – see Fig. 10. The identifica-
tion procedure has given the values of model parame-
tersVTO = −4.77 V, φS = 0.657 V, φO = 0.806 V,
W = 37.9 µm, L = 3.46 µm, XJ = 1.54 µm,



XJL = 0.762 µm, tox = 98.7 nm, NFS = 1015 m−2,
NA = 2.32 × 1022 m−3, vmax = 3.55 × 105 m/s,
µO = 0.0719 m2/(Vs), EP = 3.4 MV/m, κ = 0.441,
KP = 2.49 × 10−5 A/V2, γ = 0.294

√
V, δ = 0.989,

η = 0.03, θ = 0.00334 V−1, andι = 0.34 (the last one
is only present in the C.I.A. program where serves as an
additional fitting factor). The parameters of the model
have been found with a great precision –rms = 2.18 %
andδmax = 5.41 % only!

The second one has been the high power standard
N-channel VMOS BUZ345 – see Fig. 11. The identifi-
cation procedure has given the values of model parame-
tersVTO = 3.26 V, φS = 0.578 V, φO = 0.801 V,
W = 1.46 m, L = 4.97 µm, XJ = 0.289 µm,
XJL = 0.179 µm, tox = 74.7 nm, NFS = 1015 m−2,
NA = 1.73 × 1020 m−3, vmax = 3.23 × 105 m/s,
µO = 0.0585 m2/(Vs), κ = 0.0306, KP = 4.19 ×
10−5 A/V2, γ = 0.366

√
V, δ = 1, θ = 0.0384 V−1,

ι = 0.572, rD = 0.0249 Ω, andrS = 0.0435 Ω (for the
power devices, the drain and source resistances must be
identified too; in the previous example, their values have
been fixed to the defaults10 Ω). The identification er-
rors for that power device have been greater than those
for the previous one (which is natural):rms = 8.67 %
and δmax = 28.8 %. Moreover, the value ofW is
extreme but logical – power devices are composed of
many single structures and therefore such value repre-
sents an integral.

3.2.2 A Depletion Mode Transistor
Secondly, let us identify the model of a depletion-mode
transistor which was an N-channel KF521 – see Fig. 12.
The identification procedure has given the values of the
model parametersVTO = −1.48 V, φS = 0.334 V,
φO = 0.789 V, W = 443 µm, L = 4.83 µm, XJ =
0.932 µm, XJL = 0.827 µm, tox = 71.8 nm, NFS =
1015 m−2, NA = 7.51 × 1021 m−3, vmax = 1.71 ×
105 m/s, µO = 0.0535 m2/(Vs), EP = 419 kV/m,
κ = 0.4, KP = 2.12×10−5 A/V2, γ = 0.568

√
V, δ =

1, η = 0.811, θ = 0.002 V−1, ι = 0.929, rD = 11.8 Ω,
andrS = 5.17 Ω. Again, the identification has finished
with small errorsrms = 4.06 % andδmax = 14.5 %.

For the KF521 MOSFET, its junction capacitances
have also been identified – see Fig. 13. The iden-
tification procedure has given the model parameters
CJO areaS = 2.17 pF, CJO areaD = 1.57 pF,
CJOsw perimeterS = 0.26 pF, CJOsw perimeterD =
0.182 pF, φO = 0.789 V, φOsw = 0.789 V, mS =
0.302, mSsw = 0.183, mD = 0.213, mDsw = 0.286
– again, the relative errors of the identification are rela-

tively small: rms = 2.73 % (S), 3.15 % (D), δmax =
4.36 % (S), 6.90 % (D).

4 Conclusion
An optimization algorithm has been presented which is
convenient for the robust and effective identifications of
complicated tasks. The algorithm has been improved
using the equations normalization, which is important
for stability of optimizations with BJT and MOSFET.
The modified algorithm has been implemented to the
C.I.A. program, and typical measurements and identifi-
cations of model parameters have been demonstrated.

5 Appendix
The root mean square and maximum deviations com-
puted for the results in Figs. 2–13 are defined naturally

rms =

√

√

√

√

√

√

√

np
∑

i=1

(

y
(ident)
i − y

(meas)
i

y
(meas)
i

)2

np
× 100 %,

δmax =
np

max
i=1

∣

∣

∣

∣

∣

y
(ident)
i − y

(meas)
i

y
(meas)
i

∣

∣

∣

∣

∣

× 100 %,

respectively, wherey(ident)
i andy

(meas)
i are the identi-

fied and measured values, andnp is the number of all
the measured points.
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