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Abstract: - The paper deals with a technique of sensitivity calculation in linear hybrid networks containing elements 
with both lumped and distributed parameters when the multiconductor transmission lines (MTL) are considered as the 
distributed parts. The technique utilizes the modified nodal analysis (MNA) method to do overall description of the 
network enabling determining sensitivities with respect to both lumped and distributed parameters. As the first step the 
frequency–domain sensitivities formulae are derived then the numerical inversion of Laplace transforms (NILT) is 
applied to get the time-domain sensitivities. In this paper an innovative method for the calculation of the sensitivities 
just with respect to distributed MTL parameters is presented.  
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1 Introduction 
The sensitivity analysis of transmission line structures 
plays the important role in the solution of signal integrity 
problems in modern mixed digital/analog systems. It can 
concern simulation, modeling and optimization of high-
speed circuit boards, integrated circuits interconnects, 
computer buses performance etc. [1].  

The paper deals with the technique of time-domain 
sensitivity calculation in the hybrid networks containing 
elements with both lumped and distributed parameters.  
Herein the solution is restricted to linear networks that 
contain uniform lossy multiconductor transmission lines 
(MTL) as the distributed-parameter parts. The procedure 
utilizes the modified nodal analysis (MNA) equation 
method to perform an overall network description in the 
frequency domain [2,3]. Unlike a modal analysis method 
describing behaviour of the MTL parts [2], the MTLs’ 
chain matrices are used in this paper [3]. The advantage 
of such approach lies not only in easier and more 
compact matrix-form description but mainly also in the 
possibility to extend the solution against nonuniform 
MTLs if necessary. In principle the sensitivity analysis 
can be performed with respect to parameters of lumped 
elements, the primary parameters of MTLs, and also the 
MTLs’ physical parameters. The paper brings a new 
approach just into the solution of last two cases.   

To obtain the time-domain sensitivities from those in  
frequency domain the procedure of numerical inversion 
of Laplace tarnsforms is finally applied. For this purpose 
the method based on the FFT and quotient-difference 
algorithm [4] is used. The complete solution is carried 
out in Matlab language environment that is very suitable 
just at solving matrix-described problems numerically. 

2 Problem Formulation 
Consider a linear network containing a section with 
lumped-parameter elements and P distributed–parametr 
subnetworks that are formed by lossy multiconductor 
transmission lines, see Fig.1. 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Linear network containing MTL subnetworks 
 
The aim is to formulate equations enabling calculation 
of sensitivities with respect to parameters both lumped 
and distributed elements. In this paper we will suppose  
just uniform MTLs and zero initial voltage and current 
distributions along MTLs’ wires, even if the method 
can further be generalized. 
 
3 Network MNA Matrix Equation 
The equations describing considered network in the time 
domain can be formulated using the modified nodal 
analysis equation method [2,3]  
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where  MC  and MG  are  constant matrices with 
entries determined by the lumped memory and 
memoryless components, respectively,  is the 

 vector of node voltages appended by currents of 
independent voltage sources and inductors,  is the 

 vector of source waveforms,  is the  
vector of currents entering the k-th MTL, and  is the 

 selector matrix with entries  mapping 
the vector  into the node space of the network. 
Applying Laplace transformation the frequency-domain 
MNA equation has the form  
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The MTLs consist of 2k km n=  active conductors and 
can be regarded as –ports. Then the 2 km ( )k sI  in (2) is 
assembled to contain vectors of currents entering input 
and output ports as (1) (2)( ) [ ( ), ( )]T

k k ks s s=I I I . Supposing 
only MTLs zero initial conditions then the admittance 
equation of k–th MTLk can be formulated as 

( ) ( ) ( )k k ks s s=I Y V ,      (3) 

where (1) (2)( ) [ ( ), ( )]T
k k ks s s=V V V  is assembled to contain 

vectors of voltages occuring on input and output ports.  
After substituting (3) into (2) the resultant MNA 

matrix equation is of the form 

[ ]-1( ) ( ) ( ) (0)M M M M Ms s s= +V Y I C v ,   (4) 
where 
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Herein the s–domain solution is prepared making for the 
derivation of sensitivities in the frequency domain. 
 
4 Frequency-Domain Sensitivity  
Let us consider a parameter γ  that a sensitivity will be 
considered with respect to. Further think of the (4) in the 
form 

( ) ( ) ( ) (0)M M M M Ms s s= +Y V I C v   (6) 

and perform the differentiation w. r. to γ . We get   

( ) ( )( ) ( ) (0)M M
M M M

s ss s
γ γ

∂ ∂ ∂
+ =

∂ ∂
Y VV Y vM

γ∂
C , (7) 

where ( )M s γ∂ ∂ =I 0  and (0)M γ∂ ∂v = 0  were taken 
into account as neither sensitivities w. r. to the values of 
independent current/voltage sources or initial conditions 
of memory elements are considered here. From (7) we 
can write 
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Now we will split the solution into three different cases. 
 
4.1 Lumped Parameter Sensitivity 
Let γ is a lumped parameter of some element of the 
network. It means that it is certainly contained in MC  or 

MG  matrix according to the element type. Taking into 
account (5) we can generally write 
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In case of Mcγ ≡  as a memory-element parameter, then 
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As is pointed out in [2] if the element is connected  
between nodes i and j, the matrix derivatives in (10) or 
(11) are replaced by the matrix , with 

 defined as 

( - ) ( - )T
i j i j⋅e e e e

ie 1N ×  column vector with the value 1 at i-
th position, and with zeros elsewhere. If j denotes the 
reference node then the respective matrix is T

i i⋅e e . 
 
4.2 MTL Parameter Sensitivity 
Let us consider γ  to be some parameter of the k-th 
MTLk such as a component of per-unit-length matrices 
R0, L0, G0 and C0 (or some geometrical parameter 
affecting these matrices) or the MTL’s length l. Such 
parameter γ is implicated inside the MTL admittance 
matrix ( )k sY  in (5). Then coming from (8) and taking 
(5) into account we can write 
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because all the ( )j s γ∂ ∂ =Y 0 , . j k≠

To compute the sensitivity (12) it is necessary to find 
the MTL admittance matrix derivatives ( )k s γ∂Y ∂ . The 
approach shown herein is completely different from that 
usually used, see e.g. [2]. Namely, instead of the modal 
analysis technique that requires solving the system of 
linear equations to find primarily the eigenvectors and 
eigenvalues sensitivities, the straightforward technique 
based on the chain/admittance matrix conversion is used 
in this paper. Firstly we will show how to perform this 
conversion going out the basic MTL matrix equations. 



4.2.1 MTL Matrix Equation Formulation 
Suppose a uniform MTL of the length l , with per-unit-
length matrices R0, L0, G0 and C0. In the time–domain 
the basic MTL matrix equation is of the form [3] 
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After finishing Laplace transformation and considering  
zero initial voltage and current distributions along the 
MTL’s wires the equation (13) results in  
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where [ ]( , ) ( , )x s x=V vL t ] and [( , ) ( , )x s x=I iL t

0

 are the 
column vectors of Laplace transforms of voltages and 
currents at distance x from MTL input (1), respectively, 
and 0  is the zero matrix. Further 

0 0( )s s= +Z R L

0

 ,  (15) 

0 0( )s s= +Y G C               (16) 

are series impedance and shunting admittance matrices, 
respectively. To simplify further solution the (14) will be 
rewritten into the symbolic form 

( , ) ( ) ( , )d x s s x
dx

=W M W s .  (17) 

Considering now (0, )sW  as a solution at  (MTL’s 
input) the solution at x coordinate can be written as 

0=x

( , ) ( , ) (0, )x s x s=W WΦ s  ,         (18) 

with ( , )x sΦ  as the integral matrix defined in case of the 
uniform MTL ( ( ) ( )s f x≠M ) by the matrix exponential 
function 

( )( , ) s xx s e ⋅= MΦ  .             (19) 

When the coordinate  (MTL‘s output) is considered 
the integral matrix  acts as the MTL chain matrix 
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( )sΦ  in terms of multiport theory. We have 
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Because of the MTL reciprocity  holds valid, 
and its homogeneity leads to additional identity between 
its submatrices as 

( ) 1det s =Φ
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the considered MTL can be described by the equation 
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As regards the MTL admittance matrix 
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the reciprocity results in the equality 

21 12( ) ( )Ts s=Y Y  .                    (26) 

Furthermore due to the MTL homogeneity the additional 
identities for its submatrices are valid as  

 12 12( ) ( )T s s=Y Y ,       (27) 

 22 11( ) ( )s s=Y Y  .       (28) 

Therefore the decomposed MTL admittance equation (3) 
can be expressed (when the index k is omitted) by 
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Now the conversion formulae between ( )sΦ  and ( )sY   
will be used to help in the finding ( )s γ∂ ∂Y  derivative. 
Following multiport theory and equations (24) to (29) 
then after simple matrix manipulations the admittance 
matrix ( )sY  can be expressed by way of 
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Its derivative ( )s γ∂ ∂Y  can be computed by assembling  
derivatives of particular submatrices, that are 
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and where the inverse matrix differentiation is made up 
by a rule 
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As is obvious we have to state a chain matrix derivative  
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Further solution will be split into two different cases. 



4.2.2 MTL Length Sensitivity 
Let us suppose lγ ≡ . Because the MTL’s length  does 
not affect any per-unit-length matrices, the matrix 

l
( )sM   

is a constant matrix. Therefore (34) results in a standard 
matrix exponential derivative as 
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l
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The matrix product (35) is commutative. Substituting for 
( )sM , see (14) and (17), and performing necessary  

multiplications, we can write 
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Comparing (36) and (34) we know respective derivatives 
which are needed in (31) to (33). After finishing the 
substitutions and arrangements, and taking into account 
both the commutative property of (35) and also the (30), 
the derivatives (31) and (32) result in 
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We have just got the admittance matrix derivative 
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that is needed for ( )M s l∂V ∂  sensitivity, see (12). 
 
4.2.3 MTL Primary Parameter Sensitivity 
The primary parameters are given electrical parameters 
of the MTL, and the per-unit-lenght matrices define the 
matrix ( )sM , see (14) to (17). Therefore, the derivative 
(34) must first be performed with respect to the matrix 

( )sM , while l  is a constant. The procedure is more 
complicated compared to (35). The way how to do it can 
be based on the infinite series expansion of the matrix 
exponential function. Because of     
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However, neither the above derivatives can be done by 
rules for non-matrix variables because the commutative 
law is not generally valid for products of matrices. For 
example, taking into account a square of the matrix, an 
equation is in effect as 
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Generalizing this rule on a derivative of the k–th power 
of the matrix we have 
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where  is the identity matrix. However, using 
(43) would be computationally ineffective because we 
need derivatives of all the matrix powers in (41). After 
all we can proceed by two equivalent ways as 
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Both above equations can be treated as the recurrence 
ones, when starting with . For a computation the 
derivative 

2k =
( )s γ∂ ∂M  is prepared and the matrix ( )sM  

is successively multiplied by itself in a respective loop. 
The experience have shown that a sufficient number of 
terms in (41) is about one hundred. 

Now we will split the solution into four different  
cases depending on γ  parameter. Considering the series 
impedance 0 ( )sZ  and the shunting admittance 0 ( )sY  
definition formulae (15) and (16), respectively, the 
derivatives ( )s γ∂ ∂M  are given by block matrices as 
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Keeping earlier introduced formalism we can define the 
1m ×  column vector  containing the only nonzero 

value 1 at i-th position, and zeros elsewhere. Now when 
supposing  

ie

γ  as the i–th diagonal parameter of a per-



unit-length matrix, the derivatives inside (46) – (49) can 
be expressed by  matrix. For T

i i⋅e e γ  being a parameter 
occuring in pairs at nondiagonal  and ( ,( , )i j th− )j i th−  
positions, the derivatives result in  matrix, 

in case (46), (47),  or else  matrix, for 
(48), (49). Finally, the equations (31) – (33) are used to 
get 

T
i j j i⋅ + ⋅e e e eT

)T( T
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k γ∂ ∂Y  needed for ( )M s γ∂V ∂  sensitivity, see (12). 
 
4.2.4 MTL Physical Parameter Sensitivity 
Finally we can suppose γ  as a general MTL’s physical 
parameter, e.g. width of the line wires, spacing between 
them, material properties, etc. [2]. In contrast to the extra 
physical parameter - the length l , those considered here 
can affect values of all the per-unit-length matrices R0, 
L0, G0 and C0 in general. Now to determine ( )M s γ∂ ∂V  
sensitivity, see (12), the chain rule can be used for a 
computation of the MTL admittance matrix derivative as 
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where , ,  and , and  
denotes the order of the per-unit-length matrix. 
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5 Time-Domain Sensitivity and Examples 
To get time-domain sensitivities a method for numerical 
inversion of Laplace transforms will be used as 
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In the examples below there will be stated semirelative 
sensitivities according to the formula   
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As is obvious it is possible to get results for all the nodal 
voltages and/or branch currents simultaneously, when 
applying NILT method running on all the vector 
elements in parallel. Such a procedure has been created 
in Matlab language environment, see [4]. 

Now the above discussed techniques will be verified 
on the network in Fig. 2 which the results obtained by 
other methods are available for [2]. The MTLs differ in 
their lengths as , , , while 
their per-unit-length matrices are identical and equal to 
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Fig. 2 Hybrid linear network with three MTLs 

A 1 V pulse with 1.5 ns rise/fall times and 7.5 ns width 
acts on the input, with Laplace transform 
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The waveforms  & , i.e. two components of  ( )inv t ( )outv t

[-1( ) ( )M Mt s=v VL ,  (54) 

see (4), obtained via the NILT [4] are shown in Fig.3 
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Fig. 3 Input and output voltages 

The further waveforms are the semirelative sensitivities 
of v  in (52), with respect to various parameters ( )out t γ . 
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Fig. 4 Semirelative sensitivity vout w. r. to R1 
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Fig. 5 Semirelative sensitivity vout w. r. to C2 
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Fig. 6 Semirelative sensitivity vout w. r. to l of MTL2 
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 Fig. 7 Semirelative sensitivity vout w. r. to R11 of MTL2 
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Fig. 8 Semirelative sensitivity vout w. r. to L11 of MTL2 

6 Conclusion 
The results are practically the same as those published in 
[2] with only one difference in scaling that was chosen 
by other way, and without Fig.6 that is not shown there. 
Therefore above results were also verified by perturbing 
γ  and computing derivatives only approximately as 

[ ] [ ]-1 -1
2 1

2 1

( , ) ( , )( ) ( ) M MM M s st t γ γ
γ γ γ γ

−∂ ∆
≈

∂ ∆ −
V Vv v L L

= . (55) 

Herein the central difference γ∆  was always chosen as 
0.1% of  the nominal value 1 2( ) 2γ γ γ= + . Also these 
approximate results are very close to ones obtained by 
the methods under consideration. Namely, for lumped-
parameter sensitivities the average RMS error is some 

910− , for distributed-parameter ones then about 810− . 
That is why the results based on (55) are not shown 
graphically as they follow Figs. 4 – 8. The CPU times 
with the PC 2GHz/256MB are as follows: 0.7s≈  for 
Figs. 4 & 5, 0.8s≈  for Fig. 6 and 2.1s≈  for Figs. 7 & 
8, computing 256 time points in each graph. It should be 
noticed that all 15 nodal voltages and 2 branch currents 
were computed simultaneously during above times, and 
that all computations were realized in Matlab, ver. 7.0. 

The method for MTL primary parameter sensitivities 
calculation promisses further chances to be generalized 
and improved. It is given by the fact that the MTL chain 
matrix can also be calculated for nonuniform cases using 
relatively easy technique. By this the method will enable  
determining sensitivities with respect to local parameter 
changes along the MTL structures. Besides techniques 
how to compute a derivative of the matrix exponential 
function (40) more effectively should be looked for to  
acceletate resultant CPU time more and more. 
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