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 Abstract.  This paper deals with internal stability problems of a class of finite dimensional causal sys-
tems. Asymptotic stability as well as stability in the sense of Liapunov is analyzed by a new approach 
based on an abstract energy concept induced by the output signal power. The resulting metric-energy 
function determines both, the structure of a proper system representation as well as the corresponding 
system state space topology. Several examples are shown for illustration of fundamental ideas and 
basic attributes of the proposed method. 
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1   Introduction 
Almost in any field of science and technology 

some sort of stability problem can appear. Instability is 
certainly the most important phenomena which should 
be avoided before any other aspect of reality will be 
attacked. Two typical situations should be distin-
guished in dynamical systems theory, if a stability 
problem has to be solved. The first one arises if the 
energy function of a given system is known in mathe-
matical form and can be explicitly used to describe the 
time evolution of internal system energy E[x(t)]. In 
such situations some form of the energy non-
increasing test [1]: 

             E(x) > 0 ,    d ( ) 0
d
E x

t
≤                        (1)  

can be used.  
On the other hand, there are certainly even more real 
world situations in which some form of energy con-
servation law is known to play a crucial role, but any 
mathematical expression for the system energy is not 
available. One standard way to overcome this diffi-
culty is to make some additional restrictive assump-
tions, such as linearity and time-invariance, and try to 
develop some algebraic stability tests based on the 
explicit knowledge of the solution of differential or 
difference equations, describing trajectories of the 
system.  
For continuous-time system representations sets of 
necessary and sufficient conditions for roots si: 

                        Re si   < 0,                              (2) 
 
 

 
 
or for coefficients ai of the system characteristic poly-
nomials P(s) have been obtained. 
For the so-called non-critical cases A. M. Liapunov 
has legitimated the linearization approach above by 
his first method, also called Indirect Liapunov`s 
Method, in the year 1892. Substantially more appreci-
ated became his second method - the famous Direct 
Liapunov’s Method, which  instead of the physical 
energy E works with a set of axiomatically defined 
scalar functions V of the state x(t), called Liapunov`s 
functions [2], [3]. The main goal of the paper is to 
present an alternative method for stability analysis. 
Instead of Liapunov functions a proper state space 
metric [4] is introduced and utilized as a basic tool.   
 

2 Internal and external stability 
Recall that from general point of view any col-

lection of trajectories constitutes a dynamical system 
which, in principle, can be described either by its ex-
ternal behavior, or by an internal structure. In the 
input-to-output framework the external behavior of a 
continuous-time causal system can be seen as a collec-
tion of all input-output trajectories satisfying the rela-
tion:  

( ) ( )( , , , ..., , , , ... ) 0,n mF t y y y u u u m n=& & ≤     (3)       
The input signals u(.) and output signals y(.), explicitly 
reflect a signal orientation property of causality rela-
tion (3) and determine the external causality structure, 
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which is important for external stability. Formally, we 
can write for an external stability property: 
{(3) is stable } { ⇔ ( )u t  <  δ  ⇒  ( )y t  <  ε }      (4) 

In the present paper mainly concepts concern-
ing the internal stability will be examined. In such a 
case of the state-to-state framework, only an internal 
causality structure, reflecting a time orientation prop-
erty of the causality relation and describing a collec-
tion of all state trajectories, seems to be appropriate:     
               [ ] 0( ) ( ) , ( ) nx t f x t x t X R= ∈& ⊂             (5) 
in which  no external signals are explicitly introduced. 
 
Definition 1:(Internal stability of an equilibrium state) 
The equilibrium state *x  of the internal system repre-
sentation (5), defined by the relation:  

                                                        (6) *( ) 0f x =
is: 
� Stable ( in the sense of Liapunov – SSL ) if, 
 for each ε > 0, there is δ = δ(ε) > 0  such that:  
      *

0( )x t x− < δ  *( )x t x⇒ −  < ε,          (7) 0t t∀ ≥

� Unstable if it is not stable ( in the SSL )  
� Asymptotically stable if  it is stable ( in the SSL ) 
and  δ can be chosen such that:  

           *
0( )x t x− < δ ⇒  *lim ( )

t
x t x

→∞
=               (8)   

Theorem 1: ( Sufficient stability conditions [1] ) 
Let  be an equilibrium state of the system rep-
resentation (5) and  be a domain in the state 
space X  containing . Let V :                   
be a continuously differentiable function, such that 

* 0x =
nD R⊂

* 0x = D R→

* 0x =   ⇒ V(x*) = 0 and   > 0 in D - {x( )V x& *}        (9) 
 <  0   in   D                                   (10)             ( )V x&                                                                                      

then,x* =0 is stable in the SSL. Moreover, if 

( )V x& < 0  in  D -{x*},   x* = 0                     (11)                                                                                                                   
then x* = 0 is asymptotically stable. 

Remark 1: Stability conditions Theorem 1 are due to 
original work of A.M. Liapunov. It has been proven 
later by N.N.Krasovski [1], that the condition (11) for 
asymptotic stability can be replaced by the condition 
(10), if certain additional conditions are fulfilled. 
 

The main advantage of the Liapunov’s ap-
proach above is its generality. It applies for time-
varying linear and nonlinear systems as well. Notice 
that the stability conditions are only sufficient. Its main 
drawback is lack of any systematic and universally 
applicable technique for generation of the Liapunov 
functions V(x) having the required properties.   

2 Signal power balance relation and  
     energy-metric approach                                  
 

As an alternative to the method of Liapunov 
functions above a conceptually different approach can 
be based on the idea that, in fact, it is not the physical 
energy by itself, but only a measure of distance from 
the system equilibrium to the actual state x(t), what is 
needed for stability analysis. Thus, instead of the 
physical energy a metric *( ),x t xρ ⎡⎣ ⎤⎦  will be defined 

in a proper way, and for an abstract energy E(x) we 
then put formally: 

21( ) ( ),
2

*E x x tρ ⎡= ⎣ x ⎤⎦

=

                       (12)              

Within the state space paradigm the concept of an 
abstract energy seems to be one of the most natural 
means describing the internal system topology. A 
measure of distance of actual state from an equilibrium 
point or, more generally from an invariant set can be 
thought as a measure of energy accumulated in the 
state space of the given system. To avoid confusion an 
abstract system energy concept and the concept of 
signal power for both the continuous- and discrete-
time system representations will be defined first. 
     We start with a natural assumption that every 
real signal must be generated by a realizable system. 
Let such a system, called signal generating system 
(SGS), be given in the form: 
 

0
0{ }: ( ) ( ) ( ), ( ) ,

( ) ( ),
S x t A x t Bu t x t x

y t C x t
ℜ = +

=

&
 (13) 

 
It seems natural to suppose that every real sys-

tem has to satisfy some form of energy conservation 
law. Let the immediate value of the output signal 
power and corresponding value of the system energy, 
accumulated in the state x(t) be defined by: 

2 2 d ( )( ) ( ) , ( ) ( ) , ( ), 0
d 
E xPt y t E t x t Pt

t
δ δ= = =− >  (14) 

Putting 0,0)( tttu ≥∀=  and computing the 
derivative of the energy function  along the 
equivalent representation of the given SGS we get the 
signal power balance relation: 

)(tE

2d ( ) ( )[ + ] ( ) ( )
d

T TE x x t A A x t y t
t

δ= = −  (15) 

and, by integration, the energy conservation principle 
for a proper chosen equivalent representation.       
After some manipulations also a special form of the 
well known Lyapunov’s equation, expressing in fact 
the signal power balance, could be obtained. 
 

 



Hence, in case of zero input  the total 
energy accumulated in the system in time  must be 
equal to the amount of energy dissipated on the inter-
val [ by the output:  

0,0)( tttu ≥∀=

0t

)∞;0t

∫
∞

=
0

2
0 )()(

t

dttytE  (16) 

It is worthwhile to note that in general case the 
minimality of system representation is equivalent to 
observability of (A, C) and controlability of (A, B), but 
for zero input only the observability is necessary. Thus 
the given representation must be in the state equiva-
lence  relation  with  a  structurally  observable  repre- 

sentation called observability normal form. On the 
other hand, from the energy conservation principle in 
form of the Eqns.(14), (15) it follows, that another 
special form of a structurally dissipative state equiva-
lent system representation (Fig. 1) called dissipation 
normal form must exist and can be specified by the 
triplex of matrices (A, B, C) as follows: 
 

1 2 1

2 3

3 4

1 1

, , 0, 0, , 0, 0
, 0, , 0, , 0, 0 0

0, , 0, , 0, 0 0
, ,

,
0, 0, 0, 0, , 0, 0
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T

n n

n n

A C

2

3

n

B

α α βγ
α α β

α α β

α α β
α β

− −

−⎛ ⎞ ⎡ ⎤
⎜ ⎟

⎡ ⎤
⎢ ⎥⎢ ⎥−⎜ ⎟ ⎢ ⎥⎢ ⎥

⎜ ⎟ ⎢ ⎥⎢ ⎥−
= =⎜ ⎟ =⎢ ⎥⎢ ⎥
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L

L

L
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L ⎣ ⎦

 (17)

 
 

 
 Fig. 1: Structure of continuous-time system representation in the dissipation normal form 

 
 It is easy to show that the set of real basic 
design parameters αi , γ , βi must satisfy the following 
fundamental consistency conditions: 
     1. { }, 1, 2,..., : 0 ii i n α∀ ∈ < < ∞⇔  
             structural  asymptotic stability                   (18) 

2. { }, 2,3,..., : 0 , 0, : 0i ii i n iα γ β∀ ∈ ≠ ≠ ∃ ≠ ⇔  
structural minimality                                  (19) 

In discrete-time case we proceed conceptually by ex-
actly the same way as before. The signal generating 
system (SGS) is now represented by:  

0
0{ }: ( 1) ( ) ( ), ( ) ,

( ) ( ),
S x k Ax k Bu k x k x

y k Cx k
ℜ + = + =

=
         (20) 

and the immediate value of the output signal power 
and corresponding value of the system energy, accu-
mulated in the state, be defined by: 

2( ) ( ) ,P k y k= 2( ) ( ) ,E k x kδ= )()( kEkP ∆−=  

Putting and computing the differ-
ence of the energy function along any trajectory 

of the system representation, we get the signal power 
balance relation: 

0:0)( ≥∀= kku
)(kE

2[ ( )] ( )[ + ] ( ) ( ) (22)T TE x k x k A A I x k y kδ∆ = =−  
After some manipulations a special form of 

discrete-time Lyapunov’s equation, expressing in fact 
the signal energy conservation principle, could be 
obtained. Assuming u , the energy 
accumulated in the system in time  is equal to 
the sum of energy quanta dissipated at the interval  
[0;∞) by  the  output signal, given by:  

0,0)( ≥∀= kk
0=k

  2

0
( 0) ( )

k
E k y

∞

=

= =∑ k                             (23) 

Again, exactly as in the continuous-time ver-
sion above, the system representation must be in state 
equivalence relation with a special structurally ob-
servable representation called observability normal 
form. On the other hand, from the energy conservation 
principle in form of the Eqns.(8), (9) it follows, that 
another special form of structurally dissipative state 
equivalent system representation called discrete-time 

 



dissipation normal form must exist and can be speci-
fied by the triplex (A, B, C) according the Eqn. (25).   
  
 It is easy to show that the set of real basic 
(direct) design parameters iδ  and the set of real com-
plementary (feed-back) parameters  must satisfy 
the following consistency conditions: 

i∆

0 1, 2 2 1,i iδ + ∆ = {1, 2,..., }, , (24)ni n δ γ∈ =  iδ< ≤
 
 

having two important consequences:            
   1. , {1,2,..., }: 1ii i n∀ ∈ ∆ < ⇔  
structural asymptotic  stability  (26a) 
            2. : 0 1, 0, 0i ni δ γ β∀ < ≤ ≠ ≠ ⇔    
structural  minimality (26b) 
 
          The derived structure of the discrete-time system 
representation in dissipation normal form correspond-
ing to the Eqns.(25) is shown at the Fig. 2.  

    

 

1 1 1

2 1 2 1 2 2

3 2 4 3 3 3T

2 3 2

1 2 3 1 2 1

1 2 1 1 2 3 1 2 1

0 0 0 0
0

0 0 0
, ,

0
0
0

n n n

n n n n n n

n n n

n n

A C B

δ βγ
δ δ β

δ δ δ
δ

δ βδ
δ δ δ δ δ δ

− −

− − − − −

− − −

−

− ∆ ⋅ ∆⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ∆ ⋅ ⋅ ∆ − ∆ ⋅ ∆⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ∆ ⋅ ⋅ ⋅ ∆

= = =⎢ ⎥ ⎢ ⎥− ∆ ⋅ ∆⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ∆ ⋅ ⋅ ∆ − ∆ ∆
⎢ ⎥ ⎢ ⎥

⋅ ⋅ ∆ ⋅ ⋅ ∆ ⋅ ∆ ∆ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

L
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M M O
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M M M M
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1n

n

β
M

β
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (25) 

 
Fig. 2:Structure of discrete-time system representation in dissipation normal form 

3  Examples 
Example 1.  (Stability analysis of a linear system) 
 
Let the representation  (13) is given for  n = 4, the 
input signal , for , and the corresponding 
characteristic polynomial has the following general 
form: 

( ) 0u t = 0t t≥

    
[ ]

1 2
1 2 1

( ) det -

...
n

n n n
n n

P s sI A

s a s a s a s a− −
−

= =

= + + + + +
     (27) 

Let the parameters a1, a2,…, an  of are consid-
ered as unknown and the region of asymptotic stability 
in a parameter space has to be specified. Assume that  

( )nP s

                                                (28) -1det 0A≠ ⇔ ∃A
The condition (28) is necessary and sufficient for exis-
tence  of  the  unique equilibrium state  x*=  0, and                                                    
for n = 4 it follows from the Eqn.(17)  
                       (29) 2 2

2 4 2 4det = 0 0, 0A α α α α≠ ⇔ ≠ ≠
 

 
where 

A  =  

1 2

2 3

3 4

4

, , 0, 0
0 0

0 0
0 0 0

α α
α α

α α
α

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

             (30) 

 
Hence the parameters a1,…, a4 of the characteristic 
polynomial are explicitly expressed by 

                           

1 1
2 2 2

2 2 3 4

2 2
3 1 3 4

2 2
4 2 4

,
,

( )

a
a

a

a

,

α

α α α

α α α

α α

=

= + +

= +

=

                  (31) 

It follows for 1, 2, 3, 4, {ia i }∈ that 
                          ( )i iR x t Rα ∈ ⇔ ∈                    (32) 

i.e. for all state variables 2
ix  is non-negative. 

 

 



Thus for the Eucleidian metric 2ρ ρ=  we get        

[ ] 21 1 12
2 2 2

1
( ) ( ),0 ( ) ( )

n

i
i

2E x t x t x t x tρ ⎡ ⎤
⎣ ⎦

=

= = = ∑  (33) 

and consequently it holds: 

      
* *

2

1 ( ) 0 ( ) , ( 0)
2 ( ) ( ) 0 ( ) 0 ( )

o

o
i i

E x x t x x
*x t R x t E x x t x

= ⇔ = =

∈ ⇔ ≥ ⇒ > ⇔ ≠
  

In order to use energy nonincreasing test (1) we have 
to compute the derivative of the output signal energy 
function E(x) along the system representation (13), 
given by the matrix (30) in the following explicit form: 

 

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

S x t x t x t
x t x t x t
x t x t x
x t x t

α α
α α
α α
α

ℜ =− +
= +
=− +
=−

&

&

&

&

t
    (34) 

                          1( ) ( )y t x tγ=                             (35) 
We get 

      
{ }

2 1
1 1 2

d ( ) ( ) . ( )
d s

E t 2x t y
t

α
α

γℜ

=− =− t       (36) 

where γ is a real power scaling parameter 
                 0  <  γ  <  ∞                                 (37)  
Thus, the signal energy conservation principle in form 
of (15) holds ( for δ = ½ ,  γ ≠ 0 ) iff: 
                ⇔    α2( ) ( )P t y t= 1 =  γ2 > 0           (38) 
Remark 2: Notice, that  α3  is the only element of the 
matrix  A  which can be arbitrary from the stability 
analysis point of view. If we put  α3  = 0, then the state 
variables ,ix  i = 3,4 become unobservable by the 
output y ; thus only the first  isolated subsystem with 
the state variables ,ix  i = 1,2 which is observable, 
will be asymptotic stable, while the second one will 
oscilate on  the constant  energy level, corresponding 
to initial conditions with the frequency given by the 
parameter α4. As a result the whole system is stable in 
the sense of Liapunov, but not asymptotically. 
From the equation (31) it follows that in such a case 
the characteristic polynomial takes the form: 
     2 2 2 2

1 2 4( ) ( )( ),P s s s s 1α α α= + + + α  > 0        (39a) 
Hence we have: 
      Re s1 < 0,  Re s2 < 0,  Re s3 = 0,  Re s4 = 0      (39b) 
                                                     
Remark 3: It is easy to prove in general that for 
asymptotic stability the conditions mentioned above 
are necessary but not sufficient. If, in  addition, the 
couple (A,C) has the well known observability proper-
ty, then the resulting conditions will be necessary and 
sufficient  for asymptotic stability, too. 
 
Example 2. (Asymptotic stability analysis) 

 
Let n = 4, the matrix A is given by the eqn. (30) as 
before and the matrix  C is defined by C = [ γ, 0, 0, 0 ]. 
Then the observability matrix  Ho is defined by 

 2 3
0 ; ; ( ) ; ( )T T T T T T TH C A C A C A C= ⎡ ⎤⎣ ⎦      (40)              

and the necessary and sufficient observability conditi-
ons  have the following form: 
       det Ho 2 3 40 0, 0, 0α α α≠ ⇔ ≠ ≠ ≠ , γ ≠ 0.    (41) 
From the Eqns. (41) and (38) the set of necessary and 
sufficient conditions of  asymptotic stability  results  
                 α1 > 0, 2 3 40, 0, 0α α α≠ ≠ ≠                 (42)  
 
Example 3.  (Relation to Hurwitz stability criterion) 
 
If needed, we can determine the set of parameters αi ,  
i = 1, 2, 3, 4  from the Eqn. (31). Then we get: 

           

1 1 1

1 3 3 2
2

1 1

2 2
1 2 3 3 1 4 3

3
1 2 3 1 2 1

1 4 4 1
4

1 2 3 2 3

,

( )

a

a a a
a

a a a a a a
a a a a

a a
a a a

α

α

α

α

= =∆

− ∆
= =

∆

− −
= =

∆
− ∆ ∆

∆ ∆
= =

− ∆ ∆

                 (43)              

where the new parameters   , k= 1, 2, … can be 
properly expressed as diagonal minors of the well 
known Hurwitz determinant. It is very easy to derive 
the general expression for any order  n > 3 in the form: 

k∆

        3

2 1

k k
k

k k

α −

− −

∆ ∆
=

∆ ∆
 ,   k = 4, 5, 6, … , n    (44) 

Using the expressions (43), (44) together with 
the requirement ,k Rα ∈  the following set of equiva-
lent necessary and sufficient conditions of the asym-
ptotic stability can be obtained: 
         1 ,R 1α α∈ > 0      ⇔     ∆1      >  0                                        

         2
2 2

1

, 0Rα α
∆

∈ ≠ ⇔
∆

   >  0 

        3
3 3

1 2

, 0Rα α ∆
∈ ≠ ⇔

∆ ∆
>  0                 (45) 

        1 4
4 4

2 3

, 0Rα α ∆ ∆
∈ ≠ ⇔

∆ ∆
>  0 

The resulting conditions (45) are obviously equivalent 
to the set of the well known  Hurwitz conditions: 
                       k∆  > 0 , k= 1, 2, …, n                     (46) 
 

 



It means that linear algebraic methods for stability 
analysis can be seen as a special case of methods 
based on the proposed energy-metric approach.  
 
Example 3.  (Non-linear stability analysis)  
 
Let us consider a simple non-linear system given by 
the following input-output representation : 
     (47)                                                                      2

2( ) ( ) ( ) ( ) ( )y t y t y t a y t u tε α β⎡ ⎤+ − + =⎣ ⎦&& &

If the matrix C is defined by C = [γ, 0], and the chosen 
structure of the matrix  A(x)  is defined by 

1 2
13

1 2

2

,
( , )

, 0

2x a
A x x

a

ε α β⎡ ⎡ ⎤− −⎣ ⎦⎢ ⎥=
⎢ −⎣

⎤

⎥⎦
       (48) 

then the system representation is locally observable if 
20, 0aγ ≠ >                            (49) 

and the signal energy conservation principle gives 

    1 2
1 13

( )

d ( ) 0,
dt s

E t P P xε α β
ℜ

⎡=− ≤ = −⎣
2x⎤⎦        (50) 

It follows that the unique equilibrium state * 0x =        
is asymptotically stable in the region  2D X R⊂ ⊂

2 2
1 2 1 1 2

3 3, : andD x x x x xα α
β β

⎧⎪= < + <⎨
⎪ ⎪⎩ ⎭

⎫⎪
⎬           (51) 

if  ε > 0,  α > 0,  β > 0, .                2 0a >
 
Example 4. (Relation to Direct Method of  Liapunov)  
 
Let us consider the same non-linear system given by       
      (52)                                                                      2

2( ) ( ) ( ) ( ) ( )y t y t y t a y t u tε α β⎡ ⎤+ − + =⎣ ⎦&& &

but instead of the  matrix structure A(x) the state x(t)  
is defined by  1 2, /x y x dy dt= = .  
Then the corresponding system representation is  
structurally observable with the observability matrix           

                                          Ho  =  I                               (53) 
and from the signal energy conservation principle  

        1 2
1 13

( )

d ( ) 0,
dt s

V t P P xε α β
ℜ

2x⎡ ⎤=− ≤ = −⎣ ⎦    (54) 

a unique Liapunov function V(x) can be determined by 
isometric transformations of the energy function (12)     

                       [21( ) x(t), 0
2

E x ρ= ]                     (55) 

and for  α = β = = 1 we get  2a
    

1 1 22 6 2 4 2 2
1 1 12 9 3

2 3 2
1 2 1 2 23

( ) (1 )

2

V x x x x

x x x x x

ε ε ε

ε ε

⎡
⎣

⎤
⎦

= − + +

− + +

−
      (56)                                                                          

Example 5.  (Estimation of domain of attraction) 
 
From the Eqns. (51) and (56) we directly get the set 

              1 2 1
3 3, : , [ ]D x x x V xα α
β β

⎧ ⎫⎪ ⎪= < <⎨ ⎬
⎪ ⎪⎩ ⎭

 (57) 

representing region of the state space X for which the 
property of asymptotic stability is warranted by V(x), 
iff it holds:  ε > 0,  α > 0,  β > 0, .  Moreover              2 0a >
                     β Æ 0 ⇔   D Æ X  = 2R  (58) 
and  global asymptotic stability follows. 
 
Example 6.  (Generation of Liapunov functions)  
 
Let a non-linear system is given by  the  representation  
  (4) (3)

1 2 3 4( ) ( ) ( ) ( ) ( ) 0y t a y t a y t a y t a y t+ + + + =&& &  (59) 
gained  by an approximative linearization procedure and 
the state variables are defined by 
     (3)

1 2 3 4, , ,x y x y x y x y= = = =& &&  (60) 
then the observability matrix   is given by Ho = I, while 
the observability matrix  Ho of the state equivalent repre-
sentation  (30) is triangular and  invertible. It is easy to 
show that the Liapunov function V is given by 

      [ ] 11
0 02( ) ( ) . . ( )T TV x t x t H H x t

−
⎡ ⎤= ⎣ ⎦  (61) 

and for (59), (60) it can be explicitly expressed by 
2

2 1
1 1 22 2

2 2

22
2 1

1 2 32 2 2 2 2
3 2 3 2 3

1 1
2

1 . . .

V x x x

x x x

α
α α

α α
α α α α α

⎡ ⎛ ⎞
⎢= + + +⎜ ⎟
⎢ ⎝ ⎠⎣

⎤⎛ ⎞
⎥+ + + +⎜ ⎟
⎥⎝ ⎠ ⎦

        (62) 

 
4   Conclusions 
In the contribution a new unifying and constructive 
approach to linear and non-linear stability problems, 
based on a metric - energy concept of the system state 
space, has been presented. 
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