
Videoconference Security

LUBOMIR CVRK, MARTIN SYKORA, VACLAV ZEMAN
Department of Telecommunications

Faculty of Electrical Engineering and Communication, Brno University of Technology
Purkynova 118, 612 00 Brno

CZECH REPUBLIC

Abstract: - This article deals with the problem of security application on the H.323 videoconferencing. The H.323
communication uses many protocols and messages that are sent by the TCP and the UDP protocols. The data are
provided by H.323 terminals and several control applications needed for videoconference administration. Some of
these data transmissions need to be protected by encryption. In this article we show how to do this in a very easy way,
which is independent of any of the participating H.323 terminals and other control applications. This independence
guarantees easy deployment of this approach on any existing videoconference system.

Key-Words: - videoconference, security, H.323, encryption, AES, integer counter mode, STNP, STEP

1 H.323 videoconferencing
Recommendation H.323 [1] provides the ground for
audio, video and data communication over networks
based on the IP protocol. Recommendation H.323
provides the ability to interconnect audio/video
conferencing software and hardware products and tools
from various companies. H.323 covers the connection
control, the standards for coding, the management of
transfer capacity, and it also defines the interface
between LAN and other networks. The architecture of
the H.323-based network is shown in Fig. 1.

H.323

Packet Based
Network Scope of

H.323
Terminal

H.323
MCU

H.323
Terminal

H.323
Gatekeeper

H.323
Gateway

ISDN ...
Fig. 1. Architecture of the H.323 based network

2 Design of a videoconferencing system
In the design of the videoconferencing system the
following initial requirements were determined:

• user-friendly control,
• capability of recording and storing the sessions,
• security of the data transmissions using

encryption techniques.

It follows from the requirements that the emphasis is laid
on the simplicity of the control of videoconferencing

terminals (VCF) and on the ability to store the
communication. Subsequent processing of the session
records should also be possible. Fig. 2 specifies the data
flows among the components of the conference.

Web
ClientSERVER

web,
adresses,
control. Gatekeeper

HW MCU

SW MCU

http/https

H.323 data

control

control

control

Storage
EnvironmentMultimedia

data

VCF Enviroment

VCF
control

H.323
Communication A

H.323
Communication B

H.323 Communication A

control

H.323 control

Fig. 2. Data-flows in the videoconferencing system

The main part of the system is the control server. It
contains the components for controlling other parts of
the system, and also the interface for communicating
with the client application (web client) over the HTTP
protocol. Part of the server is the database, where the
addresses of the videoconferencing terminals and their
aliases are stored. Every user can define their own
aliases for other participants registered in the system.
That is why there is no need to know their IP addresses.
 The web client allows a direct control of the
videoconferencing terminal through the module which is
implemented in the control terminal. This module is
different for any type of the VCF terminal.
 Another part of the system is the Gatekeeper where
all the videoconferencing terminals are registered in
order to be able to communicate according to the H.323
standards. The Gatekeeper communicates with the server
over the proprietary application protocol based on XML.

The main task of the Gatekeeper is to translate the
aliases to the appropriate IP addresses.
 The recording of the sessions requires the Multi
Conference Unit (MCU) hardware and the MCU
software to be connected to the system. The MCU
software is extended by the capability of recording and
storing audio/video data. When recording session is
requested, the data pass the MCU hardware (H.323
Commnunication A [1]) and are forwarded to the MCU
software, which stores them.

3 Security concept
As shown above, the videoconferencing system produces
a lot of data transmissions. All of them need to be
secured with respect to the fact that they are
heterogeneous. A proof of the heterogeneity is that the
data transmissions are realized with confirmative service
of the transmission control protocol (TCP) and non-
confirmative service of the UDP protocol. The security
mechanisms must be applied to all the data transmissions
realized by these services.

3.1 Common concepts of communication

protection
In general there are several ways how to protect the
communication by these protocols. One is the virtual
private network (VPN), implemented by IPsec protocols.
It cannot be used because the installation and
configuration of IPsec for VPN is one of its weaknesses.
It requires a well informed administrator to set up
correctly all the security rules and conditions of IPsec.
Another problem of IPsec is its static configuration.
 The next possibility consists in using the SSL/TLS-
based VPNs. This also involves a problem, because they
are statically configured. The configuration is simpler
than that of IPsec, but it is assumed that the other side of
H.323 communication is not known at the time of
configuring the SSL VPN on the user machine. If
somebody just wants to communicate safely with
somebody else, the security must work automatically
without any need for reconfiguring on the client’s side.
The current implementation requires establishing a VPN
tunnel first.
 Securing H.323 communication based on the H.235
ITU-T standard would look like the most suitable
solution, but it is the most complicated task. It would
require recompiling all participating client software.
Updating the clients by their producers could (in
particular in the case of black boxes) be expensive and is
completely out of anybody‘s control.
 Opportunistic encryption as implemented in
FreeS/WAN [6] requires DNSSEC [7] to be in full
production or it requires access to the reverse-DNS

records in order to add a TXT field for publishing the
public key. Nobody knows how long DNSSEC will take
to be fully accessible in view of the DNSSEC standards
being currently redesigned. The FreeS/WAN project has
been stopped, and its contributors discontinued the
respective research. From the point of view of our goals,
opportunistic encryption is the most suitable solution but
it is still too complicated for common users whot do not
know anything about the DNS system, and, moreover, it
works only among the routers, so the “last step” on the
LAN remains insecure.
 As we can see there is no completely suitable and
simple enough solution for this problem right now.

3.2 Independent security concept
The design of an independent security concept is based
on the fact that the opposite end of communication may
not support this concept of security. That is why at the
beginning of the communication the initiator must ask
the responder whether it supports it. This will be done by
the Simple Tunnelling Negotiation Protocol (see 3.2.1).
If it does not support it, the encryption of data for a
remote peer must not start and must be transported with
no modification (which means no security).

3.2.1 Simple Tunnelling Negotiation Protocol
Simple Tunnelling Negotiation Protocol operates over
TCP. Its service monitors on port 4077. The protocol
format is shown in Fig. 3.

0 8 16 24 31

version request
code

reply
code reserved

Fig.3 STNP message format

The field version tells the receiver’s STNP daemon
(negotiation service) the version of STNP protocol of the
sender. Right now it is 1.
 The field request code is set (>0) when the sender
needs to request something from the other side. This
field can acquire value 1 – which means “Do you
support Client independent security?” Value 2 means “Is
the tunnel established OK?”
 The field reply code is set (>0) whenever the sender
of the message replies to some previously received
request message. The reply code can contain 1 – “Yes, I
support. Negotiate encryption.” Value 2 means “Tunnel
established OK!” Value 255 means “Unrecognized
request” (see 2.3).
 Opening connection: STNP messages are sent over
TCP port 4077 to the responder. If the responder
implements this security concept (i.e. also STNP) it must
reply with the STNP message, where it sets its version of
STNP. The request code must remain as set by the
initiator (1) and the reply code is set to 1. Otherwise the

connection is closed. If the port is not open or the
connection is closed, it means that encryption cannot be
set.
 Closing connection: When the sender wants to stop
encrypting, they set the appropriate flag in the Simple
Tunnelling Encryption Protocol, see 3.2.5.
Packets with other settings must be discarded.
The IP address of the opposite end of communication is
given to the negotiation service by the API kernel-to-
user space, which communicates with the kernel level
packet capturer.
 Subsequent connection establishment: Let us have
two nodes – A and B. A supports this concept of security
and B does not. When A detects packets for B and
initiates the STNP session, it is unsuccessful.
Communication between them will then be insecure. If B
later runs CIS, then (in the event the packet is directed to
A) it asks A to open an encrypted communication
channel. The secured communication will immediately
negotiate and start.

3.2.2 Authentication and key-negotiation
Authentication and key-negotiation are the initial part of
every secured communication and will be performed by
the negotiation service based on the ISAKMP protocol
[3]. This approach supports two ways of authentication
and key-negotiation: (1) using public-key infrastructure
(recommended), (2) using PGP certificate database
(optional). There is no need to discuss these methods
here, they have been fairly described and are well
known.
 After the key has been negotiated, the STNP must
verify that the tunnel is established OK.

3.2.3 STNP service (daemon)
The STNP daemon must have a user interface available
that is to inform a user about the IP addresses that
communicate safely and about the addresses where the
key-negotiation is running. From this interface the
daemon must be able to shut down the CIS. This
interface also interacts with the user in the matter
of certificate acceptance.

3.2.4 Encryption process
The encryption process will be driven by the AES
algorithm with a 128 bits long key, working in the
integer counter mode, because it will process a stream of
data of unpredictable length.
 In general, the encryption process counts packet
losses or reorder events so that none of them depends on
any other packet. Each packet must be encrypted /
decrypted separately.
 For a correct control of this process the same scheme
will be used as designed in the SRTP protocol [4].

3.2.5 Simple Tunnelling Encryption Protocol
This protocol is used for the modification of captured IP
packets that have to be encrypted with respect to the
authentication of each packet and the possibility of
packets being lost. STEP modifies the IP packet
according to the scheme in Fig.4.

 6 B 1 B 20 B
IP

 header
message
number Command IP

payload MAC

Fig.4 STEP in the context of IP protocol, grey means
encrypted fields

 When the IP packet has been processed, STEP
encapsulates the IP payload between its overhead fields.
The process computes the MAC and adds it after the IP
pay-load. Then it runs the encryption function and
encrypts the string made of these three fields (command,
IP payload, MAC).
 The message number contains a 48bit value
representing the number of the message being sent to
one destination (determined by the destination IP
address). The command field controls the
communication process. It is used to stop the encryption.
Whenever the source node needs to stop the encryption,
it sets the command value to 1. After the destination has
decrypted and authenticated the IP packet and accepted
the command to be 1, it stops packet processing from
that source IP address. All subsequent packets are
expected to be common IP packets so they are passed to
the upper layers unmodified.
 All IP packets encapsulated by STEP have in the
protocol field of IP header the value 99 (IANA’s “any
private encryption scheme” [5]).

3.3 Communication basis and packet processing
The core of this approach is the IP packet capture at the
operating system kernel level. The driver itself is
dependent on the operating system so the
implementation requires an internal API, which
eliminates the platform-dependent amount of source
code needed for packet processing implementation.
The whole system works in the following steps:
 1. The STNP daemon and kernel driver are started
and the driver captures the incoming and outgoing IP
packets.
 2. In the event of the first outgoing packet to
destination IP address A, the driver tells the STNP
daemon the destination IP address.
 3. The STNP daemon checks whether the destination
supports this concept of security. If it does, then it
negotiates the keys. While checking and negotiating, the
packets with destination address A pass the kernel driver
unencrypted. After the STNP session has finished the

daemon tells the driver the negotiated key associated
with the IP address.
 4. Once the driver has a key associated with the IP
address, it starts the encryption – the tunnel appears to be
established.
 5. In the event of the first packet with protocol
number 99 from the opposite side of the previous key-
negotiating communication the driver switches to the
decryption / encryption state and encrypts and decrypts
all traffic between the two nodes (authentication within).
 6. For tunnel verification, the STNP daemon on the
initiator side sends the STNP request “Is tunnel
established OK?” and waits for the reply, which must be
“Tunnel established OK!” since both messages will be
encrypted and decrypted only if all is OK. If the daemon
does not receive the STNP message “Tunnel established
OK!” within 10 seconds, it tells the driver to switch off
the encryption into IP address A and resets the protocol
state. For clarity, Fig. 5 shows the entire system
simplified.

Fig. 5. Schema of the security approach

The whole traffic between the nodes of H.323
communication is secured. The numbers inside the
arrows relate to the numbers in the paragraph above.

4 Conclusion
This work concerns an application of security to
videoconference data transmissions. It defines the
conditions for a simple application of security and
confronts them with available security solutions such as
IPsec, SSL/TLS, H.235 based security, etc. None of the
current security approaches fits the conditions
completely and therefore a new approach is introduced.
 The approach is based on packet capture and its
encryption with authentication. For a correct
functionality the approach defines two communication
protocols, which implement the mechanisms of secured
tunnel establishment, data encryption and encryption

process control. The security system is application
independent, so no H.323 client software recompilation
is needed for security deployment. The deployment is
very easy and does not need any configuration. It just
needs installing on a machine and a public key
cryptography certificate. The tunnel establishment and
encryption process are controlled automatically.
 It works in networks with MCU, in peer-to-peer
mode and it works with network address translation
(NAT) if the NAT box runs the CIS system. It does not
work with multi-cast yet but this is a topic for further
study.

References:
[1] ITU-T, Packetbased multimedia communications

systems, Recommendation H.323, ITU-T, 1999.
[2] OPEN H323 PROJECT, http://www.openh323.org.
[3] Maughan, D., Shertler, M., Schneider, M., Turner,

J., “Internet Security Association and Key
Management Protocol (ISAKMP)”, RFC 2408,
1998.

[4] Baugher, M., McGrew, D., Naslund, M., Carrara,
E., Norrman, K., “The Secure Real-time Transport
Protocol (SRTP)”, RFC 3711, 2004.

[5] Internet Assigned Numbers Authority,
http://www.iana.org/assignments/protocol-numbers.

[6] FreeS/WAN project, http://www.freeswan.org.
[7] Dierks, T., Allen, C., “The TLS Protocol Version

1.0”, RFC 2246, 1999.
[8] OpenVPN project, http://openvpn.sourceforge.net
[9] DNSSEC project web page, http://www.dnssec.net
[10] Krawczyk, H., Bellare, M. and R. Canetti,

"HMAC: Keyed- Hashing for Message
Authentication", RFC 2104, February 1997.

[11] Fergusson, N., Schneier, B., Practical
Cryptography, Wiley Publishing, Inc., Indianopolis
USA, 2003.

[12] Chraibi, C., Web Services Deployment and
Security, In WSEAS Transactions on
Communications, Issue 4, Volume 2, October 2003
ISSN1109-2742, pp.482-488.

