

A Real-time Intrusion Prevention System for Commercial Enterprise Databases

Ulf Mattsson,
Chief Technology Officer
Protegrity, Incorporated.
1010 Washinton Blvd,
Stamford, CT 06901

Abstract

Modern intrusion detection systems are comprised of three basically different
approaches, host based, network based, and a third relatively recent addition called
procedural based detection. The first two have been extremely popular in the
commercial market for a number of years now because they are relatively simple to use,
understand and maintain. However, they fall prey to a number of shortcomings such as
scaling with increased traffic requirements, use of complex and false positive prone
signature databases, and their inability to detect novel intrusive attempts. This intrusion
detection systems represent a great leap forward over current security technologies by
addressing these and other concerns. This paper presents an overview of our work in
creating a true database intrusion detection system.
Based on many years of Database Security Research, the proposed solution detects a
wide range of specific and general forms of misuse, provides detailed reports, and has a
low false-alarm rate. Traditional database security mechanisms are very limited in
defending successful data attacks. Authorized but malicious transactions can make a
database useless by impairing its integrity and availability. The proposed solution offers
the ability to detect misuse and subversion through the direct monitoring of database
operations inside the database host, providing an important complement to host-based
and network-based surveillance. Suites of the proposed solution may be deployed
throughout a network, and their alarms man-aged, correlated, and acted on by remote or
local subscribing security services, thus helping to address issues of decentralized
management. Inside the host, the proposed solution is intended to operate as a true
security daemon for database systems, consuming few CPU cycles and very little
memory and secondary storage. The proposed Intrusion Prevention Solution is
managed by an access control system, with intrusion detection profiles, with item access
rates and associating each user with profiles. Further, the method determines whether a
result of a query exceeds any one of the item access rates defined in the profile
associated with the user, and, in that case, notifies the access control system to alter the
user authorization, thereby making the received request an unauthorized request, before
the result is transmitted to the user. The method allows for a real time prevention of
intrusion by letting the intrusion detection process interact directly with the access
control system, and change the user authority dynamically as a result of the detected
intrusion.
The method is also preventing an administrator impersonating a user of a relational
database, which database at least comprises a table with at least a user password,
wherein the password is stored as a hash value. The method comprises the steps of:
adding a trigger to the table, the trigger at least triggering an action when an
administrator alters the table through the database management system (DBMS) of the

database; calculating a new password hash value differing from the stored password
hash value when the trigger is triggered; and replacing the stored password hash value
with the new password hash value.
 In this paper, the design of the first MATTSSONHYBRID prototype, which is for Oracle
Server 8.1.6, is discussed. MATTSSONHYBRID uses triggers and transaction profiles to
keep track of the items read and written by transactions, isolates attacks by rewriting
user SQL statements, and is transparent to end users. The MATTSSONHYBRID design
is very general. In addition to Oracle, it can be easily adapted to support many other
database application platforms such as IBM DB2, Microsoft SQL Server, Sybase, and
Informix.

Keywords: Isolation, Intrusion Tolerance, Database Security, Encryption, VISA CISP,
GLBA, HIPAA.

1. Introduction

Part of the problem lies in the fact that most companies solely implement perimeter-
based security solutions, even though the greatest threats are from internal sources.
Additionally, companies implement network-based security solutions that are designed
to protect network resources, despite the fact that the information is more often the
target of the attack. Recent development in information-based security solutions
addresses a defense-in-depth strategy and is independent of the platform or the
database that it protects. As organizations continue to move towards digital commerce
and electronic supply chain management, the value of their electronic information has
increased correspondingly and the potential threats, which could compromise it, have
multiplied. With the advent of networking, enterprise-critical applications, multi-tiered
architectures and web access, approaches to security have become far more
sophisticated. A span of research from authorization [9, 28, 14], to inference control [1],
to multilevel secure databases [33, 31], and to multi-level secure transaction processing
[3], addresses primarily how to protect the security of a database, especially its
confidentiality. However, very limited research has been done on how to survive
successful database attacks, which can seriously impair the integrity and availability of a
database. Experience with data-intensive applications such as credit card billing, has
shown that a variety of attacks do succeed to fool traditional database protection
mechanisms. One critical step towards attack resistant database systems is intrusion
detection, which has attracted many researchers [7, 21, 13, 10, 23, 26, 22, 17, 18].
Intrusion detection systems monitor system or network activity to discover attempts to
disrupt or gain illicit access to systems. The methodology of intrusion detection can be
roughly classed as being either based on statistical profiles [15, 16, 30] or on known
patterns of attacks, called signatures [11, 8, 27, 12, 32]. Intrusion detection can
supplement protection of network and information systems by rejecting the future access
of detected attackers and by providing useful hints on how to strengthen the defense.
However, intrusion detection has several inherent limitations: Intrusion detection makes
the system attack-aware but not attack-resistant, that is, intrusion detection itself cannot
maintain the integrity and availability of the database in face of attacks. Achieving
accurate detection is usually difficult or expensive. The false alarm rate is high in many
cases. The average detection latency in many cases is too long to effectively confine the
damage. To overcome the limitations of intrusion detection, a broader perspective is
introduced, saying that in addition to detecting attacks, countermeasures to these
successful attacks should be planned and deployed in advance. In the literature, this is

referred to as survivability or intrusion tolerance. In this paper, we will address a useful
technique for database intrusion prevention, and present the design of a practical
system, which can do attack prevention.

2. Problem Description

In order to protect information stored in a database, it is known to store sensitive data
encrypted in the database. To access such encrypted data you have to decrypt it, which
could only be done by knowing the encryption algorithm and the specific decryption key
being used. The access to the decryption keys could be limited to certain users of the
database system, and further, different users could be given different access rights.
Specifically, it is preferred to use a so-called granular security solution for the encryption
of databases, instead of building walls around servers or hard drives. In such a solution,
which is described in this paper, a protective layer of encryption is provided around
specific sensitive data-items or objects. This prevents outside attacks as well as
infiltration from within the server itself. This also allows the security administrator to
define which data stored in databases are sensitive and thereby focusing the protection
only on the sensitive data, which in turn minimizes the delays or burdens on the system
that may occur from other bulk encryption methods.
Most preferably the encryption is made on such a basic level as in the column level of
the databases. Encryption of whole files, tables or databases is not so granular, and
does thus encrypt even non-sensitive data. It is further possible to assign different
encryption keys of the same algorithm to different data columns. With multiple keys in
place, intruders are prevented from gaining full access to any database since a different
key could protect each column of encrypted data.

2.2. New Requirements

The complexity of this task was dramatically increased by the introduction of multi-
platform integrated software solutions, the proliferation of remote access methods and
the development of applications to support an increasing number of business processes.
In the "good old days", files and databases contained fewer types of information (e.g.,
payroll or accounting data) stored in centralized locations, which could only be
accessed, by a limited number of individuals using a handful of controlled access
methods. As more types of information were migrated to electronic formats (and ever
more databases proliferated, often with little planning), there was a simultaneous
increase in the number of users, access methods, data flows among components and
the complexity of the underlying technology infrastructure. Add to this the demand from
users for ever more sophisticated uses of information (data mining, CRM, etc.) which are
still evolving and the management's enhanced awareness of the value of its information,
and It is safe to say that the price of poker has gone up. Database intrusion tolerance
can mainly be enforced at two possible levels: operating system (OS) level and
transaction level. Although transaction level methods cannot handle OS level attacks, it
is shown that in many applications where attacks are enforced mainly through malicious
transactions transaction level methods can tolerate intrusions in a much more effective
and efficient way. Moreover, it is shown that OS level intrusion tolerance techniques
such as those proposed in [23, 22, 24, 25, 4], can be directly integrated into a
transaction level intrusion tolerance frame-work to complement it with the ability to
tolerate OS level attacks.

The importance of privacy and security of sensitive data stored in relational databases is
fueled by strong new legislation and the continuing push toward Web-accessible data.
Protegrity’s and Protegrity's products and services allow organizations to comply with
data-privacy regulations, requirements and guidelines such as the recently enacted U.S.
Gramm-Leach-Bliley Act (GLBA)…significantly affecting financial institutions and
insurance companies; the U.S. Health Information Portability and Accountability Act
(HIPAA)…covering the healthcare industry; the European Directive 95/46/EC on data
protection…and E.U./U.S. Safe Harbor considerations; Canada’s Personal Information
Protection and Electronic Document Act (PIPEDA); Germany's Federal Data Protection
Act; the UK Data Protection Act; Australia’s Privacy Act); the Japan JIS Q 15001:1999
Requirements for Compliance Program on Personal Information Protection; the U.S.
Software and Information Industry Association (SIIA) -An Electronic Citadel - A Method
for Securing Credit Card and Private Consumer Data in E-Business Sites; the BITS (the
technology group for the Financial Services Roundtable) Voluntary Guidelines for
Aggregation Services; and potentially much more.

3. Solution Overview

Database

Database
management

system
(DBMS)

Application

DBA

SA

User

Key
management

system

Intrusion
detection
system

Access
control
system

Fig. A schematic view of a system preventing attacks
on a relational database.

In the above mentioned solutions the security administrator is responsible for setting the
user permissions. Thus, for a commercial database, the security administrator operates
through a middle-ware, the access control system (ACS), which serve for authentication,
encryption and decryption. The ACS is tightly coupled to the database management
system (DBMS) of the database. The ACS controls access in real-time to the protected
elements of the database.
 Such a security solution provides separation of the duties of a security administrator
from a database administrator (DBA). The DBA’s role could for example be to perform
usual DBA tasks, such as extending tablespaces etc, without being able to see (decrypt)

sensitive data. The SA could then administer privileges and permissions, for instance
add or delete users.
For most commercial databases, the database administrator has privileges to access the
database and perform most functions, such as changing password of the database
users, independent of the settings by the system administrator. An administrator with
root privileges could also have full access to the database. This is an opening for an
attack where the DBA can steal all the protected data without any knowledge of the
protection system above. The attack is in this case based on that the DBA impersonates
another user by manipulating that users password, even though the user’s password is
enciphered by a hash algorithm. An attack could proceed as follows. First the DBA logs
in as himself, then the DBA reads the hash value of the users password and stores this
separately. Preferably the DBA also copies all other relevant user data. By these actions
the DBA has created a snapshot of the user before any altering. Then the DBA executes
the command “ALTER USER username IDENTIFIED BY newpassword”. The next step
is to log in under the user name "username” with the password “newpassword” in a new
session. The DBA then resets the user’s password and other relevant user data with the
previously stored hash value.
Thus, it is important to further separate the DBA’s and the SA’s privileges. For instance,
if services are outsourced, the owner of the database contents may trust a vendor to
administer the database. Then the role of the DBA belongs to an external person, while
the important SA role is kept within the company, often at a high management level.
Thus, there is a need for preventing a DBA to impersonate a user in a attempt to gain
access to the contents of the database.

Database

Database
management

system
(DBMS)

Access
control
system

Application

DBA SA

User

Fig. A schematic view of a system preventing an
administrator impersonating a user of a relational database.

2.2. A New Approach to Support New Requirements

The solution protects the data in storage in a database. The architecture is built on top of
a traditional COTS (Commercial-Of-The-Shelf) DBMS. Within the framework, the
Intrusion Detector identifies malicious transactions based on the history kept (mainly) in
the log. The Intrusion Assessor locates the damage caused by the detected
transactions. The Intrusion Protector prevents the damage using some specific cleaning
of field level transactions. The Intrusion Manager restricts the access to the objects that
have been identified by the Intrusion Assessor as ‘under attack’, and unlocks an object
after it is cleared by the security officer. The Policy Enforcement Agent (PEA) (a)
functions as a filter for normal user transactions that access critical fields in the
database, and (b) is responsible for enforcing system-wide intrusion prevention policies.
For example, a policy may require the PEA to reject every new transaction submitted by
a user as soon as the Intrusion Detector finds that the user submits a malicious
transaction. It should be noticed that the system is designed to do all the intrusion
prevention work on the fly without the need to periodically halt normal transaction
processing.

Replace stored hash value

Calculate new hash value

Add trigger to table

S1

S2

S3

Altering of table
by the DBA

Yes
No

Fig. Flow-chart illustrating a process preventing an
administrator impersonating a user of a relational database.

2.3. Summary of the method for preventing an administrator impersonating a user

The method comprises the steps of: adding a trigger to the table, the trigger at least
triggering an action when an administrator alters the table through the database
management system (DBMS) of the database; calculating a new password hash value
differing from the stored password hash value when the trigger is triggered; replacing the
stored password hash value with the new password hash value. Hereby, a method is
provided, which overcomes the above mentioned problems. With such a method the
database administrator (DBA) can not impersonate a user. Impersonation means that
the DBA steals the identity of an user, and is able to act in the name of the user,
preferably while the user is unaware of the impersonation. Even though the DBA still can

read the encrypted password and replace it, the attempt to impersonate a user will be
detected and measures can be taken.
Preferably, the method comprises the further steps of:
 - calculating a control value of the trigger, such as a hash value; and
 - comparing the trigger at the startup and at regular intervals with a recalculated
control value. With these additional steps the DBA can not even try to modify the trigger
and thereby manipulate the impersonation prevention method.
With the method above the intrusion is detected when a user tries to log in, since the
hash value of the users password will not match. In order to detect intrusion earlier the
method can preferably comprise the further step of comparing for each active user
having access to sensitive data, the hash value of the current login password with the
currently stored password hash value, whereby the step is performed after every change
of the database content by the user. In one implementation, the trigger comprises means
for reading a log of actions on the database, means for identifying commands for altering
of user passwords in the log and means for identifying which user passwords that have
been changed. Preferably the trigger is a daemon process. Also according to the method
a impersonation prevention system for a relational database preventing an administrator
impersonating another user, which database at least comprises a table with at least a
user password, wherein the password is stored as a hash value, the system comprises:
calculation means for calculating a hash value of a user password; trigger means, which
trigger at least the calculation means for calculation of a new hash value of the password
when an administrator alters the table through the database management system
(DBMS) of the database; and replacing means for replacing the stored hash value with
the new hash value for each triggered calculation. Such a system will overcome the risk
for a DBA impersonating a user with all the advantages as the method previously
described.

Database

Database
management
system (DBMS)

Application

DBA

User

Key
Management

system

Fig. Encryption Keys exposed
in the database environment.

The proposed solution will also prevent database encryption keys to be exposed in the
application environment.

Database

Database
management

system
(DBMS)

Application

DBA

User

Key
Management

system

PGMR

Fig. Encryption Keys exposed
in the application environment.

3. A Hybrid Solution

A hybrid solution combines security technologies from several areas and provide a cost
effective solution for some of the new privacy requirements. The hybrid solution will
minimize the impact at the application level and combine the strengths and separation of
duties from external security systems with the benefits from tight database integration.
The hybrid solution will also provide Database Encryption functionality minimizing the
performance impact by monitoring only the information that’s critical from a security point
of view, instead of entire databases. Privacy and Security Mandates, and other business
requirements, will define what information that require this higher level of protection and
audit.

Database

Database
management

system
(DBMS)

Application

DBA SA

User

Key
Management

system

Fig. Encryption Keys managed securely
in separate from the database environment

3.1. Secure Monitoring of Management Functions and Information Access

The foundation of the security audit function is a secure reporting and audit facility
combined with organizational separation of security from administrative responsibilities.
The creation of logs that track activities performed by security officers and unauthorized
access attempts to protected data is a critical element. These logs must track
information regarding the use of sensitive data, including records of user reads and
updates. Managers can use this information to track trends, analyze potential threats,
support future security planning, and assess the effectiveness of countermeasures.
Ideally, the logs should focus on the most useful information for security managers; that
is, activity around protected information. Focusing only on sensitive information
minimizes the performance degradation and also maximizes the usefulness of the
protected security audit log. Auditing isn’t an all-or-nothing exercise; it should be
selective. Selective and granular auditing saves time and reduces performance concerns
by focusing on sensitive data only. By limiting accumulation of audit logs to only
sensitive information, more critical security events are highlighted and reviewed. This
solution allows the auditing strategy to be based on knowledge about application or
database activity around sensitive data, in an effort to protect their own employees from
being wrongfully suspected in the case of an internal breach. The log should contain all
relevant operations on critical data elements, and contain security related information
needed in the case of a breach. For example a security log should be tamper proof and
provide evidence on who read what information and when.

4. Key Management

Guaranteeing that unauthorized users cannot access data ensures data privacy.
Encryption is the primary solution for ensuring data privacy, trust, and verification in
Internet banking services. Encryption is basically defined as the protection of information
by converting it into a form that is unintelligible until it is converted back to its original
form. Encryption must be employed in all cases where customers can perform, or
authorized users are provided with access, to transactions that involve confidential
information within the target system's database. All Secure.Data key management
activities are automatically logged and adequate information maintained such that all key
management processing can be reviewed.

4.1. Automated Encryption Key Management and Encryption Key Escrow

Cryptographic keys are in multiple component form, and controlled by more than one
key custodian, where one custodian can never learn or know any other key component
but their own. Split knowledge is enforced under which two or more parties must
separately and confidentially have custody of components of a single key. Different
security administration roles are responsible for different functions, so that there is a
clear separation of duties. Allows encryption key escrow by a secure backup of master
keys. The Secure.Data solution provides secret symmetric or private asymmetric keys
and can be managed by two key custodians who do not have knowledge of the each
other's keys or key components. When was the last time that internal information access
controls in your financial institution were independently validated? These are not idle
questions. Weak internal controls played a role in all three of the national banks that
failed in 1999. In one case, improper record keeping and accounting contributed to the
bank's failure. In the second case, the bank lacked adequate external audit. All
encryption keys are generated using traditional seeding principles or optional hardware
based generators. The optional hardware based and automated encryption key
management provides a tamper evident environment, FIPS 140 Level 3, to protect the
most sensitive encryption keys from exposure. Additional mechanisms for protection for
the encryption keys in memory and in the database are used. A number of different
types of keys are also used to achieve a high level of security:

Master Keys -There is one Master Key per server and one per Manager. All other keys
(i.e. communication keys, internal keys and application data keys) generated on
that entity (Server/Manager) are encrypted using the Master Key. The Master Key is
stored in the database protected with software based or optional hardware based
encryption.

Communication Keys – Communication key is negotiated with Diffie-Hellman between
the Server and Manager at the first connection ("push" or "synchronize" of the policy).
The communication key is unique to each Manager-Server pair, and all traffic between
the Server and Manager is encrypted under that key. The communication key in the
current implementation is triple-DES keys. Both parties have a copy of the
communication key after the negotiation. The key is stored locally encrypted under the
Master Key for each entity.

Internal (Policy) Keys - Internal Keys are used to encrypt / decrypt policy information in
the policy database that the entity keeps.

Data Keys - Data Keys are used to encrypt / decrypt application data associated with
Item/Objects in the policy. All Data Keys are stored encrypted in the Secure.Data Server
policy database. Data key uniqueness depends on the properties of the Item/Object. If
the property “unique key” is chosen, the key is unique. If “base key” is selected for an
Item/Object, the key protecting that data will be shared with the other Item/Objects with
the “base key” option selected.

3.3. Secure Key Management Implementation

The Secure Key Management system for encryption of individual data elements
comprising of encryption devices of at least two different types, the types being tamper-
proof hardware and software implemented. The encryption processes of the system are
of at least two different security levels, differing in the type of encryption device holding
the process keys for at least one of the process key categories and also differing in
which type of device executing the algorithm of the process. Each data element to be
protected is assigned an attribute indicating the usage of encryption process of a certain
security level.

3.4 A Combined Hardware and Software Based Encryption System

In order to protect information stored in a database, it is known to store sensitive data
encrypted in the database. To access such encrypted data you have to decrypt it, which
could only be done by knowing the encryption algorithm and the specific decryption key
being used. The access to the decryption keys could be limited to certain users of the
database system, and further, different users could be given different access rights.

Specifically, it is advantageous to use a so-called granular security solution for the
encryption of databases, instead of building walls around servers or hard drives. In such
a solution, which is described in this paper, a protective layer of encryption is provided
around specific sensitive data-items or objects. This prevents outside attacks as well as
infiltration from within the server itself. This also allows the security administrator to
define which data stored in databases are sensitive and thereby focusing the protection
only on the sensitive data, which in turn minimizes the delays or burdens on the system
that may occur from other bulk encryption methods. Most preferably the encryption is
made on such a basic level as in the column level of the databases. Encryption of whole
files, tables or databases is not so granular, and does thus encrypt even non-sensitive
data. It is further possible to assign different encryption keys of the same encryption
algorithm to different data columns. With multiple keys in place, intruders are prevented
from gaining full access to any database since a different key could protect each column
of encrypted data. In present systems for such granular protection of data, the
encryption process is performed within hardware. Using a tamper-proof hardware for
protection of the algorithms and the keys results in a strong protection. One purpose of
such a system is to provide data elements with different degrees of protection. However,
when encrypting small blocks of data, such as individual data records in a database, a
hardware encryption device could experience performance problems. Thus, even though
granular encryption techniques on data elements in databases provides flexibility on the
encryption level, this flexibility is not sufficient for commercial purposes. For example, in
a application with increasing amounts of data and/or data processing, it could be of
interest to significantly reduce the security level when encrypting for example older data,
while maintaining a higher security level when encrypting new data. This would result in

increased overall performance. The current solutions do not provide a sufficient
flexibility, which forces the operator to invest in additional hardware resources in order to
maintain the systems overall performance. Current hardware encryption systems utilizes
a tamper-proof hardware device for encrypting the data elements. The hardware
device’s processing capability is dependent on the device’s processor, memory,
architecture, etc. The only way, without changing the device’s hardware configuration, to
increase a system’s performance utilizing such a device, is to use simpler encryption
algorithms, for instance reduce the key length etc. However, the reduction of encryption
security level reaches a level where the used processing power does not decrease
proportionally, since the initial overhead for each access to the tamper-proof hardware
will still be constant. Therefore, such systems experience a performance problem when
faced to increased load and when encryption of data elements requiring lower protection
increases.

6.4. Summary of the key management method

According to the method a relational database system for encryption of individual data
elements comprises a plurality of encryption devices being of at least two different types,
the types being tamper-proof hardware and software implemented, the encryption being
provided by different encryption processes utilizing at least one process key in each of
the categories master keys, key encryption keys, and data encryption keys, the process
keys of different categories being held in the encryption devices; wherein the
encryption processes are of at least two different security levels, where a process of a
higher security level utilizes the tamper-proof hardware device to a higher degree than a
process of a lower security level; wherein each data element which is to be protected is
assigned an attribute indicating the level of encryption needed, the encryption level
corresponding to an encryption process of a certain security level.
Hereby, a system is provided, which overcomes the above mentioned problems. With
such a system it becomes possible to combine the benefits from hardware and software
based encryption. The tamper-proof hardware device could for example be a device with
a security level 4 as described in the Federal Information Processing Standard (FIPS)
Publication 140-1 developed by the National Institute of Standards and Technology
(NIST) or any equivalent, the publication hereby included by reference. The software
implemented device could be any data processing and storage device, such as a
personal computer. The tamper-proof hardware device provides strong encryption
without exposing any of the keys outside the device, but lacks the performance needed
in some applications. On the other hand the software implemented device provides
higher performance in executing the encryption algorithms, but exposes the keys
resulting in a lower level of security. The present method takes advantage of the fact that
all data elements in a database do not need the same level of encryption.
With such a system it becomes possible to rapidly change the system’s security levels
and performance, respectively. For example, when an attack is detected, it will be
possible to easily raise the security levels for a selection of data elements. In another
situation, for instance in an electronic commerce system, the performance for a part of
the online store could swiftly be increased by changing the security level of a selection of
data elements. In a preferred implementation a process of a first higher security level
essentially utilizes the tamper-proof hardware device and a process of a second lower
security level essentially utilizes the software implemented device. Preferably, the
encryption processes differ in the type of encryption device holding the process keys for
at least one of the process key categories and also in which type of device executing the
algorithm of the process. However, this is only one way of configuring such a system.

The system includes encryption process of a first security level having the tamper-proof
hardware device for holding the process keys for the process key categories master
keys, key encryption keys, and data encryption keys, and the tamper-proof hardware
device for executing the encryption algorithm of the first security level process; and
an encryption process of a second security level having the tamper-proof hardware
device for holding the process keys for the process key categories master keys and key
encryption keys, and the software implemented device for holding the at least one
process key of the process key category data encryption keys, and the software
implemented device for executing the encryption algorithm of the second security level
process. The first encryption process should then be used for the most sensitive data.
The second encryption process utilizes both the tamper-proof hardware device and the
software implemented device in order to encrypt data. The tamper-proof hardware
device holds all but the data encryption keys, which are checked-out from the tamper-
proof hardware device. Thus, the tamper-proof hardware device holds the master key
and the key encryption keys are not exposed outside the hardware device. The data
processing and storage device now use the checked-out data encryption key for
encryption of a data element. Encryption by the software implemented device is most
advantageous for small blocks of data. Preferably the attributes for short data blocks, 8-
16 bytes of data, are automatically set to use the second encryption algorithm.
In another implementation, the system comprises a third security level having the
software implemented device for holding the process keys for the process key
categories master keys, key encryption keys, and data encryption keys, and the software
implemented device for executing the encryption algorithm of the third security level
process. Using a third encryption process for some data elements could even further
improve the performance of the system, since it probably will reduce the load on the
tamper-proof hardware device. Preferably the attributes also comprises information
about initialization vectors and length of the encryption key. In one implementation the
system further comprises a key caching feature. This is useful when a large number of
different keys are used on short blocks in order to increase the performance of the
system. For example, the key is cached the first time it is decrypted and used inside the
tamper-proof hardware device. Also according to the method a method for encryption of
individual data elements in relational database system, wherein the system comprises a
plurality of encryption devices being of at least two different types, the types being
tamper-proof hardware and software implemented, comprises the steps of:
providing encryption processes of at least two different security levels, where a process
of a first higher security level essentially utilizes the tamper-proof hardware device and a
process of a second lower security level essentially utilizes the software implemented
device; assigning an data element which is to be protected an attribute indicating the
level of encryption needed, the encryption level corresponding to an encryption process
of a certain security level; choosing an encryption process correlating to the security
level assigned to the data element which is to be protected; encrypting, using chosen
encryption process, the data element which is to be protected. Hereby, a method is
provided, which overcomes the above mentioned problems. With such a method it
becomes possible to combine the benefits from hardware and software based
encryption. Referring to fig. 1, a schematic view of a system according to an
implementation of the method is illustrated. The system comprises a tamper-proof
hardware device 1, a software implemented device 2, which are used for encrypting data
elements in a relational database 3. The software implemented device is as previously
described any data processing and storage device. The term software implemented is to
be understood an opposite to the tamper-proof hardware device. For example, the
software implemented device could be a traditional personal computer, having a

microprocessor for executing the algorithms and where the different keys and algorithms
are stored on a storage media connected thereto, such as a hard disk. The storage
media could be organized as a relational database with a database management
system, and the keys stored in the database. Upon request from the system, according
to the method, the keys and algorithms would then be read from the storage media into
the working area of a random access memory. There, the microprocessor of the
software implemented device would process a data element of the relational database 3
in order to obtain an encrypted data element. The tamper-proof hardware device 1 holds
a master key 4, key encryption keys 5 and data encryption keys 6. The tamper-proof
hardware device 1 has mechanisms for executing encryption algorithms. As an example,
and not limited to, the tamper-proof hardware could be a multi-chip embedded module,
packaged in a PCI-card. In addition to cryptographic hardware, and circuitry for tamper
detection and response, it could include a general-purpose computing environment: a
486-class CPU (99 Mhz in Model 2), executing software stored in ROM and in FLASH.
The multiple-layer software architecture preferably comprises foundational security
control (Layer A and Layer B), supervisor-level system software (Layer C), and user-
level application software (Layer D). The Layer C component is designed to support
application development. Within Layer C, a kernel provides standard OS abstractions of
multiple tasks and multiple address spaces. Then the software implemented device is a
multiple-layer software architecture comprising foundational security control (Layer A
and Layer B), basic crypto functions software (Layer C), and user-level application
software (Layer D). The software implemented device 2 also holds another set of keys;
one software master key 7, software key encryption keys 8 and software data encryption
keys 9. By software keys 7, 8 and 9 are meant keys stored in the software implemented
device 2. The relational database system 2 comprises data elements organized in tables
with rows and columns. Each data element have an attribute, which describes the
security level of the data element, for example in a scale from A-C. The security level
could then represent different encryption processes, and preferably further information
about the encryption process. Such information could comprise where the keys are
stored, which encryption algorithms to use, where to execute the algorithm, key values,
key length or an initialization vector, etc. An example of an algorithm that could be used
for an encryption process is DES with ECB, in CBC mode with rotating IV. The
processes according to the implementation differ in their security level. An example of
the implementation of respective encryption process security levels are given in table 1
below.

 Security

level A

Security

level B

Security

level C

Storage of master key

H/W H/W S/W

Storage of key encryption keys H/W H/W S/W

Storage of data encryption keys H/W S/W S/W

Execution of encryption algorithm H/W S/W S/W

Table 1: Example of security levels

According to table 1, a data element having an attribute stating security level A, will have
the strongest protection. Then, none of the keys will be exposed outside the tamper-
proof hardware 1 and the encryption process will take place within the tamper-proof
hardware 1. A data element with security level B, will check-out (preferably by decrypting
and exporting), a data encryption key 6 from the tamper-proof hardware 1 to the
software implemented device 2 and use it a software encryption key 9. This data
encryption key 9 will then be used by an encryption algorithm processed in the software
implemented device 2 described above. After processing the data encryption key 9 will
be stored in the software implemented device 2 for later decryption. Finally, data
elements requiring a not so strong protection will have the attribute security level C. This
means that they all the keys involved the crypto-process are stored in the software
implemented device 2, where also the encryption process takes place. The method has
been described above in terms of a preferred implementation. However, the scope of
this method should not be limited by this implementation, and alternative
implementations of the method are feasible, as should be appreciated by a person
skilled in the art. For example, the software keys 7,8 and 9 could be stored in the same
database as the data elements that are subject for encryption. Such implementations
should be considered to be within the scope of the method, as it is defined by the
appended claims.

4. Implementation based on Oracle

A high level of application transparency can be accomplishes by providing a view that
corresponds with the original physical table being protected. Without any changes to the
application or any knowledge from the end-user, all queries to the original table are now
being handled by the integration view. All access to the underlying (encrypted) data is
handled by this implemented view. In a database environment protected by the
Secure.Data encryption services, direct or indirect access to a view with an attached
security policy causes the data-server always to consult the policy function for
verification. The policy function returns only authorized data, dynamically modifying the
external user’s data access. The example is based on a simple table ‘tab’. The original
base table ‘tab’ holds an identity ‘id’ column and a secret code column ‘secret’:

id secret
1 a
2 b

Fig. Example based on

a simple table ‘tab’.

Create the new base table ‘tab_enc’ that will hold encrypted values in the ‘secret’
column:

create table tab_enc (

id integer,

secret varbinary (32));

id secret
1 #
2 %

Fig. new base table ‘tab_enc’
that will hold encrypted values.

Create a view with the same name as the original base table ‘tab’, and create a triggers
on the view ‘tab’ to be able to insert, update, and delete data:

create or replace view tab(id, secret) as
 SELECT id, decrypt('item secret', secret)

FROM tab_enc
create or replace trigger tab_insert
instead of insert on tab

for each row
begin
insert into tab (

id,
secret)

 values (
 :new.id,
 pty.ins_encrypt(‘item_secret’, :new.secret));
 end;

create or replace trigger tab_update
instead of update on tab

for each row
begin
update tab set

 id = :new.id,
 secret = pty.upd_encrypt(‘item_secret’, :new.secret))

where id = :old.id;
 end;

create or replace trigger tab_delete
instead of delete on tab

for each row
begin

pty.del_check(‘item_secret’);
delete tab

 where id = :old.id;
 end;

Fig. Create view, and triggers

5. Deployment on a 24-by-7 operational database system

In most commercial applications accessibility is a critical issue, and customers expect a
service to be accessible when they want to use it. Hereby method is provided which
significantly improves the uptime of a database system. With this method the database
owner easily can alter encryption settings in the database while it is up and running.
Since a rerouting of the access is provided, data will always be accessible. Thus, the
security administrator (SA) can independently of any constraints regarding when the
database has to be up add or remove encryption when it is needed. For example, if a
security leak is found in a web-application such as an Internet store during rush hours,
the management of that company would with previous solutions have had to decide
whether to risk sales or risk that someone would intrude in their system gaining access
to unencrypted data in the database. This is eliminated with the method according to the
implementation. Another advantage is that regular maintenance work can be performed
during daytime, reducing the need for costly overtime since the maintenance personnel
don’t have to work when the database can be taken offline, which mostly is during night
hours. This is a method which allows altering of encryption status in a relational
database in a continuous process, which significantly reduces or eliminates the need for
making the database unavailable or only partly available, overcoming the above
mentioned problems. The method comprises the steps of: copying all records from a
base area to a maintenance area; directing action of commands intended for the base
area to the maintenance area; altering encryption status of the base area; and copying
all data records from the maintenance area to the base area; and redirecting action of
commands to the base area.

Empty base column

Add trigger to table

Copy records from base
column to maintenance

column

Change data type of base
column

S1

S2

S3

S4

Activate encryption means
on base column

S5

Copy records from
maintenance column to

base column

S6

Remove trigger

S7

Empty maintenance
column

S8

Fig. Process flow for altering
encryption status

The term encryption status is to be understood as how to protect data elements in the
base area, for instance whether or not the data elements are subject for encryption. In
another implementation it could also be understood as changing the encryption level,
from strong to weak. If the purpose is to remove encryption for data elements in the base
area, the data elements are decrypted while they are copied to the maintenance area.
Then, if the purpose if to add encryption to data elements, they are encrypted as they
are copied to, or from, the maintenance area. Then, when the data elements are
temporarily stored in the maintenance area, the settings could be changed for the base
area. The database which is described comprises one or more tables. Action of
commands could for example be reading commands resulting in a read operation, or a
write command resulting in a write operation. Preferably, the step of directing is
implemented in a trigger which is added to the table. In an implementation of the present
method the commands are data manipulation language (DML) statements. In an
implementation of the present method each base area in the database table have a
corresponding maintenance area. In an implementation of the present method the
method comprises the further step of emptying the base area before the step of altering.
Preferably this done by updating all the records of the column with NULL. In an
implementation of the present method the method comprises the further step of
changing the data type of the base area. Preferably, this is changed to RAW. In an
implementation of the present method the base area is a first column of the table and the

maintenance area is a second column of the table. However, the method is not limited to
this interpretation of an area, for example an area could comprise a set of columns.
According to another implementation of the method a method for altering encryption
status in a relational database in a continuous process, wherein at least one table of the
database comprises at least one base area, and for each base area a corresponding
area, comprising the steps of: activating encryption means for the corresponding
column; directing action of commands intended for the base area to the maintenance
area; copying all records from the base area to the corresponding area; and emptying
the base area. Hereby a method is provided which, in addition to the above mentioned
advantages, allows continuous encryption on tables that have explicit locks i.e. row
exclusive (RX) or share row exclusive (SRX) locks. The tables I and II below illustrates
an example of a database table, “tab”, for which encryption is to be added to a column.
Table I describes the structure of the database table “tab” and Table II is an example of
the contents in such a table.

Data element Data type Value Comment
cust_id NUMBER NOT NULL Primary key
name VARCHAR2(64) NOT NULL

date_of_birth DATE NOT NULL
user_name VARCHAR2(32) NOT NULL
password VARCHAR2(32) NOT NULL To be encrypted

maint VARCHAR2(32) NULL

Table I

cust_id name date_of_birth user_name password maint
1001 MAX 19910101 MNN abc NULL
1002 MARTIN 19920202 MKR cdf NULL
1003 JOHAN 19930303 JON ghi NULL
1004 MARIE-

LOUISE
19940404 MLA jkl NULL

Table II

 The method comprises a first step S1, wherein data is copied from the base
column “password” to the maintenance column “maint”. The contents of “tab” after the
step S1 are shown in Table III.

cust_id name date_of_birth user_name password maint
1001 MAX 19910101 MNN abc abc
1002 MARTIN 19920202 MKR cdf cdf
1003 JOHAN 19930303 JON ghi ghi
1004 MARIE-

LOUISE
19940404 MLA jkl jkl

Table III

Preferably, if needed, the method contains a step, which checks whether the column
“password” is nullable, i.e. the column does not have a NOT NULL constraint. Then the
column is altered to be nullable. In another step S2 a trigger is added. The object of the
trigger is to direct all commands aimed at the base column to the maintenance column,
i.e. a synchronization function. Thus, when a user for example sends a update command
for the base column, this command is directed to the maintenance column. In order to
overcome problems during copying and activation of the trigger, the trigger could be built
up from several steps. For instance, it could first synchronize the base and the
maintenance column, then when the contents are identical, stop updating the base
column at the same time let the maintenance column take over the actions taken on the
base column. Preferably the copying of the records from the base column is performed
simultaneously with the addition of the trigger. In another step S3, the base column
“password” is emptied. For instance, this could be performed by updating the base
column with NULL. Preferably, if it is required by the later applied encryption, the method
comprises the further step S4, wherein the table is altered in order to change the base
column data type to the data type RAW. The present structure and contents of “tab” is
described in tables IV and V, respectively.

Data element Data type Value Comment
cust_id NUMBER NOT NULL Primary key
name VARCHAR2(64) NOT NULL

date_of_birth DATE NOT NULL
user_name VARCHAR2(32) NOT NULL
password RAW NULL To be encrypted

maintenance VARCHAR2(32) NOT NULL
Table IV

cust_id name date_of_birth user_name password maint

1001 MAX 19910101 MNN NULL abc
1002 MARTIN 19920202 MKR NULL cdf
1003 JOHAN 19930303 JON NULL ghi
1004 MARIE-

LOUISE
19940404 MLA NULL jkl

Table V

Then, the step S5 of activating encryption means is performed. Thus, all data written to
the base column “password” will now be written in encrypted form. The means for
encryption could be a standard software or hardware, for example a apparatus with a
DES algorithm. The data is read from the maintenance column and processed by
encryption means. The encryption could be either symmetrical or asymmetrical, for
example DES or RSA respectively. After step S5, the records from the maintenance
column are copied to the base column through the encryption means in step S6. Thus,
the contents of the base column “password” is now stored in an encrypted form. Then
the trigger is removed in step S7. This is done in such a manner that synchronization
problems are overcome. Preferably the copying of the records from the maintenance
column is performed simultaneously with the removal of the trigger. Since the
maintenance column now contains unencrypted data, it is important that this column is
emptied, which is performed in step S8. This can be performed by either updating the

column with NULL or writing a random value into the column. Then this example table,
“tab”, will have the contents as shown in table VI.

cust_id name date_of_birth user_name password maint

1001 MAX 19910101 MNN 7je NULL
1002 MARTIN 19920202 MKR skj NULL
1003 JOHAN 19930303 JON 9fj NULL
1004 MARIE-

LOUISE
19940404 MLA xjr NULL

Table VI

In order to let the altering of the table have effect on views, the views have to be
recreated after each ALTER of a table. An alternative implementation will now be
described. The above mentioned implementation is used under the presumption that
there are not any table locks (RX/RSX = Row Exclusive/Row Share Exclusive) on the
table. In the case of such database locks, additional maintenance columns have to be
added in advance. This is preferably performed during installation or planned
maintenance, and has not to be done when the actual adding or removing of encryption
takes place. Thus, there will be created a maintenance column for each column, which is
not currently encrypted. The method according to the alternative implementation is
similar to the preferred implementation described above and comprises of the steps:
activating encryption means for the maintenance columns corresponding to the base
column, which is to be encrypted; adding a trigger to the table, which transfers action of
data manipulation language (DML) statements intended for the base column to the
maintenance column; copying all records from the base column to the corresponding
maintenance column through the encryption means; and emptying the base column.

7. Storage-to-storage encryption for Mobile client applications.

The security policy defines the specific packaging format and encryption method and
algorithms for fields when stored in the database and when transported over networks.
The DTP (data type preservation) format is an option that is type and length transparent
for applications and database schemas. The client side decrypts received data fields,
based on the security policy, and provides a secure local storage.

Database

Database
management

system
(DBMS)

Application

DBA

SA

User

Key
Management

system

Key
Management

system

Network

Fig. Storage-to-storage encryption
for Mobile client applications.

6. The Intrusion Prevention Functionality

The method allows for a real time prevention of intrusion by letting the intrusion detection
process interact directly with the access control system, and change the user authority
dynamically as a result of the detected intrusion. The hybrid solution combines benefits
from database encryption toolkits and secure key management systems. The hybrid
solution also provides a single point of control for database intrusion prevention, audit,
privacy policy management, and secure and automated encryption key management
(FIPS 140 Level 3). The Database Intrusion Prevention is based on ‘context checking’
against a protection policy for each critical database column, and prevents internal
attacks also from root, dba, or ‘buffer overflow attacks’. The Database Intrusion
Prevention and alarm system enforces policy rules that will keep any malicious
application code in a sand box regarding database access. The policy enforcement
includes checking on:

- Session Authentication and Session Encryption.
- Software Integrity, Data Integrity, and Meta Data Integrity.
- Time of Access, and other policy rules.

Database

Database
management

system
(DBMS) Access

control
system

Application

DBA SA

Intrusion
detection
system

Fig. A schematic view of a intrusion prevention
system for a relational database.

In database security, it is a well-known problem to avoid attacks from persons who have
access to a valid user-ID and password. Such persons cannot be denied access by the
normal access control system, as they are in fact entitled to access to a certain extent.
Such persons can be tempted to access improper amounts of data, by-passing the
security. Solutions to this problem have been suggested:

Network-Based Detection - Network intrusion monitors are attached to a packet-filtering
router or packet sniffer to detect suspicious behavior on a network as they occur. They
look for signs that a network is being investigated for attack with a port scanner, that
users are falling victim to known traps like .url or .lnk, or that the network is actually
under an attack such as through SYN flooding or unauthorized attempts to gain root
access (among other types of attacks). Based on user specifications, these monitors can
then record the session and alert the administrator or, in some cases, reset the
connection. Some examples of such tools include Cisco’s NetRanger and ISS’
RealSecure as well as some public domain products like Klaxon that focus on a
narrower set of attacks.

Server-Based Detection - These tools analyze log, configuration and data files from
individual servers as attacks occur, typically by placing some type of agent on the server
and having the agent report to a central console. Some examples of these tools include
Axent’s OmniGuard Intrusion Detection (ITA), Security Dynamic’s Kane Security Monitor
and Centrax’s eNTrax as well as some public domain tools that perform a much
narrower set of functions like Tripwire which checks data integrity. Tripwire will detect
any modifications made to operating systems or user files and send alerts to ISS'
RealSecure product. Real-Secure will then conduct another set of security checks to
monitor and combat any intrusions.

Security Query and Reporting Tools - These tools query NOS logs and other related logs
for security events or they glean logs for security trend data. Accordingly, they do not
operate in real-time and rely on users asking the right questions of the right systems. A
typical query might be how many failed authentication attempts have we had on these
NT servers in the past two weeks.” A few of them (e.g., SecurIT) perform firewall log
analysis. Some examples of such tools include Bindview’s EMS/NOSadmin and
Enterprise Console, SecureIT’s SecureVIEW and Security Dynamic’s Kane Security
Analyst.

6.1. Inference detection

A variation of conventional intrusion detection is detection of specific patterns of
information access, deemed to signify that an intrusion is taking place, even though the
user is authorized to access the information. A method for such inference detection, i.e.
a pattern oriented intrusion detection, is disclosed in US patent 5278901 to Shieh et al.
None of these solutions are however entirely satisfactory. The primary drawback is that
they all concentrate on already effected queries, providing at best an information that an
attack has occurred.

6.2 The intrusion detection profile

By defining at least one intrusion detection profile, each comprising at least one item
access rate, associating each user with one of the profiles, receiving a query from a
user, comparing a result of the query with the item access rates defined in the profile
associated with the user, determining whether the query result exceeds the item access
rates, and in that case notifying the access control system to alter the user authorization,
thereby making the received request an unauthorized request, before the result is
transmitted to the user. According to this method, the result of a query is evaluated
before it is transmitted to the user. This allows for a real time prevention of intrusion,
where the attack is stopped even before it is completed. This is possible by letting the
intrusion detection process interact directly with the access control system, and change
the user authority dynamically as a result of the detected intrusion. The item access
rates can be defined based the number of rows a user may access from an item, e.g. a
column in a database table, at one time, or over a certain period of time. In a preferred
implementation, the method further comprises accumulating results from performed
queries in a record, and determining whether the accumulated results exceed any one of
the item access rates. The effect is that on one hand, a single query exceeding the
allowed limit can be prevented, but so can a number of smaller queries, each one on its
on being allowed, but when accumulated not being allowed. It should be noted that the
accepted item access rates not necessarily are restricted to only one user. On the
contrary, it is possible to associate an item access rate to a group of users, such as
users belonging to the same access role (which defines the user’s level of security), or
connected to the same server. The result will be restricting the queries accepted from a
group of users at one time or over a period of time. The user, role and server entities are
not exclusive of other entities which might benefit from a security policy. According to an
implementation of the method, items subject to item access rates are marked in the
database, so that any query concerning the items automatically can trigger the intrusion
detection process. This is especially advantageous if only a few items are intrusion
sensitive, in which case most queries are not directed to such items. The selective
activation of the intrusion detection will then save time and processor power. According

to another implementation of the method, the intrusion detection policy further includes
at least one inference pattern, and results from performed queries are accumulated in a
record, which is compared to the inference pattern, in order to determine whether a
combination of accesses in the record match the inference policy, and in that case the
access control system is notified to alter the user authorization, thereby making the
received request an unauthorized request, before the result is transmitted to the user.
This implementation provides a second type of intrusion detection, based on inference
patterns, again resulting in a real time prevention of intrusion.

Database

Database
management

system
(DBMS) item access

rate

Application

DBA SA

 intrusion
detection

module 10.

Fig. A schematic view of components in

an intrusion prevention
system.

6.3. Detailed description of the intrusion prevention system

The present method may be implemented in an environment of the type illustrated in fig
1. The environment comprises a number of clients 1, connected to a server 2, e.g. a
Secure.Data™ server from Protegrity, providing access to a database 3 with encrypted
data 4. Several clients 1 can be connected to an intermediate server 5 (a proxy server),
in which case we have a so called three tier application. Users 6 use the clients 1 to
access information 4 in the database 3. In order to verify and authorize attempted
access, an access control system (ACS) 7 is implemented, for example Secure.Server™
from Protegrity. The server is associated with an intrusion detection module 10,
comprising software components 12, 13 and 18 for performing the method according to
the method. Although the intrusion detection module 10 here is described as a separate
software module, its components can be incorporated in the server software 2, for
example in a security administration system (SAS) 8, like Secure.Manager™ from
Protegrity. It can reside in the server hardware 16, or in a separate hardware unit. A first
component 12 of the intrusion detection module 10 enables marking of some or all data
items (e.g. columns in tables) in the database, thereby indicating that these items should

be monitored during the intrusion detection process, as described below. A second
component 13 of the intrusion detection module 10 is adapted to store all results from
queries including marked items, thereby creating a record 14 of accumulated access of
marked items. If advantageous, the record can be kept in a separate log file 15, for long
term storage, accumulating data access over a longer period of time. The server 2
further has access to a plurality of security policies 20, preferably one for each user, one
for each defined security role, or the like. These security policies can be stored in the
security administration system 8, but also be stored outside the server. Each policy 20
includes one or several item access rates 21 and optionally an inference pattern 22. An
item access rate 21 defines the maximum number of rows of the selected item (e.g.
column of a table) that a given user, role or server may access during a given period of
time. The period of time can be defined as one single query, but can also be an
accumulation of queries during a period of time. Preferably, a separate item access rate
is defined for at least each item that has been marked in the database 3 by the
component 12 of the intrusion detection module 10. An inference pattern 22 defines a
plurality of items (columns of certain tables) that when accesses in combination may
expose unauthorized information. This means that an attempt by a user, role or server to
access certain quantities of information from items in an inference pattern during a given
period of time (e.g. in one request) implies that an intrusion is taking place, even if the
associated item access rates have not been exceeded. For further information about the
inference concept of intrusion, see US 5278901. Returning to the intrusion detection
module 10, a third component 18 is adapted to compare the result of a query with an
item access rate 21 and an inference pattern 22. The component 18 can also compare
the access rates 21 and inference patterns 22 with accumulated results, stored in the
record 14 or log file 15. When a user tries to access a database, the access control
system 7 completes an authority check of the user. Different routines can be used,
including automatic authorization by detecting IP-address, or a standard log-in routine. In
one implementation, the authorized user will only have access to items defined in his
role, i.e. the table columns that the user is cleared for and uses in his/her work. The
access control system 7 then continually monitors the user activity, and prevents the
user from accessing columns he/she is not cleared for. This process is described in
detail in WO 97/49211, hereby incorporated by reference. The intrusion detection
according to the described implementation of the method is directed toward the situation
where a user, authorized to access certain items, abuses this authority and tries to
obtain information broaching the security policy of the database owner. The intrusion
detection is divided into two different stages, a real time stage and an à posteriori
analysis stage.

6.4. Real time analysis

With reference to fig 2, a request is received by the server in step S1, resulting in the
generation of a result in step S2, i.e. a number of selected rows from one or several
table columns. The software component 12 determines (step S3) if any items in the
result are marked for monitoring in the database. If no marked items are included in the
result, the result is communicated to the user in a standard way (step S4). If, however,
mared items are included in the result, the intrusion detection component 13 stores the
query result, or at least those parts referring to the marked items, in the record 14, and
the program control initiates the intrusion detection (step S6-S10). First, in step S6, the

intrusion detection component 18 compares the current query result and the updated
record 14 with the item access rate 21 included in the security policy associated with the
current user, the role that the user belongs to, or the server the user is connected to.
Note that only item access rates 21 associated with the marked items comprised in the
current result need to be compared. If the current query result or accumulated record 14
includes a number of rows exceeding a particular item access rate 21, such a request
will be classified as an intrusion (step S7), and the access control system 7 will be
alerted (step S10). Secondly, in step S8, if no item access rate is exceeded, the intrusion
detection process compares the query result and accumulated record 14 with any
inference pattern included in the relevant security policy. If the result includes a
combination of items that match the defined inference pattern, such a request will also
be classified as an intrusion (step S9), and the access control system will be alerted
(step S10). If no intrusion is found in step S7 nor step S9, the program control advances
to step S4 and communicates the result to the user. Upon an ACS alert (step S10), the
access control system 7 is arranged to immediately alter the user authorization, thereby
making the submitted request unauthorized. This can be effected easily, for example if
the ACS 7 is part of the Secure.Data™ server from Protegrity. For the user, the request,
or at least parts of the request directed to items for which the item access rate was
exceeded, will thus appear to be unauthorized, even though authority was initially
granted by the access control system 7. In addition to the immediate and dynamic
alteration of the access control system 7, other measures can be taken depending on
the seriousness of the intrusion, such as sending an alarm to e.g. the administrator, or
shutting down the entire database. The server software 11 can send an alarm to a
waiting process that a potential breach of security is occurring.

6.5. Long term analysis

The query result can also be stored in the log file 15 by the intrusion detection module,
as described above. The log file 15, which thus contains accumulated query results from
a defined time period, can also be compared to the inference patterns 22 in the security
profiles 20 of users, roles or servers, this time in a “after the event” type analysis. Even
though such an analysis cannot prevent the intrusion from taking place, it may serve as
intelligence gathering, improving the possibilities of handling intrusion problems. While
the real time protection is most efficient when it comes to preventing security breaches,
the long term analysis can be more in depth, and more complex, as time is no longer a
critical factor. Many three-tier applications (e.g. connections with a proxy 5) authenticate
users to the middle tier 5, and then the TP monitor or application server in the middle tier
connects to the database 3 as a super-privileged user, and does all activity on behalf of
all users 6 using the clients 1. Preferably, the method is implemented in a system, for
example Secure.Data™ from Protegrity, in which the identity of the real client is
preserved over the middle tier thereby enabling enforcement of ”least privilege” through
a middle tier. The intrusion detection module 10 therefore can audit access requested
both by the logged-in user who initiated the connection (e.g., the TP monitor), and the
user on whose behalf an action is taken. Audit records capture both the user taking the
action and the user on whose behalf the action was taken. Auditing user activity,
whether users are connected through a middle tier or directly to the data server,
enhances user accountability, and thus the overall security of multi-tier systems. Audit
records can be sent to the database audit trail or the operating system's audit trail, when
the operating system is capable of receiving them. This option, coupled with the broad
selection of audit options and the ability to customize auditing with triggers or stored

procedures, provides the flexibility of implementing an auditing scheme that suits any
specific business needs.

8. Liability Aspects

This solution provides protection and controls to prevent unauthorized access of the data
as well as necessary auditing capabilities that can be used to demonstrate compliance
with these new regulations. Other benefits include:

- Compliance with legal standards and requirements to protect the privacy of non-public
personal information from internal and external unauthorized access, through selective
encryption, separation of duties, and centralized, independent and trusted audit
functions for protected information.

- Reduced liability for the Board of Directors and Executive Management, by enabling a
dual control security solution that addresses any environment: ASP (Application
Services Provider & Aggregation Services Provider), MSP (Managed Services Provider)
and B2B (Business-to-Business).

Utilizing the Hybrid Technology for data-privacy will qualify for up to a 40% discount on
breach of computer security insurance coverage from a number of insurance companies.
Placed with Lloyd's of London, this policy provides the insured broad first party e-
business protection for highly secure risks. Coverage includes protection against losses
resulting from computer hacking, illegitimate use of computer systems and other
Information Technology security risks. Below are a few issues executives need to
consider:
- Class and individual action suits
- Loss of network/database integrity and availability
- Loss of intellectual capital
- Loss of employee productivity
- Defamation of brand name and reputation

4. Support for Industry specific Data-privacy Regulations

Companies are mandated to comply with industry specific data-privacy regulations best
practice requirements and industry guidelines regarding the usage and access to
customer data. Privacy requirements for protecting non-public personal information
include, selective encryption of stored data, separation of duties and centralized
independent audit functions. Some examples of security requirements that mandate
specific actions for protecting databases from external and internal intruders:

- U.S. Gramm-Leach-Bliley Act requires financial institutions and their partners to protect
non-public personal information by implementing a variety of access and security
controls. There are specific requirements relating to administrative, technical, and
physical safeguards for customer records and information. Security measures should
include management controls that provide effective segregation of duties and restrictions
on accessing data. Database auditing is an essential requirement.

7. Cost Aspects of the Solution

The issue for management is how to implement cost-effective and efficient ways to
secure these large and valuable assets and their complex infrastructure. Such a
solution must also be relatively easy to administer and should provide management with
information on historical security performance and potential future steps. There is neither
a single data security solution nor perfect security, but the basic tenets of a security
solution can readily be identified. Data security requires a coordinated program, which
includes threat assessment, strategy development, administration and management of
corporate security policies and procedures, initiation of a separate security audit
function, implementation of automated security capabilities (firewalls, encryption,
incident reporting, etc.) and an ongoing commitment of time and budget from senior
management. The security audit function should be supported by strong authentication,
protected by encryption, and independent of the database's audit mechanism and
administrative procedures. While considerable time and money have been expended in
building security to protect networks and servers from external threats, organizations
also need to be aware of the need to protect databases from potential threats, including
those from within the firewall.

8. Related work

In database security, it is a well-known problem to avoid attacks from persons who have
access to a valid user-ID and password. Such persons cannot be denied access by the
normal access control system, as they are in fact entitled to access to a certain extent.
Such persons can be tempted to access improper amounts of data, by-passing the
security. Solutions to this problem have been suggested:

There is a variety of related research efforts that explore what one can do with audit data
to automatically detect threats to the host. An important work is MIDAS [50], as it was
one of the original applications of expert systems—in fact using P-BEST—to the problem
of monitoring user activity logs for misuse and anomalous user activity. CMDS, by SAIC,
demonstrated another application of a forward-chaining expert-system, CLIPS, to a
variety of operating system logs [48]. USTAT [39] offered another formulation of intrusion
heuristics using state transition diagrams [46], but by design remained a classic forward-
chaining expert sys-tem inference engine. ASAX [37] introduced the Rule-based
Sequence Evaluation Language (RUSSEL) [42], which is tuned specifically for the
analysis of host audit trails.

9. Conclusion

While the existing paradigms of computer security are still very useful and serve
perfectly well in their capacities, there has existed a gap in the computer
security space. Our technology and approach fills that gap by providing procedural
based intrusion detection and response. We suggest that this gives Watcher the
unique ability to detect and halt completely novel attacks that have yet to be seen on the
Internet, and better yet, we have the ability to protect the first person to see a
new attack or exploit. No one needs to be sacrificed to the new virus or worm anymore.

In essence, we have learned to solve the right problem. Removing all software
vulnerabilities is clearly an unsolvable problem. Providing restrictive and onerous
barriers to software use makes the software uncomfortable and difficult to use.
Monitoring and controlling program execution at run time through behavioral control is
the missing piece in the security puzzle. The complete puzzle has three pieces; data
control (encryption), access control, and behavioral control.

In conclusion, while the overall complexity of the security program has dramatically
increased, enterprises can still implement effective security solutions by integrating
sound external protection and internal security controls with appropriate security audit
procedures. There are no guarantees that any one approach will be able to deal with
new and innovative intrusions in increasingly complex technical and business
environments. However, implementation of an integrated security program which is
continuously audited and monitored provides the multiple layers of protection needed to
maximize protection as well as historical information to support management decision-
making and future policy decisions.

This solution protects the data during transport, providing security from the server to the
client. The client device requires a means of accessing the secure data, and a means of
access control and secure storage of locally held information. The implementation for
Laptops and PDAs provides mandatory access control, secure local storage of sensitive
data and key management capabilities. This solution includes a method for detecting
intrusion in a database, managed by an access control system, comprising defining at
least one intrusion detection profile, each comprising at least one item access rate and
associating each user with one of the profiles. Further, the method determines whether a
result of a query exceeds any one of the item access rates defined in the profile
associated with the user, and, in that case, notifies the access control system to alter the
user authorization, thereby making the received request an unauthorized request, before
the result is transmitted to the user. The method allows for a real time prevention of
intrusion by letting the intrusion detection process interact directly with the access
control system, and change the user authority dynamically as a result of the detected
intrusion.

The GLBA/OCC and the VISA U.S.A. CISP requirements as well as other requirements
in the Health Care Industry, and Safe Harbor will require a unique demonstration of
cooperative and open but protected communication, storing information among
individuals and organizations across competitive lines and regulatory boundaries
safeguarding non-public personal information. Information sharing among reliable and
reputable experts can help institutions reduce the risk of information system intrusions.
The OCC encourages management to participate in information-sharing mechanisms as
part of an effort to detect and respond to intrusion and vulnerabilities. Financial
institutions have to work together in an unprecedented fashion with other financial
institutions, service providers, software vendors, trade associations, regulators, and
other industries to share information and strategies to respond to legal requirements and
media reports or perceptions that could decrease public confidence in the financial
services industry. With the introduction of regulatory privacy acts like the U.S. Gramm-
Leach-Bliley Act, the U.S. HIPAA, the U.S. FDA 21 CFR 11 and the E.U. member states
privacy laws, companies are being mandated to provide more detailed information
regarding the usage and access of customer and consumer data.

Acknowledgments

The author is grateful to all the people who have contributed to the design,
implementation, evaluation and evolution of this solution. I thank Tamojit Das, Christian
Olsson, Thomas Valfridsson, and Ulf Dahl at Protegrity Inc., and their teams, for their
work on the requirements and development of this solution. I also thank Kurt
Lennartsson, and his team at Pointsec, for the work on the client side of this solution. I
also thank two major credit card companies in US, and a number of the major banks in
US, for sharing their case studies on this topic with us.

References

[1] M. R. Adam. Security-Control Methods for Statistical Database: A Comparative
Study. ACM Computing Surveys, 21(4), 1989.
[2] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious trans-actions.
IEEE Transactions on Knowledge and Data Engineering, 2001. To appear.
[3] V. Atluri, S. Jajodia, and B. George. Multilevel Secure Transaction Processing.
Kluwer Academic Publishers, 1999.
[4] D. Barbara, R. Goel, and S. Jajodia. Using checksums to detect data corruption. In
Proceedings of the 2000 International Conference on Extending Data Base Technology,
Mar 2000.
[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA, 1987.
[6] S. B. Davidson. Optimism and consistency in partitioned distributed database
systems. ACM Transactions on Database Systems, 9(3):456–581, September 1984.
[7] D.E.Denning. An intrusion-detection model. IEEE Trans. on Software Engineering,
SE-13:222–232, February 1987.
[8] T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of the
14th National Computer Security Conference, Balti-more, MD, October 1991.
[9] P. P. Griffiths and B. W. Wade. An Authorization Mechanism for a Relational
Database System. ACM Transactions on Database Systems, 1(3):242–255, September
1976.
[10] P. Helman and G. Liepins. Statistical foundations of audit trail analysis for the
detection of computer misuse. IEEE Transactions on Software Engineering, 19(9):886–
901, 1993.
[11] K. Ilgun. Ustat: A real-time intrusion detection system for unix. In Proceedings of the
IEEE Symposium on Security and Privacy,Oak-land, CA, May 1993.
[12] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: A rule-based
intrusion detection approach. IEEE Transactions on Software Engineering, 21(3):181–
199, 1995.
[13] R. Jagannathan and T. Lunt. System design document: Next generation intrusion
detection expert system (nides). Technical report, SRI International, Menlo Park,
California, 1993.
[14] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework
for enforcing multiple access control policies. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 474–485, May 1997.
[15] H. S. Javitz and A. Valdes. The sri ides statistical anomaly detector. In Proceedings
IEEE Computer Society Symposium on Security and Privacy, Oakland, CA, May 1991.

[16] H. S. Javitz and A. Valdes. The nides statistical component description and
justification. Technical Report A010, SRI International, March 1994.
[17] T. Lane and C.E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. In Proc. 5th ACM Conference on Computer and Communications
Security, San Francisco, CA, Nov 1998.
[18] Wenke Lee, Sal Stolfo, and Kui Mok. A data mining framework for building intrusion
detection models. In Proc. 1999 IEEE Symposium on Security and Privacy, Oakland,
CA, May 1999.
[19] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion confinement by isolation in
information systems. Journal of Computer Security, 8(4):243–279, 2000.
[20] P. Luenam and P. Liu. Odam: An on-the-fly damage assessment and repair system
for commercial database applications. In Proc. 15th IFIP WFG11.3 Working Conference
on Database and Application Security, Ontario, Canada, July 2001.
[21] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H. S. Javitz, A. Valdes, P.
G. Neumann, and T. D. Garvey. A real time intrusion detection expert system (ides).
Technical report, SRI International, Menlo Park, California, 1992.
[22] Teresa Lunt and Catherine McCollum. Intrusion detection and response research at
DARPA. Technical report, The MITRE Corporation, McLean, VA, 1998.
[23] T.F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security,
12(4):405–418, June 1993.
[24] J. McDermott and D. Goldschlag. Storage jamming. In D.L. Spooner, S.A.
Demurjian, and J.E. Dobson, editors, Database Se-curity IX: Status and Prospects,
pages 365–381. Chapman & Hall, London, 1996.
[25] J. McDermott and D. Goldschlag. Towards a model of storage jamming. In
Proceedings of the IEEE Computer Security Foundations
Workshop, pages 176–185, Kenmare, Ireland, June 1996.
[26] B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE
Network, pages 26–41, June 1994.
[27] P.A. Porras and R.A. Kemmerer. Penetration state transition analysis: A rule-based
intrusion detection approach. In Proceedings of the 8th Annual Computer Security
Applications Conference, San Antonio, Texas, December 1992.
[28] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next
generation database systems. ACM Transactions on Database Systems, 16(1):88–131,
1994.
[29] P. Liu S. Ingsriswang. Aaid: An application aware transaction level database
intrusion detection system. Technical report, Department of Information Systems,
UMBC, Baltimore, MD, 2001.
[30] D. Samfat and R. Molva. Idamn: An intrusion detection architecture for mobile
networks. IEEE Journal of Selected Areas in Communications, 15(7):1373–1380, 1997.
[31] R. Sandhu and F. Chen. The multilevel relational (mlr) data model. ACM
Transactions on Information and Systems Security, 1(1), 1998.
[32] S.-P. Shieh and V.D. Gligor. On a pattern-oriented model for intrusion detection.
IEEE Transactions on Knowledge and Data Engi-neering, 9(4):661–667, 1997.
[33] M. Winslett, K. Smith, and X. Qian. Formal query languages for secure relational
databases. ACM Transactions on Database Systems, 19(4):626–662, 1994.
[34] The U.S. Health Information Portability and Accountability Act (HIPAA) - compliance
by October 2002 www.hipaacomply.com
[35] The European Union 95/46/EC Directive on Data Privacy - compliance October
1998 - and individual EU member state privacy legislation - various compliance dates
http://europa.eu.int/comm/internal_market/en/dataprot/
[36] EU/US Safe Harbor - compliance 11/1/2000 www.export.gov/safeharbor

http://europa.eu.int/comm/internal_market/en/dataprot/modelcontracts/index.htm
[37] EU member state privacy legislations see
http://europa.eu.int/comm/internal_market/en/dataprot/law/impl.htm
[38] Germany's Federal Data Protection Act (Der Bundesbeauftragte für den
Datenschutz) - compliance May 23, 2001 www.bfd.bund.de
[39] Sweden's Personal Data Act (Personuppgiftslagen - PuL) - compliance October 1,
2001 www.datainspektionen.se
[40] UK's Data Protection Act - Compliance March 1, 2000 www.dataprotection.gov.uk
[41] Canada’s Personal Information Protection and Electronic Document Act (PIPEDA)
Compliance 1/1/2001 to 1/1/2004 www.privcom.gc.ca
[42] Australia’s Privacy Act – Compliance by December 21, 2001 www.privacy.gov.au
[43] The VISA U.S.A. Cardholder Information Security Program (CISP) – Compliance
May 1, 2001 http://usa.visa.com/business/merchants/cisp_index.html
[44] The VISA International Account Information Security Standards (AIS) and Best
Practices Guide https://www.visa.com/nt/gds/main.html
[45] The U.S. Software and Information Industry Association (SIIA) - An Electronic
Citadel - A Method for Securing Credit Card and Private Consumer Data in E-Business
Sites www.siia.net/sharedcontent/divisions/ebus/citadel.pdf
[46] The BITS (the technology group for the Financial Services Roundtable) Voluntary
Guidelines for Aggregation Services www.bitsinfo.org/FinalAggregationBook051601.pdf
[47] The U.S. Gramm-Leach-Bliley Act (GLBA) (TITLE V--Consumer Privacy), regulated
by the SEC, FTC, FDIC, OCC, OTS, FRB, NAIC, and NCUA, which covers a broad
range of financial services and virtually affects any company who accepts credit cards -
compliance July 1st, 2001
www.complianceheadquarters.com/Privacy/Privacy_Research/privacy_research.html
[37] J. Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Software architecture and
rule-based language for universal audit trail analysis. In Y. Deswarte et al., editors,
Computer Security – Proceedings of ESORICS 92, volume 648 of LNCS, pages 435–
450, Toulouse, France, Nov. 23–25, 1992. Springer-Verlag.
[38] L. T. Heberlein et al. A network security monitor. In Proceedings of the 1990 IEEE
Symposium on Security and Pri-vacy, pages 296–304, Oakland, California, May 7–9,
1990.
[39] K. Ilgun. USTAT: A real-time intrusion detection system for UNIX. In Proceedings of
the 1993 IEEE Symposium on Security and Privacy, pages 16–28, Oakland, California,
May 24–26, 1993.
[40] U. Lindqvist and P. A. Porras. Detecting computer and network misuse through the
production-based expert system toolset (P-BEST). In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pages 146–161, Oakland, California, May 9–12,
1999.
[41] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. Analysis and results
of the 1999 DARPA off-line intrusion detection evaluation. In H. Debar, L. M´ e, and S. F.
Wu, editors, Recent Advances in Intrusion Detection (RAID 2000), volume 1907 of
LNCS, pages 162–182, Toulouse, France, Oct. 2–4, 2000. Springer-Verlag.
[42] A. Mounji. Languages and Tools for Rule-Based Distributed Intrusion Detection.
PhD thesis, Institut d’Informatique, University of Namur, Belgium, Sept. 1997.
[43] P. G. Neumann and P. A. Porras. Experience with EMERALD to date. In
Proceedings of the 1st Workshop on Intrusion Detection and Network Monitoring, Santa
Clara, California, Apr. 9–12, 1999. The USENIX Association.
[44] A. One. Smashing the stack for fun and profit. Phrack Magazine, 7(49), Nov. 8,
1996. http://www.fc.net/phrack/files/ p49/p49-14.

[45] J. Picciotto. The design of an effective auditing subsystem. In Proceedings of the
1987 IEEE Symposium on Security and Privacy, pages 13–22, Oakland, California, Apr.
27–29, 1987.
[46] P. A. Porras and R. A. Kemmerer. Penetration state tran-sition
analysis: A rule-based intrusion detection approach. In Proceedings of the Eighth Annual
Computer Security Ap-plications Conference, pages 220–229, San Antonio, Texas, Nov.
30–Dec. 4, 1992.
[47] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In Proceedings of the 20th National Information
Systems Security Conference, pages 353–365, Baltimore, Maryland, Oct. 7–10, 1997.
National Institute of Standards and Tech-nology/National Computer Security Center.
[48] P. Proctor. Audit reduction and misuse detection in heterogeneous environments:
Framework and application. In Proceedings of the Tenth Annual Computer Security
Applications Conference, pages 117–125, Orlando, Florida, Dec. 5–9, 1994.
[49] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding
network intrusion detection. Technical report, Secure Networks, Inc., Calgary, Alberta,
Canada,
Jan. 1998. http://www.clark.net/˜roesch/idspaper.html.
[50] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. A. Whitehurst. Expert systems in
intrusion detection: A case study. In Proceedings of the 11th National Computer Security
Conference, pages 74–81, Baltimore, Maryland, Oct. 17–20, 1988. National Institute of
Standards and Technology/National Computer Security Center.
[51] Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, USA.
SunSHIELD Basic Security Module Guide, Solaris 7, Oct. 1998. Part No. 805-2635-10.
[52] U.S. Department of Defense. Trusted Computer System Evaluation Criteria, Dec.
1985. DoD 5200.28-STD.
[53] A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber attack
detection. In H. Debar, L. M´ e,and S. F. Wu, editors, Recent Advances in Intrusion De-
tection (RAID 2000), volume 1907 of LNCS, pages 80–92,Toulouse, France, Oct. 2–4,
2000. Springer-Verlag.
[54] U. T. Mattsson, and T. Valfridsson. An automated method to minimize the risk for
exposure of encryption keys and encrypted database information. EPC Patent number –
00/975134.8.
[55] U. T. Mattsson. A method for implementation of encryption in a 24 by 7 production
database. US Patent number 09/712 926.
[56] U. T. Mattsson. A method for detecting and preventing intrusions in commercial
databases. EPC Patent number EP 01127906.4.
[57] U. T. Mattsson. A method for protecting databases against internal attacks. Sweden
Patent number 0004189-7.
[58] U. T. Mattsson. Basic Data Type transparent method for storing and transporting of
encrypted data. US Patent number 09/721 942.
[59] U. T. Mattsson. A method for combining software based encryption and hardware
based encryption and key management. US Patent number 09/712 941.

Ulf T. Mattsson, Chief Technology Officer, Protegrity Inc., holds a master's degree in
physics and a number of patents in the IT security area. His extensive IT and security
industry experience includes 20 years with IBM as a manager of software development
and a consulting resource to IBM's Research and Development organization, in the
areas of IT Architecture and IT Security. Mattsson is an IBM Certified IT Architect and a
research member of the International Federation for Information Processing (IFIP) WG

11.3 Data and Application Security, and a member of the IBM Privacy Management
Advisory Council.

