
Two Fault Tolerant Token Based Algorithms with Logical Ring for
Mutual Exclusion in Distributed Systems

H. Maraghia, A. Parhizkaria, A.T. Haghighata,b

aDepartment of Electrical, Computer & IT, Islamic Azad University, Qazvin Branch, Qazvin, Iran
bAtomic Energy Organization of Iran (AEOI), NPPD, Tehran, Iran

I.R.IRAN

Abstract: - In this paper by using logical ring in network we have presented two algorithms for mutual exclusion
in distributed systems. In the first algorithm the token always travels in the ring and each processes going to enter
the critical section should wait for token. In the other algorithm the place of token is fixed until not one process is
going to enter in critical section; and any process going to enter the critical section, by using a message searches
the ring for the token. These algorithms are fault tolerant against crashing any process or losing token.

Key-Words: - Ring, Token, Process, Distributed System, Critical Section, Mutual Exclusion, Token Base
Algorithm.

1 Introduction
Algorithms that are used for mutual exclusion
should not at all let more than one process enter in
critical section together. Furthermore in distributed
systems the algorithm had better to be distributed
and not centralized on special point. Some of these
algorithms known as token-based algorithms which
are based on using a token. In this kind of algorithms
every process which have token can enter in the
critical section. In this paper we studied token-based
algorithms one of them token ring algorithms which
are distributed. The mentioned algorithms face weak
points which will be mentioned further. The
presented algorithms, the previous problems are in
solved.

2 Mutual Exclusion Algorithms
Distributed mutual exclusion algorithms can be
divided into two classes: (1) permission-based
algorithms, where all involved sites vote to select
one which receives the permission to enter the
critical section, and (2) token-based algorithms, in
which only the site with the token may enter the
critical section. In general, a permission-based
algorithm involves higher communication traffic
overhead than a token-based algorithm.

2.1 Raymond Algorithm
The Raymond algorithm [1] determines and maintains
a static logical structure. The logical structure (for
example, a spanning tree) is kept unchanged
throughout its lifetime, but the directions of edges in
the structure change dynamically as the token migrates
among sites, in order to point toward the possible
token holder. The directions of edges in the structure
always point to the possible token holder, making the
token holder a sink node in the structure.

Each site has a local queue to hold requests
coming from its neighbors and itself, and has only one
outstanding request at any given time, resulting in the
local queue length no more than the node degree of the
embedding structure.

Each site wishing to enter the critical section
inserts its local request to the rear of its local queue, so
that all requests appeared at that site in a first-come-
first-served order. While it is possible to get better
performance by inserting a locally generated request at
the front of the local queue, referred to as the eager
Raymond algorithm (because the local site is then
allowed to enter the critical section immediately when
the token reaches the site), this tends to pose a concern
on the fairness of requests and is not considered here.

mailto:maraghi@qazviniau.ac.ir

2.2 Modified Raymond algorithm
In the Raymond Algorithm described above, a token
request always follows the token from an
intermediate site whose local queue contains more
than one element. This situation happens more
frequently as the critical section request rate grows.
We introduce a simple modification to lower
communication traffic by eliminating the token
request from a site whose local queue contains
multiple elements. Instead of sending a separate
token request, the site marks in the token message
the situation that the token has to come back later on.
A marked token causes an enqueuein operation at
the receiving site, recording that the token will be
sent back along the link from which it gets to the
site. This combines the token message with a
subsequent token request message at every site
whose local queue length is greater than 1,
effectively lowering mutual exclusion traffic and
thus improving performance.

2.3 Star Algorithm
Instead of passing the token step by step through
intermediate sites in the logic structure to the token
requestor as in the Raymond algorithm [1], Neilsen
and Mizuno proposed an algorithm where the token
holder can send the token directly to the requesting
site with one message [2]. This is made possible by
attaching the requestor’s ID in the request message
so that the token holder knows, on receiving the
message, who is the requestor.

One special case of this algorithm is that the
logical structure can be a fixed star topology (called
the Star algorithm). Under such a situation, any site
ready to enter the critical section always sends a
request message attached with its own ID directly to
the root node. The root node makes it possible to
establish a distributed waiting queue (of all
requesting sites) by recording the site which has
most recently requested the token (and is the tail site
in the distributed waiting queue). When receiving a
request message, the root forwards the message to
the tail site (of the queue) and updates its record,
unless the root itself holds the token. On receiving a
request message, the token holder, if not in need of
the token, forwards the privilege to the requestor
directly using a token message. A very attractive
property of the Star algorithm is that it always takes
three (3) exchange messages for a requestor to get

the token, if the root does not own the token, and only
two (2) messages if the root holds the token.

2.4 CSL Algorithm
Chang, Singhal, and Liu’s algorithm [5] maintains a
list which links all requesting sites (i.e., a distributed
queue), such that each requesting site records (using
variable Next) only the identifier of its next requesting
site, thereby simplifying the data structure of token
message [5]. The logical structure in the CSL
algorithm is a star topology initially, and it changes
dynamically as the algorithm proceeds. A site is the
tail in the distributed queue, if it is waiting for the
token and its Next is NIL. If its Next is not NIL, its
successor site in the distributed queue is pointed by
Next. As a result, when a request message arrives at a
site which is the tail in the distributed queue, the site
simply sets its Next to the requesting site. If a request
message arrives at a site which neither holds nor is
requesting the token, or which is requesting the token
but its Next is not NIL, the request message is
forwarded to the possible token holder (pointed by
variable NewRoot) to form a distributed queue;
NewRoot is then set to point to the current requestor
because it will eventually becomes the new token
holder. On sending the token message to the ’next’
site, the variable NewRoot is piggybacked in the token
message so that the ’next’ site can update its NewRoot
accordingly.

The NME complexity of this algorithm depends
on the height of the logical tree, and it is O(logN) per
critical section entry, where N is the system size.
Because its logical structure changes dynamically, the
CSL algorithm fails to exhibit as good performance as
the Star algorithm, where the structure is kept
unchanged.

2.5 Token Ring Algorithm
A approach to achieving mutual exclusion in
distributed system is illustrated in Fig.1. We have a
network of processing. A logical ring is constructed in
which each process is assigned a position in the ring,
as shown in Fig.1.

Fig.1. a logical ring

When the ring is initialized, process a given a
token. The token circulates around the ring. It is
passed from a process to next process (from a to b,
from b to c ,…) in point-to-point messages. When a
process acquires the token from its neighbor, it
checks to see if it is attempting to enter a critical
section. If so, the process enters the section, does all
the work it needs to, and leaves the section. After it
has exited, it passes the token along the ring. It is not
permitted to enter a second critical section using the
same token. If a process is handed the token by its
neighbor and is not interested in entering a critical
section, it just passes it along. When no processes
want to enter any critical section, the token circulates
at high speed around the ring.

Token ring algorithm’s problems:

1. If the token is ever lost, it must be
regenerated. In fact, detecting that it is lost is
difficult, since the amount of time between
successive appearances of token on the
network is unbounded. The fact that the
token has not been spotted for a hour does
not mean that it has been lost; somebody
may still be using it.

2. The algorithm also runs into trouble if a
processor crashes. If we require a process
receiving the token to acknowledge receipt,
a dead process will be detected when its
neighbor tries to give it the token and fails.

2.6 Fixed Token Ring Algorithm
The algorithm proposed in [3,4] establishes a static
logical ring over all sites and allows the token to
move along a fixed direction, in response to a token
request traveling along an opposite direction. The
logic ring and the direction of its links are all kept

unchanged. When ready to enter the critical section, a
site without the token, say Sw, must send a request
messages to its successor, site S(w+1) mod N, and then
goes to WAIT state until it receives the token, where N
is the system size. If S(w+1) mod N is not the token holder,
it sends a request message to its successor, site S(w+2)
mod N. This process repeats until the site with the token,
say Sh, receives a request message from its
predecessor. All sites within Sw and Sh (along the
direction of the request message traversals) are all at
the SUBS (short for substitute) state. On receiving a
request message, the token holder, if not in need of the
token, forwards the privilege to its predecessor using a
token message. The token is then forwarded by the
SUBS sites in sequence to site Sw (along the reverse
direction of the request message). If the number of
SUBS sites is α, 0 ≤ α ≤ N-1, the total number of
messages exchanged for Sw to get the privilege of
entering the critical section equals 2×(α + 1).

3 Fault Tolerant Token Ring Algorithm
As we mentioned before token ring algorithm has
some problems that are related to loss of token. When
a process is going to enter the critical section, waits for
the token; if it does not receive the token for a long
time, cannot distinguish whether there is another
process in critical section or it has crashed or the token
has been lost. To distinguish whether there is still
another process in critical section or another problem
has happened we change the algorithm as below.

In new algorithm like former algorithm there is a
token at first which swirl in the ring and the process
that is going to enter the critical section waits for it and
then enters the critical section as soon as receiving the
token. In old algorithm the process that entered the
critical section kept the token. But in new algorithm
the process creates a new token that is called second
type token, now this token travels in the ring. If this
process is going to exit from the critical section waits
for the second type token and after receiving and
discarding it will release the first type token.

By the change in the algorithm it can distinguish
whether really there is any process on going in the
critical section or the token has been lost or the
process in the critical section has crashed.

Suppose the process A is in critical section and
process B is going to enter the critical section. At this
time process B sets a timer and waits for the token. If
it receives before timeout the second type token finds

a
b

c

d e

f

g

out that there is another process in critical section.
But if in this duration it would not receive the token
it finds out that there is a problem and send a
message in ring. This message means that process B
is going to enter critical section and has not received
the token. Now if the process that is in critical
section (process A) receive this message find out that
the second type token has been lost so it would get
the message and send the second type token. Then
process B by receiving the token will find out that
another process is in critical section and the second
type token has been lost. But if process B would
receive its own message it finds out that another
process is in critical section or the process in critical
section had crashed. In both cases it can enter in
critical section and after entering, it creates a second
type token and sends in the ring.

So by using this new algorithm in case of losing
token or crashing of any process, there would be no
problem in system and this algorithm would be a
fault tolerant against those problems.

4 Fault Tolerant Fixed Token Ring
Algorithm

In the algorithm we presented in the last section,
there is a token which always swirl in the ring and
each process which is going to enter the critical
section waits for the first type token and enters in the
critical section after receiving the token. In this
algorithm the problem is that the token always swirl
in the ring.

Another algorithm pointed in 2.6 that is run in a
physical ring network will have problem in case of
crashing a process or losing the token. We can run

this algorithm in a logical ring and solve the problems
by some changes that is presented here.

In this algorithm the token is located in a process
at the first. Suppose a process not having the token and
is going to enter the critical section, it sends a message
in the ring. This message travels in the ring until going
to the process which it has the token. If this process is
not in critical section and not going to enter in it, sends
the token to the process which it has requested the
token. Other wise it sends the message, which it is in
critical section and will send the token after exiting
from critical section.
As commented before the problem in this algorithm is
crashing one of the processes or losing the token. In
case of losing the token the message that the
requesting process sends will go to itself, which means
none of the ring processes have the token. To solve the
problem the requesting process should create a token
and remain and then enter the critical section. But in
case of crashing one of the processes the requesting
process never receives the message, so if it would not
receive the message after a certain time, it means that
one of the processes has crashed, and by sending the
repairing message, the nodes will repair the ring then
after repairing the ring the requesting process will
repeat the request. By these changes the algorithm will
be fault tolerant against the problems.

5 Conclusion
In this paper, we presented two solutions for
distributed mutual exclusion that use ring algorithms.
We improved the algorithms for fault tolerance. The
Comparison of these algorithms is presented in Table
1.

Table 1. Comparison of algorithms

References:
[1] K. Raymond, “A Tree Based Algorithm
for Distributed Mutual Exclusion,” ACM
Trans. on Computer Systems, vol.7, No. 1,
pp. 61–77, February 1989.
[2] M. L. Neilsen and M. Mizuno, “A Dag-
Based Algorithm for Distributed Mutual
Exclusion,” Proc. 11th Int. Conf. Distributed
Computer Systems, pp. 354–360, May 1991.
[3] A. J. Martin, “Distributed Mutual
Exclusion on a Ring of Processes,” Science
of Computer Programming, vol. 5, pp. 265–
276, February 1985.
[4] S. S. Fu and N.-F. Tzeng, “Efficient
Token-Based Approach to Mutual Exclusion
in Distributed Memory Systems,” Tech.
Rep. TR-95-8-1, CACS, Univ. Southwestern
Louisiana, Lafayette, LA 70504, July 1995.

[5] Y. I. Chang, M. Singhal, and M. T. Liu,
“An Improved O(logN) Mutual Exclusion
Algorithm for Distributed Systems,” Proc.
1990 Int. Conf. Parallel Processing, vol. III,
pp. 295–302, August 1990.
[6] A. S. Tanenbaum, “ Distributed
Systems”, Prentice Hall, 2002.
[7] Shiwa S.Fu, Nian-Feng Tzeng, and
Zhiyuan Li, “Empirical Evaluation of
Distributed Mutual Exclusion Algorithms,”
Institute of Electrical and Electronics
Engineers,1997.

