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Abstract: In this paper, it is proposed to rapidly and accurately predict performance of master-slave (MS) parallel pro-
grams. To provide rapid prediction with high accuracy, our method reduces direct execution of the target MS program
and estimates execution time of tasks of the program from only some directly executed tasks. In this estimation, we use
a linear interpolation in order to reproduce the original order of task assignment, which affects the prediction accuracy
of a performance saturation point. The experimental result shows that our proposed method predicts the performance
of MS programs 1.7 times faster, at least, than the measured execution time which corresponds to the minimum time
taken to predict the performance by prediction methods based on direct execution. Furthermore, our method predicts
the performance with 7% error being as good as that of existing prediction method.
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1 Introduction
With the rapid advances in cluster and grid technologies,
parallel computing environments are increasing the het-
erogeneity of processors and interconnects. One adap-
tive programming paradigm for such heterogeneous en-
vironments is the master-slave (MS) paradigm, where
computing nodes are classified into two groups, namely
masters and slaves. In this paradigm, masters gen-
erate computational tasks and assign them to slaves,
while slaves execute the assigned tasks. Although the
MS paradigm provides us to develop high performance
programs by allowing a dynamic load-balancing mech-
anism, the performance falls if the program is exe-
cuted under inappropriate circumstances, for example,
too many slaves for a master or too small granularity for
a task. In order to prevent such undesired executions,
performance prediction tools provide useful information.
For example, these tools predict the performance on dif-
ferent numbers of slaves or granularities for tasks, so that
optimal values for these execution parameters may easily
be detected for every execution environment.

Existing performance prediction methods are based
on a direct execution method [9, 10, 12], which accu-
rately predicts the performance, or a symbolic estima-
tion method [1,14], which rapidly predicts. These meth-
ods can not achieve both the rapidity and the accuracy
for MS programs. The direct execution method requires
longer time than the execution time of the program due
to executing the whole of the program for the prediction.

This situation is against our purpose of using the predic-
tion. After the performance prediction of a program by
the method, we also obtain computational results of the
program, because the method directly executes the whole
of the program. This means that it is no longer neces-
sary to execute the program with appropriate parameter
values gotten by the prediction. On the other hand, the
symbolic estimation method can not accurately predict
the performance if workload of tasks are unpredictable,
because the method predicts workload of parts of a pro-
gram and derives the execution time of the program from
the workload. Therefore, this method can not accurately
predict the performance of MS programs, because we
generally apply the MS paradigm to problems in which
the distribution of workload is unknown.

In this paper, it is proposed to achieve both the accu-
racy and the rapidity of the prediction of MS programs
performance, where we assume that the prediction is fast
if the prediction time is shorter than the execution time of
the program. Our method achieves the rapidity by reduc-
ing the directly executed tasks of MS programs. Instead
of the reduction, the method estimates the execution time
of all tasks of MS program from some directly executed
tasks. On this estimation, we use a linear interpolation
in order to keep a relationship between the order of tasks
assignment and the size of tasks. This relationship is im-
portant to achieve good prediction accuracy.

The rest of the paper is organized as follows. Section
2 introduces some related work. Section 3 presents our
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method and its design aspects. Section 4 presents exper-
imental results on a cluster of PCs. Finally, Section 5
concludes the paper.

2 Related Work
There are some theoretical approaches for predicting
MS programs performance [3, 4, 7]. Although these
approaches are helpful in determining the number of
slaves, they require strict assumptions like that all tasks
assigned by the master must be of same-size [4] and
workload must be a representative distribution such as
an exponential distribution [7].

Other approaches are a direct execution and a sym-
bolic estimation of parallel programs. MPI-SIM [12] is
based on the direct execution method. MPI-SIM pre-
dicts the performance of MPI [13] programs by a dis-
crete event simulation. In this simulation, MPI-SIM ob-
tains events of the program behavior, for example, send-
ing, receiving and computing, with directly executing the
whole of the program. This contributes to reproducing
the behavior of the program in detail. Therefore, MPI-
SIM can accurately predict the performance. However,
MPI-SIM requires longer time than the execution time of
program due to executing the program for obtaining the
events. The master slaves emulator [10], called MSE,
is also based on the direct execution method. MSE tar-
gets to predict the performance of MS programs by em-
ulating the programs and using a parallel computational
model improved to represent the bottleneck at the master.
Although MSE predicts accurately the performance and
the behavior, MSE requires longer time than the execu-
tion time of the program due to its emulation approach.
Thus, the direct execution method requires long time for
the prediction.

On the other hand, the symbolic estimation method
[1,14] predicts the performance faster than the measured
execution, because the symbolic estimation method ex-
ecutes no or few parts of the program unlike the direct
execution method. This methods estimate workload of
the program and derives the performance from the work-
load. For example, a method [1] measures the execution
time of an iteration of loops and obtain the number of
loop iterations, then derives the execution time of the
whole of the loop. The symbolic execution method is
effective for the programs in which the control flow is
statically determined, because such programs allow us
to easily estimate the workload from their source pro-
grams. However, this method can not accurately predict
the performance of MS programs, because the workload
of MS programs are generally unpredictable as described
in Section 1.

Thus, the direct execution method and the symbolic
estimation method can not achieve both the rapidity and
the accuracy of the prediction of MS programs. In con-
trast to these methods, we target to realize a performance
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Fig. 1. Example of estimation of execution
time by linear interpolation.

prediction method that achieves the both rapidity and ac-
curacy.

3 Performance Prediction by Partial
Execution of Program

In this section, we describe our performance prediction
method for MS programs. Our method is based on the
following two steps. First, the method estimates the exe-
cution time of all tasks from some directly executed tasks
by a linear interpolation. We refer this direct execution of
some tasks as partial execution. Second, the method sim-
ulates the behavior of MS paradigm with the estimated
tasks.

3.1 Estimating Execution Time of Tasks by
Linear Interpolation

For the prediction of the MS programs performance, an
obstacle of existing symbolic estimation methods is that
the directly executed parts of program are nothing or too
few, for example, an iteration of a loop, to estimate the
workload, because MS programs contains dynamically
determined factors such as the workload and the control
flow. Therefore, in order to achieve an accurate predic-
tion, it is necessary for a prediction method to use more
information for the estimation by executing more parts
of the programs. Besides, In order to achieve the rapid-
ity of the prediction, it is necessary for the prediction
method to reduce directly executed parts of the program.

Based on the above arguments, our method estimates
execution times of all tasks by a linear interpolation from
execution times of some directly executed tasks. Al-
though it is difficult to estimate the accurate execution
time of all tasks due to their unpredictable workload, we
think that the linear interpolation gives us a good approx-
imation of the execution time of tasks. This method re-
alizes the increase of the information by measuring exe-
cution time of tasks, and the reduction of the direct exe-
cution by adjusting the number of measured tasks.

Fig.1 shows an example of estimating the time by
the linear interpolation. In Fig.1, task 1, 4, 7 and 10
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are directly executed and measured their execution time.
Then, the execution time of all remained tasks are es-
timated by the linear interpolation. Thus, our method
avoids the direct execution of all tasks.

In order to keep good prediction accuracy on our
method, it is important to keep both (A) the total ex-
ecution time of all tasks and (B) the order of assign-
ment of tasks near to those of the original tasks. (A)
is almost trivially important, especially for computation-
intense applications. (B) is important for the MS pro-
grams as follows. Fig.2 shows an execution time of an
MS program with original and randomized order of tasks
assignment. As shown Fig.2, the execution time with
randomized order is 15% smaller than that with original
order around P = 40. This difference is fatal for detect-
ing the appropriate number of slaves. Thus, the order of
task assignments affects the performance.

The reason for this difference is an efficiency of us-
ing slaves as follows. Fig.3 shows a behavior of MS
paradigm, where the master assigns only small tasks to
slaves in Fig.3(a) and the master assigns both small and
large tasks to slaves in Fig.3(b). As shown Fig.3(a), two
slaves, S3 and S4, are idle due to too small tasks. For
example, the master receives a result from S1 before as-
signing a task to S3, so that the master assigns the task
to S1. On the other hand, in Fig.3(b), the master assigns
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Fig. 4. Example of simulation.

small task and large task by turns to slaves, so that the
MS paradigm uses all slaves. Thus, the order of task as-
signments affects the efficiency of using slaves. There-
fore, reproducing the original order of tasks assignment
is important for precise prediction. The linear interpola-
tion provide the both (A) and (B) by adjusting the num-
ber of directly executed tasks.

3.2 Simulating Behavior of MS Paradigm
by Parallel Computational Model

A performance bottleneck of MS programs is concentra-
tion of messages at the master. This concentration causes
a delay of tasks assignments to slaves. In order to ac-
curately predict the performance, a prediction method
must predict a performance degradation caused by this
bottleneck. Therefore, in order to reproduce the bottle-
neck, our prediction method simulates the behavior of
MS paradigm by a simulator.

The simulator repeats the following three behaviors
of MS paradigm until the master receives results of all
tasks: (1) the master assigns tasks to each slave, (2) the
slave returns the result to the master time after comput-
ing the task, and (3) the master receives the result from
a slave and assigns a new task to the slave if tasks re-
main. In order to simulate the bottleneck at the master,
the master delays a task assignment if a result arrives at
the master when the master is assigning a task to other
slave. The simulator manages an execution time by us-
ing a simulation time. At each behavior, the simulator
sets the simulation time forward based on the estimated
execution time of tasks and the communication time de-
scribed at the later. In order to manage the unpredictable
arrival of messages at the master from slaves, the simula-
tor has a queue which has a list of the arrival time. When
the master assigns a task to a slave in the simulation, the
simulator calculates the time at which the result of the
task arrives to the master.

Fig.4 shows an example of the simulation. In this ex-
ample, the queue has two arrival times, t1 and t2, at t0.
First, the simulator dequeues the oldest arrival time from
the queue and sets the virtual time t1. This means that
the master receives a result from a slave with taking the
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Fig. 5. Communication under the LogGP
model.

receiving overhead t1 − t0. Then, the simulator calcu-
late three time T1, T2 and T3 which correspond to the
time required assigning a task, computing the task, and
returning the results, respectively.

When estimating the communication time, it is nec-
essary to rapidly estimate the time in order to realize
the rapid prediction. For this reason, we use a parallel
computational model. The parallel computational model
abstracts communication of messages with some param-
eters, so that we can rapidly estimate the communica-
tion time by using the parameters. In this work, we used
extended version of the LogGP model [2, 10]. LogGP
abstracts the communication by using the following five
parameters:

• L: the latency, incurred in sending a message from
its source processor to its target processor.

• o: the overhead, defined as the length of time that
a processor is engaged in the transmission or re-
ception of each message. In the improved version
of LogGP, o is a linear function of P in order to
represent the overhead for retrieving arrival mes-
sages [10].

• g: the gap between messages, defined as the min-
imum time interval between consecutive message
transmissions or consecutive message receptions at
a processor.

• G: the gap per byte for long messages, defined as
the time per byte for a long message.

• P : the number of processors.

Fig.5 shows an example of two messages, Send1 with
k = 3 and Send2 with k = 5, under LogGP, where k is
the length of message in bytes. As shown in Fig.5, the
communication time for k-bytes message, T1 for Send1
and T2 for Send2, is 2o + L + kG. Thus, the parallel
computational model enables us to rapidly estimate the
communication time by representing the time as an ex-
pression.

Predicted execution time

Target environment information
Computation performance
Communication performance

Simlation information
Number of slaves

MS program
Partial

execution

Execution time 

Task information

Simulation of
MS behavior

Execution time of
partial tasks

Estimation by
linear interpolation

Granularity for tasks : Data flow

Fig. 6. Flow of performance prediction.

3.3 Flow of Performance Prediction
Now, we describe a flow of our performance prediction
method with Fig.6. First, a user modifies the MS pro-
gram to partially execute tasks and to measure their exe-
cution time. From the measured execution time, we es-
timate the execution time of all remain tasks by the lin-
ear interpolation. Next, we simulate the behavior of MS
paradigm by the simulator. The simulator has three in-
put data, namely a task information, a target environment
information, and a simulation information. The task in-
formation represents a set of execution times of tasks.
The target environment information includes the com-
putation and communication performance of the target
environment of performance prediction. We represent
the computation performance as a ratio of computational
speed of target environment to that of host used on par-
tial execution. The communication performance consists
of parameters values of LogGP. The simulation informa-
tion includes the execution parameters of MS paradigm
such as the number of slaves. Finally, we obtain the pre-
dicted execution time of the MS program on the target
environment and the execution parameters.

4 Experimentation
In order to validate our method on its prediction accuracy
and computational time required to predict the perfor-
mance, we applied it to a MS program: a parallel Man-
delbrot set explorer for fractal visualization. This MS
program has 1,048,576 tasks in this experiment.

We used a 64-node cluster as a target environment of
performance prediction. Each node in the cluster con-
nects to Myrinet [5] and Fast Ethernet switches, yielding
full-duplex bandwidth of 2 Gb/s and 100 Mb/s, respec-
tively. Each node has two Pentium III 1GHz processors,
so that the cluster has 128 CPUs. We used a node to exe-
cute the simulator. We implemented the MS program by
using MPICH [8] on Ethernet and MPICH-SCore [11]
on Myrinet.
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Fig. 7. Direct execution time and computational time.

In this experiment, we use two task sets, referred as
S1K and S16, in order to validate the effect of the number
of tasks for the partial execution. S1K and S16 consist
of 1,048,576 tasks, and execution times of these tasks
are estimated from 1,024 and 16 directly executed tasks,
respectively. Furthermore, in order to validate the im-
provement of the prediction accuracy by the linear inter-
polation, we use a task set, referred as SR, which consists
of 1,048,576 tasks randomly generated under the distri-
bution of the size of original tasks.

4.1 Computational Time
In this section, we validate the rapidity of our prediction
method. We compare the computational time with the
direct execution time, because the direct execution time
corresponds to the minimum time taken to predict the
performance by prediction methods based on direct exe-
cution. The computational time consists of the following
four times: (1) time taken to partially execute tasks, (2)
time taken to interpolate, (3) time taken to write the task
information to a file and read the file when starting the
simulation, and (4) time taken to simulate the behavior
of MS paradigm.

Fig.7 shows the computational time and the direct
execution time. As shown in Fig.7, the computational
times are shorter than the direct execution time. In this
experiment, the minimum ratio of the direct execution
time to the computational time is 8.0 and 1.7 on Eth-
ernet at P = 64 and Myrinet at P = 128, respectively.
This means that our method predicts the performance 1.7
times faster, at least, than the measured execution time in
this experiment. Therefore, our method achieves the ra-
pidity of the prediction.

Table 1 shows the detail of the computational time.
This result shows that time for the linear interpolation
is trivial for the computational time. Although the time
for the file I/O is large, we think that the time can be
reduced by improving the implementation of our predic-

tion method to pass the task information to the simula-
tor directly. The time for the partial execution depends
on the number of directly executed tasks. Although we
expect that the prediction accuracy rises by increasing
the number, the time also become large. Therefore, we
must carefully determine the number in order to keep
the computational time shorter than the direct execution
time. We think that the number must be less than Na/P
where Na is the total number of tasks and P is the maxi-
mum number of processors, because it is expected that a
processor computes an average of Na/P tasks in paral-
lel computation and the partial execution is processed on
a processor. In this experiment, the number must be less
than 8,192, because of Na = 1,048,576 and P = 128.

4.2 Prediction Accuracy
We let Ex be an execution time predicted by using task
set Sx. Fig.8 shows a comparison of measured exe-
cution time with predicted execution time. The maxi-
mum error ratio of measured execution time to E1K is
7.0% and 4.0% on Ethernet at P = 64 and Myrinet at
P = 32, respectively. These results show that our pre-
diction method achieve a good accuracy.

Fig.8(a) shows the advantage of our linear interpo-
lation estimation, because E1K succeeds to predict the
P which enables us to get the best performance of the
MS program while ER fails to predict the P . As de-
scribed in Section 3.1, when the assignment order of
tasks are randomized, the performance become better be-
cause of an efficient usage of slaves. This prevents an
accurate prediction of a saturation point of the MS pro-
gram performance. Thus, it is important to reproduce
the order for achieving an accurate prediction. Oppo-
site to Fig.8(a), E1K and ER have almost no difference
in Fig.8(b). On the Myrinet, the performance does not
saturate at P = 128 because of a high performance net-
work, so that slaves are efficiently used.

Difference between the measured execution time and
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Table 1. Breakdown of computational time.

P Partial execution (s) Interpolation (s) File I/O (s)
Simulation (s) Total (s)

Ethernet Myrinet Ethernet Myrinet

S1K
64

1.7 0.3 5.4
0.6 0.8 8.0 8.2

128 0.6 1.2 8.0 8.6

S16
64

0.02 0.2 5.4
0.6 0.6 6.2 6.2

128 0.6 0.6 6.2 6.2
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Fig. 8. Comparison of prediction accuracy on Mandelbrot set explorer.

E16 is large in both Ethernet and Myrinet. This differ-
ence is caused by a difference of the total execution time
of all tasks. An error ratio of the measured execution
time to E16 is 28% and 27% in Ethernet and Myrinet,
respectively. On the other hand, an error ratio of the total
execution time of directly executed tasks to the total exe-
cution time of S16 is 29%. Therefore, in order to achieve
an accurate prediction, we must use a task set whose to-
tal execution time is near to the total execution time of
directly executed tasks. For keeping the total execution
time of tasks near to that of directly executed tasks, we
consider a policy for selecting a number of directly exe-
cuted tasks in Section 4.3.

4.3 Deciding the Number of Directly Exe-
cuted Tasks

As described in Section 4.2, the number of directly ex-
ecuted tasks strongly affects the prediction accuracy.
However, we think that it is difficult to analytically
estimate the appropriate number of directly executed
tasks, since we have no knowledge about the distribu-
tion of execution times of tasks before executing the pro-
gram. Therefore, we estimate the number by a statistical
method, called the bootstrap method [6].

First, we guess an average execution time of all tasks
by using the bootstrap. Since the total number of tasks
is fixed, we can estimate the total execution time of all
tasks from the average time. We expect that the range of
the error of the average time corresponds to that of the
total execution time. Now, we describe the detail of the

bootstrap as follows.

1. Randomly sample n tasks and measure an average
execution time of them.

2. Repeat the step 1 N times, that is, get N average
execution times.

3. Sort the N average execution times and remove α%
number of elements from both side of sorted times.
Then, the range which consists of remained times is
called 100 − 2α% confidence interval.

We consider that a median of the remained times as
an estimated average execution time of tasks. Further-
more, we consider that an interval derived from the error
ratio of the confidence interval to the average execution
time corresponds to an interval of the prediction error
(referred as Ie).

By the central limit theorem, as n increases, the confi-
dence interval becomes narrow, that is, Ie becomes nar-
row. Therefore, we can decide an appropriate number
of directly executed tasks by increasing n step by step
and verifying the width of Ie. Table 2 shows a result of
applying the bootstrap to tasks used in this experiment,
where N is 40 and α is 2.5%. R represents an error ratio
of the total execution time of measured tasks to the total
execution time of estimated tasks. As shown in Table 2,
Ie becomes narrow as n increases. For all n, Ie contains
or is close to the R. Thus, Ie well corresponds to R.
Therefore, if we want the prediction error to be less than
x%, we should select such n that derives Ie contained by
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Table 2. Result of estimation by bootstrap
for 40 iterations (N = 40).

n: # of Ie: Interval of R: Error ratio of
sampled prediction error total execution

tasks Min. (%) Max. (%) time (%)
4 −70 81 −72
16 −41 46 −29
64 −19 17 −17

256 −10 11 −11
1K −4.9 5.8 −4.2
4K −2.9 2.6 −2.5

16K −1.4 1.1 −1.7
64K −0.7 0.4 −0.2

the interval between −x% and x%. For example, if we
want an error ratio of total execution time of tasks to be
less than 10%, we should select the number of directly
executed tasks larger than 1K from Table 2 because both
the minimum and the maximum value of Ie of n = 1K
is less than the 10%.

5 Conclusion
We have presented a performance prediction method for
rapidly and accurately predicting the performance of MS
programs. In order to achieve the rapidity of the pre-
diction, our method reduces the direct execution of the
programs by estimating the execution time of all tasks
from some directly executed task. In the estimation, we
also have presented the importance of representing the
order of tasks assignment for the estimation for accu-
rate prediction of the performance saturation point. We
validated the prediction accuracy and the computational
time of our method. The results shows that the method
predicts the execution time with 7% and 1.7 times faster.

Future work includes the integration of the statistical
method, mentioned in Section 4.3, to determine the ap-
propriate number of directly executed tasks.
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