
Extracting Reusable Knowledge from Portal Activity

Christopher John Hogger and Frank R. Kriwaczek
Department of Computing
Imperial College London

South Kensington Campus, London SW7 2AZ
UNITED KINGDOM

 http://www.doc.ic.ac.uk

Abstract: - This paper describes an implemented model of a portal framework through which users in an
enterprise may control their activities by following structured plans. The artefacts they manipulate, and the
temporal schedules associated with them, are regulated by finite-domain constraints to express and enforce
enterprise requirements. A significant feature of the model is a well-defined formulation of experience
extracted from the user interface in the form of reusable episodes. Such episodes provide a valuable resource
for enterprise users engaged in the development of their plans.

Key-Words: - portal, workflow, multi-agents, planning, constraints, reusability

1 Introduction
This paper describes our design and implementation
of an experimental portal framework which helps
users to pursue activities satisfying enterprise
requirements. Activities are represented as schedules
of atomic actions that manipulate artefacts, whilst
the requirements are represented as relations desired
to hold with respect to a declarative rulebase
including finite domain constraints. The actions and
requirements determine the attributes, including
temporal ones, of the artefacts that evolve as the
activities proceed. At any stage, from the experience
gained so far in the running of the enterprise, we can
extract partial plans and constraint solutions
representing reusable knowledge of how aspects of
that enterprise can be run.
 Section 2 introduces the constructs expressing
actions and requirements, and Section 3 describes
the framework’s operational features. A simple
illustrative case study is presented in Section 4 to
give an idea of how the system works in practice.
Section 5 explains how the experience of a run can
be extracted as a reusable entity, whilst Sections 6
and 7discuss related work and conclusions.

2 Enterprise Formulation
In principle, the requirements of an enterprise can be
formulated as a purely declarative theory expressing
the assumed properties of its various entities, their
inter-relationships and their control. Achievable
goals of the enterprise can then be identified with
logical consequences of the theory, and derivations
of those goals can be interpreted as particular runs of
the enterprise. In practice such a model is too non-

deterministic. A more practical approach is to
formulate parts of that theory—particularly those
concerned with control and scheduling—as pre-
conceived procedural plans, whilst retaining in
declarative form only those parts that can be
sensibly implemented by inferential mechanisms.

2.1 Expressing Plans
We express a plan as a set of concurrent tasks each
consisting of a collection of atomic actions with
some associated control regime. An atomic action
takes the form action(args, st, et) or pre:action(args,
st, et) in which action identifies the species of
action, pre is an optional precondition for
performing it, st and et are its start and end times
and args comprises any other arguments upon which
it depends. For control purposes, a set of actions
required to be performed in sequence is enclosed in
<> whilst a set to be performed concurrently is
enclosed in {}. Sets of either kind are called blocks
and may be nested arbitrarily. Conditional branching
between one block and another is expressed by a
construct if_then_else(cond, block1, block2) where
cond is the branch condition. Other forms of control
construct are also implemented, but the above gives
a sufficient initial outline of plan structure. A simple
but concrete example of an individual task within
some plan is the following, named t1:

 t1 = < { < make(a, st1, et1), test(a, st2, et2) >,
 < make(b, st3, et3), test(b, st4, et4) > },
 assemble(c, [a, b], st5, et5),
 test(c, st6, et6), package(c, st7, et7), dispatch(c, st8, et8) >

This expresses that two artefacts a and b are to be
made concurrently, each one tested after being

made, then jointly assembled to produce artefact c
which is then tested, packaged and dispatched, in
that order. The action species make, test, assemble,
package and dispatch are here specific to the
enterprise domain. The terms a, b, c, st1, ..., st8 and
et1, ..., et8 are ontological variables that will become
bound to concrete values, or sets of possible values,
as the plan’s various tasks are carried out.

2.2 Expressing Requirements
A requirement is expressed as a logical goal (a
constraint) of the form rel(Args) required to be
satisfied by whatever definition of the relation rel is
given in the enterprise rulebase. The argument
vector Args typically comprises ontological
variables occurring in the users’ plans. Such
variables are usually ones whose values fall within
specifiable finite domains, and so the rulebase is in
general a constraint logic program. The declared
requirements are desired to be conjointly solvable
when the plans have been performed. They ensure
that the artefacts manipulated will possess
acceptable attribute values and that actions are
performed in accordance with a required schedule.
 Not all constraints need be declared explicitly.
Certain temporal constraints are implicit in the
structuring of plans. In the example above, it is
implicit that we have, for instance, st1<et1, et1<st2
and et2<st3. The implementation automatically
identifies such constraints and adds them to the
declared ones. Declared constraints and rules for the
example might include the following:

 constraints = { max_dur(st3, et3, 3), correct_weight(b), ... }
 rulebase = {
 max_dur(S, E, D) :- domain([S, D, E], 1, 1000), E-S<D.
 correct_weight(B) :-
 type(B, T), weight(B, W), conforms(T, W).
 conforms(steel, W) :- inrange(W, 3.5, 3.9).
 conforms(alloy, W) :- inrange(W, 1.7, 2.6). ... }

The constraints aim to ensure that the elapse-time
between starting the manufacture of item b and
ending it is no greater than 3 time units, and that its
weight will be in the right range for its metal type.
The variables S, D and E here are restricted to a
finite domain of time values expressed notionally as
integers 1...1000. In practice the domain would
comprise serial date numbers.

2.3 Users, Roles and Tasks
Each user of the system is viewed as a role-holder in
the enterprise. Their role is to pursue concurrently a
set of tasks of the kind described in 2.1 whilst
satisfying the constraints. In the simplest
arrangement, each user freely devises their plan and

associated constraints. Coordination between users
arises from the system’s treatment of all their
constraints as a global set and from allowing a
constraint to relate ontological variables occurring in
the plans of more than one user. For instance, one
user might require that one of their actions be started
only after the ending of some other user’s action.
Each user includes, in their role definition, ontology
declarations to stipulate the source of the variables
they use. For example, the declarations

 ontology(ann, own, [a, st1, et1]).
 ontology(ann, john, [st10]).

declare that ann is using variables a, st1 and et1
devised by herself and also a variable st10 devised
by john. Conventions are applied to prevent
ambiguity among variables.
 The system also enables a user U1 to assign a
role, or a role update, to another user U2. This
process is implemented as U1 performing, within
their own role, a special ‘assign’ action whose effect
is to create and convey to U2 an electronic artefact
whose content defines the assigned role or update.
This arrangement provides the basis for a hierarchy
of responsibilities that is used to control the process
by which users revise their constraints if a constraint
failure arises while they pursue their various tasks.
The details of these mechanisms are not important in
this paper but can be found in [1, 2], together with
concrete illustrations of how they work in practice.

3 Plan Execution
The system shows to each user, via the portal
interface, his progress in performing the plan. At
any moment he can see the stage reached in each
task. He may scroll back through a task to see when
past actions were begun and completed, or scroll
forward to review actions still to be done. In
particular, the interface highlights the next action (or
the next block of concurrent actions) to be done.
 Alongside each action the interface displays, in a
cellular format, the current domains of the action’s
start time and end time, as shown in Figure 1. In
each case the domain consists of those time points
shown as empty white cells. Each of these satisfies
(is a solution of) the current constraints, which
include an implicit constraint that the cell shall be no
earlier than the current time on the portal clock. A
white cell containing “*” signifies that the user has
already committed to that particular time point,
having previously clicked in that cell (when it was
white and empty) to indicate that commitment. A
grey cell signifies a time point that the user cannot

choose because it does not satisfy the current
constraints. Thus, at the stage represented by Figure
1 — where the portal clock reads “7” (i.e. July 7th
2004) — the temporal constraints stored internally
in the system are such as to imply:

 { st1=4, et1=5, st2=5, et2=6, st3=7, 7<et3,
 et3<10, et3<st4, st4<et4, ... etc. }

TASK "t1" 4 5 6 7 8 9 10 11
st1 *
et1 *
st2 *
et2 *
st3 *
et3
st4
et4

 test(b)>

 July 2004

<make(a)

 test(a)>

<make(b)

Fig. 1: progress of task in the interface.

These features of the system are driven by two
engines, a Plan Interpreter and a Constraint
Evaluator. The former is responsible mainly for
displaying the state of progress through the plan and
for responding to the user’s commitments to begin
or end actions. Its response to actions consists not
only in recording and displaying the temporal
commitments made but also in managing stored
abstractions of any artefacts created or manipulated
by those actions, as will be described later on.
 The constraint evaluator applies algorithms that
aim to simplify the current constraint set as much as
possible. Initially this set contains all the explicit
source constraints contributed by the various users
and the implicit constraints (as described earlier)
upon the temporal variables, together with
predefined initial finite domains for selected
variables (including the temporal ones). The
evaluator need not operate synchronously with the
interpreter (for instance, it may in principle remain
dormant until all tasks have ended and then be
invoked to check the constraints retrospectively), but
in practice it makes sense for it to simplify
constraints while the tasks are being performed in
order to maximize the informativeness of the
interface. The internal form of the constraint set is
invisible to the user, but the interface indicates the
solutions implied by the set. From Figure 1 the user
can see that the current feasible solutions for st4 are
{7, 8, 9, 10, 11, ...} but does not know (or need to
know) whether the constraint set actually contains
the constraint 7<st4 or merely implies it through
other constraints such as 7<et3, et3<st4.
 As noted earlier, actions in our system are
generally concerned with artefacts, these being

viewed as the primary deliverables of the enterprise.
Each one is represented in the system as a binding of
the form Name=art(Attributes), which is created in
an internal workspace when its associated creating
action (such as make or assemble) is performed. The
form taken by Attributes will be one of various
predefined schemas, according to the category of
artefact. A panel, for instance, might have attributes
[panel, Type, Weight, Size]. Requirements upon
Attributes are elicited from the user by a standard
constraint of the form assist(Name, Attributes).
When a creating action is performed this constraint,
if present, pops up a request for the user to select
values for the attributes of the named artefact. By
this means the system constructs in the workspace a
concrete instance of the artefact binding, such as

 c = art([panel, steel, 3.7, (10, 20)])

The “real” activity entailed in actually making or
manipulating the artefact is conducted off-line
during the interval between the action’s start and
end times. The system and its interface just provides
online guidance and control of the users’ activities
as they work through their plans, and constructs a
symbolic record of what they have achieved by way
of constraint solutions and artefact representations.
 Actions such as assemble, which presume the
prior existence of artefacts, are automatically
suspended by the plan interpreter if those artefacts
have not yet been made available in the workspace.
That is, the user is prevented from starting such an
action until they are available: he may have to leave
a task, or some block within it, in abeyance until the
awaited artefacts have been created, either through
acting on some other part of his own plan or through
the activity of other users.

Fig. 2: outline of the system.

Figure 2 gives an outline of the system, showing
several users’ plans related through their ontological
variables and obliged to satisfy conjointly the global

plan

ontologies

constraints

plan interpreter

constraint
evaluator

workspace

constraints. The effect of execution is to determine
solutions (or solution-sets) for the variables and to
build a symbolic record of the artefacts.

4 Decision-Making Example
In this example a task t2 first assembles an artefact c
and then subjects it to painting, drying, testing,
packaging and dispatching. Painting and drying can
be carried out in two ways. If the weather is warm
(ambient temperature > 25oC) then a quick-drying
(q) paint is used and the panel is dried in an exterior
(e) area. Otherwise a normal (n) paint is used and
the panel is dried in an internal (i) oven. So task t2
has a decision-point and appears as follows:

 t2 = < assemble(c, [a, b], st1, et1),
 if_then_else(“temp > 25oC”,
 < paint(c, q, st2, et2), dry(c, e, st3, et3) >
 < paint(c, n, st4, et4), dry(c, i, st5, et5) >),
 test(c, st6, et6), package(c, st7, et7), dispatch(c, st8, et8) >

The temporal requirements are: external drying
takes >3 days, internal drying >2 and all other
actions >1. The task as a whole must take <11 days.

constraints = {
min_dur(st1, et1, 1), min_dur(st2, et2, 1), min_dur(st3, et3, 3),
min_dur(st4, et4, 1), min_dur(st5, et5, 2), min_dur(st6, et6, 1),
min_dur(st7, et7, 1), min_dur(st8, et8, 1), max_dur(st1, et8, 11),
... and implicit temporal constraints, artefact constraints, etc. }

We will suppose that the user starts the assemble
action on July 4th and ends it on July 6th. Figure 3
shows the portal interface at this point.

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2
> 25 o C et2

 dry(c, e)> st3
 yes et3
 no <paint(c, n) st4

et4
 dry(c, i)> st5

et5
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

TASK "t2"
 July 2004

!"#$%

!"#$%

Fig. 3: position at July 6th before the decision.

The interface displays the decision-point with two
radio buttons, inviting the user to indicate the truth
or falsity of “temp > 25oC”. If he clicks “yes” then
the interface responds as shown in Figure 4.

 The white cells indicate that, in order to complete
the task within 11 days, the user must start the
(quick-dry) paint action no later than July 8th.

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2
> 25 o C et2

 dry(c, e)> st3
 yes et3
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

TASK "t2"
 July 2004

!"#$%&

Figure 4: position at July 6th after the decision.

He actually starts it on July 7th, completes it on July
8th, starts the dry action on the same day and
completes that action on July 11th. The interface at
that point is given in Figure 5 and shows the new
temporal options for the remaining actions.

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2 *
> 25 o C et2 *

 dry(c, e)> st3 * yes et3 *
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

 July 2004
TASK "t2"

!"#$%&

Figure 5: position at July 11th.

The user was relied upon in this example to respond
to the ambient temperature condition by making an
off-line observation of the weather. More generally,
however, we allow the possibility that the system
has an on-line connection to a temperature sensor
that automatically tests the condition and updates the
task structure in the interface accordingly.
 We next consider how to extract reusable
material representing the experience of pursuing, to
any chosen extent, a task like the one just illustrated.

5 Extracting and Reusing Experience
Our conceptual model was originally designed
mainly to enable any particular enterprise to set up a
simple portal-based interface in which users’
activities could be guided and monitored. The model
does not presume the level of abstraction at which
activities and requirements are formulated. In the

simplest case it can be implemented as a light-
weight, single-user workplace diary, whilst at the
other end of the spectrum it can be implemented as a
highly detailed and highly controlling multi-user
management system.
 The model further enables us to formulate the
notion of extracting experience from running the
system, experience that might then be stored for
subsequent reuse by the same enterprise or exported
to other enterprises for adaptation and assimilation
into their own workplace contexts.
 To put some structure upon this notion of
experience we need firstly to give a more precise
characterization of a task within a plan. An informal
grammar for a simple subset of the plan language is
the following:

 action := atomic action | if_then_else(cond, block, block)
 block := action | seq-block | conc-block | pre:block
 (where cond and pre are any predicates)
 seq-block := <block, ..., block>
 conc-block := {block, ..., block}
 task := seq-block | conc-block
 plan := {task, ..., task}

Given a task T, a subtask t of T is then defined as:

 t := subsequence of a seq-block in T |
 subset of a conc-block in T

so that a subtask has the same type as a task.
Defining a subtask enables us to formulate the
experience of performing any part of a task.
However, we must take a further step in this
formulation to reflect the fact that when performing
a task containing branch-points — that is,
if_then_else actions — the user (or the system)
makes decisions each of which commits to just one
branch. The user’s experience is restricted to just the
branches actually taken.
 We therefore define a linearization of a task T. A
linearization L(T) of T is the result of replacing each
branch-point if_then_else(cond, block1, block2) in T
by either cond:block1 or cond:block2. If the selected
block already has its own precondition pre then
prefixing it by cond just gives the block an expanded
precondition cond∧ pre.
 An extractable experience in performing part of a
task T is called an episode. Using the above
definitions, an episode E is any linearization L(t: t is
a subtask of T).
 An episode is tantamount to a trace of the user’s
traversal through some or all of the actions
contained in the original task. However, there is
significantly more knowledge to be extracted than
the trace alone because, in the course of performing
this episode, commitments were also made in order

to satisfy the constraints and action preconditions.
More precisely, the epsiode E has associated with it
an assignment θE of values to ontological variables
such as time-points and artefact attributes. Some of
these variables may be ones declared (in the
programs within the constraint-defining rulebase) to
be finite-domain variables whose values must
always lie within prescribed domains. The temporal
variables, in particular, are usually of this kind. As
constraint evaluation and user activity proceeds, the
value of each such variable consists of some non-
empty subset of the initially-declared domain. By
the time some task has been completed it may be
that these domains have become reduced to
singletons (i.e. unique solutions), but this need not
always be the case.
 The assignment θE by itself has no meaning
without reference to the constraints that it satisfies.
Many of the constraints in the enterprise-wide global
set may be irrelevant to the episode under
consideration. The relevant subset CE can be
identified syntactically as comprising just those
constraints that depend directly or (by transitive
closure) indirectly upon at least one variable
occurring in the episode. However, even these have
no meaning without reference to their definitions DE
in the rulebase. So DE must also be identified in
order to make sense of θE. The logical relationship
between these entities is then that the (relevant)
requirements DE imply all the (instantiated)
constraint predicates in CE.θE (denoting the
application to CE of the relevant bindings in θE).
 We know also that the episode must satisfy the
set PE of its action preconditions (if any). These may
be predicated upon ontological variables, and so the
information extracted from them is PE.θE.
 The remaining knowledge associated with
episode E concerns the set AE of artefacts created
by it. These can be identified from the syntactical
content of E alone on the basis of the various
species of artefact-creating actions contained in it.
By the same means one can identify the set A*E of
those artefacts that E presumed to pre-exist in the
workspace. The episode thus has an associated
artefact-mapping ME = A*E→AE. The information
extracted from this is ME.θE, which captures any
contribution made by the constraints to the
determination of the artefacts’ attributes.
 Given all the above, the total package extracted is
a tuple (E, θE, CE, DE, ME). In the light of this we
now return to the example in Section 4. Via an
interface tool the user can at any stage extract such a

package by selecting an arbitrary linear subtask as
defined above. It is not technically necessary that the
selected subtask be restricted to just that part of the
task already performed. Thus the package may, in
general, consist partly of what has already been done
and partly of what is intended to be done in the
future. For instance, suppose that on July 11th
(Figure 5) the user selects the subtask extending
from the assemble action up to the test action (which
he has not yet performed). He thereby extracts:

 E = <assemble(c, [a, b], st1, et1),
 “temp > 25oC” :
 < paint(c, q, st2, et2), dry(c, e, st3, et3) >,
 test(c, st6, et6) >
 θE = { st1=4, et1=6, st2=7, et2=8, st3=8, et3=11,
 st6={11, 12}, et6={12, 13},
 and any attribute bindings on a, b, c }
 CE = the relevant constraints;
 DE = the relevant constraint definitions
 PE = “temp > 25oC”
 ME = { {a, b}→c }θE

This can be interpreted as a description of one way
of assembling artefact c from pre-existing artefacts a
and b and proceeding as far as testing it. Assumed
attribute values for c, a and b will be specified
somewhere within θE. The temporal assignments in
θE show commitments to specific time-points for the
actions prior to testing, but offer a range of time-
points for the testing itself. The relevant constraints
and their definitions supply the logical explanation
(meaning) of these assignments, and PE informs us
that for this episode the weather has to be warm.
 Given this characterization of an episode E, an
interesting question is how to reuse E when
developing some other task. That task can be viewed
as a tree whose branch-points, if any, occur
wherever decisions are made (as in Section 4). The
reuse operation will consist of attaching E as a new
twig at a position in this tree. Let B denote the sub-
branch that extends from the root of the tree down to
the intended attachment position. In attaching the
new twig we will want to be assured that this
operation is compatible with the assumptions
associated with both E and B as regards the
satisfiability of constraints and action preconditions
as well as the dependencies between artefacts.
 Prior to the attachement operation, the task under
development already has its own associated
constraint definitions D. After the operation the
definitions become expanded to D∪ DE, in order to
support both the constraints C of the prior state of
the task and the constraints CE of the newly-attached

twig. Let V* be the intersection of the ontological
variables in C with those in CE. If V* is non-empty
then the values of its variables potentially become
further constrained by the attachment operation. Let
λ denote the further instantiation or domain
narrowing (as appropriate), if any, that these
variables experience. Then, if the assimilation of the
new twig is to continue to offer feasible and correct
solutions for the new state of the task we require,
firstly, that Cλ and CE.θEλ shall be implied by
D∪ DE and contain no variables bound to empty
domains. Secondly, we require the preconditions PE
associated with the twig to be logically consistent
with those PB on the branch B. Both these
requirements can be easily tested by invoking the
constraint evaluator and precondition evaluator
already available in the system.
 There remains one further condition needed to
support the operation, namely that if E depends upon
pre-existing artefacts A*E then B must already
contain the means of producing them. B’s syntax
alone identifies the set AB of artefacts it is capable
of producing. They will need to have attribute values
that are compatible with those that E expects, as
determined by the constraints. For this it is sufficient
that ABλ ⊇ A*E.θEλ, which is also easy to test.
 The simplicity in formulation of the above
conditions for the feasibility of assimilating episodic
experience into a task under development is owed to
the declarative features of the framework, whilst the
testing of them is facilitated by the logical
machinery already available for supporting the
standard operation of the portal.

6 Related Work
Our system has some similarity to the open-source
uPortal [3] deployed in some US universities and
developed by the Java Architectures Special Interest
Group. Its ability to reuse past experience to support
future portal activity shares motivation with [5],
whilst its focus upon user work patterns is similar to
that driving the ontology-driven KA2 system [6].
 For finite-domain processing we use the Sicstus
Prolog CLP(FD) engine. This has enough power to
evaluate constraints in the intervals between user
actions. It invokes the Pillow library to transform the
state of the constraints into HTML web pages
driving the interface. Other constraint technologies
such ILOG Rules [7] might have been used instead,
but most are more complex linguistically without
offering greater expressive power.

 We have not detailed our dealings with constraint
failure. In [1] we show how its origin can be
localized and its remedy sought by conservative
belief revision and/or abductive constraint solvers
like the Sicstus-based A-system [8]. These aims arise
in other work on coherent workflow management [9,
10, 11, 12], some of which use logic programming
but not CLP(FD).

7 Conclusion
We presented simple but expressive constructs for
the procedural and declarative elements of enterprise
activity. Logic programming for the declarative side
gives access to many inferential technologies from
artificial intelligence. These include finite-domain
(FD) constraint systems as illustrated here, which in
turn support OR-based tools for optimization,
scheduling and decision making.
 The implementation has been applied in a real-
world context, namely managing multiple roles in an
academic enterprise. There, artefacts are electronic
documents such as text documents, spreadsheets and
emails, containing information created and shared
by the academic and administrative users, and the
portal’s abstract artefact-schemas connect directly to
real documents residing on servers. In that same
context we have also implemented the inverse
process of deriving plans, construed as new portal
tools, from statistical analysis of user behaviour [4].
 Recent years have seen increasing use of project-
based organisational structure for delivering bespoke
products, sometimes involving multi-firm networks.
Such organisations survive on their ability to set up
and perform projects, key to which is the integration
of project-based learning into the business [13, 14].
Here, projects are treated as the structures we call
episodes, enabling learning while performing. We
therefore believe that our model contributes a new
approach to the devising of flexible knowledge
management tools for conveying process-oriented
experience and ideas from one project to another.

References:
[1] Hogger, C.J., Kriwaczek, F.R., Constraint-

guided enterprise portals, Proc. of 6th Int. Conf.
on Enterprise Information Systems, 2004, pp.
411-418.

[2] Ahmad, M.S., Hogger, C.J., Kriwaczek, F.R.,
Implementing a Collaborative Agent System
using Prolog, Proc. of ICIMu-2001, Int. Conf. on
Information Technology and Multimedia, 2001,
pp.55-62.

[3] Gleason, B.W., Boston College University-Wide
Information Portal — Concepts and
Recommended Course of Action, JA-SIG Portal
Framework Project White Paper, 2000.

[4] Hogger, C.J., Kriwaczek, F.R., Deriving tool
specifications from user actions, Transactions on
Information and Systems, Vol. E87-D, No. 4,
2004, pp. 831-837.

[5] McCallum, A.K., Nigam, K., Rennie, J.,
Seymore, K., Automating the Construction of
Internet Portals with Machine Learning,
Information Retrieval, Vol. 3, Issue 2, 2000, pp.
127-163.

[6] Staab, S., Angele, J., Decker, S., Erdmann, M.,
Hotho, A., Maedche A., Schnurr, H.-P., Studer,
R., Sure, Y., Semantic Community Web Portals,
Computer Networks, Vol. 33, 2000, pp. 473-491.

[7] ILOG, Inc., Business Rules, ILOG Technical
White Paper - www.ilog.com, 2002.

[8] Kakas, A.C., Van Nuffelen, B., A-system:
Declarative Programming with Abduction,
Lecture Notes in Artificial Intelligence, Vol.
2173, 2001, pp. 393-396.

[9] Hwang, G.-H., Lee, Y.C., Wu, B.-Y., A New
Language to Support Flexible Failure Recovery
for Workflow Management Systems, Lecture
Notes in Computer Science, Vol. 2806, 2003, pp.
135-150.

[10] Wainer, J., Bezerra, F., Constraint-based
Flexible Workflows, Lecture Notes in Computer
Science, Vol. 2806, 2003, pp. 151-158.

[11] Wainer, J., Barthelmess, P., Kumar, A., W-
RBAC - A Workflow Security Model
Incorporating Controlled Overriding of
Constraints, Journal of Cooperative Information
Systems, Vol. 12, No. 4, 2003, pp. 455-485.

[12] Dustdar, S., Collaborative Knowledge Flow -
Improving Process-Awareness and Traceability of
Work Activities, Lecture Notes in Artificial
Intelligence, Vol. 2569, 2002, pp. 389-397.

[13] Gann, D., Salter, A., Innovation in Project-Based
Firms: Constructing Complex Product Systems,
Research Policy, Special Issue on Complex Product
Systems, Vol. 29, No. 2, 2000, pp. 955-972.

[14] Morris, P.W.G., The Validity of Knowledge in
Project Management and the Challenge of Learning
and Competency Development, Bartlett School of
Construction and Project Management Research
Papers, University College London, 2004.

