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Abstract: - This paper describes an implemented model of a portal framework through which users in an 
enterprise may control their activities by following structured plans. The artefacts they manipulate, and the 
temporal schedules associated with them, are regulated by finite-domain constraints to express and enforce 
enterprise requirements. A significant feature of the model is a well-defined formulation of experience 
extracted from the user interface in the form of reusable episodes. Such episodes provide a valuable resource 
for enterprise users engaged in the development of their plans. 
 
Key-Words: - portal, workflow, multi-agents, planning, constraints, reusability  
 
1   Introduction 
This paper describes our design and implementation 
of an experimental portal framework which helps 
users to pursue activities satisfying enterprise 
requirements. Activities are represented as schedules 
of atomic actions that manipulate artefacts, whilst 
the requirements are represented as relations desired 
to hold with respect to a declarative rulebase 
including finite domain constraints. The actions and 
requirements determine the attributes, including 
temporal ones, of the artefacts that evolve as the 
activities proceed. At any stage, from the experience 
gained so far in the running of the enterprise, we can 
extract partial plans and constraint solutions 
representing reusable knowledge of how aspects of 
that enterprise can be run.  
     Section 2 introduces the constructs expressing 
actions and requirements, and Section 3 describes 
the framework’s operational features. A simple 
illustrative case study is presented in Section 4 to 
give an idea of how the system works in practice. 
Section 5 explains how the experience of a run can 
be extracted as a reusable entity, whilst Sections 6 
and 7discuss related work and conclusions. 
 
 
2   Enterprise Formulation 
In principle, the requirements of an enterprise can be 
formulated as a purely declarative theory expressing 
the assumed properties of its various entities, their 
inter-relationships and their control. Achievable 
goals of the enterprise can then be identified with 
logical consequences of the theory, and derivations 
of those goals can be interpreted as particular runs of 
the enterprise. In practice such a model is too non-

deterministic. A more practical approach is to 
formulate parts of that theory—particularly those 
concerned with control and scheduling—as pre-
conceived procedural plans, whilst retaining in 
declarative form only those parts that can be 
sensibly implemented by inferential mechanisms. 
 
 
2.1 Expressing Plans 
We express a plan as a set of concurrent tasks each 
consisting of a collection of atomic actions with 
some associated control regime. An atomic action 
takes the form action(args, st, et) or pre:action(args, 
st, et) in which action identifies the species of 
action, pre is an optional precondition for 
performing it, st and et are its start and end times 
and args comprises any other arguments upon which 
it depends. For control purposes, a set of actions 
required to be performed in sequence is enclosed in 
<> whilst a set to be performed concurrently is 
enclosed in {}. Sets of either kind are called blocks 
and may be nested arbitrarily. Conditional branching 
between one block and another is expressed by a 
construct if_then_else(cond, block1, block2) where 
cond is the branch condition. Other forms of control 
construct are also implemented, but the above gives 
a sufficient initial outline of plan structure. A simple 
but concrete example of an individual task within 
some plan is the following, named t1: 
 
    t1 = < { < make(a, st1, et1), test(a, st2, et2) >,  
                   < make(b, st3, et3), test(b, st4, et4) > }, 
    assemble(c, [a, b], st5, et5), 
    test(c, st6, et6), package(c, st7, et7), dispatch(c, st8, et8) > 
 
This expresses that two artefacts a and b are to be 
made concurrently, each one tested after being 



made, then jointly assembled to produce artefact c 
which is then tested, packaged and dispatched, in 
that order. The action species make, test, assemble, 
package and dispatch are here specific to the 
enterprise domain. The terms a, b, c, st1, ..., st8 and 
et1, ..., et8 are ontological variables that will become 
bound to concrete values, or sets of possible values, 
as the plan’s various tasks are carried out. 

 
2.2 Expressing Requirements 
A requirement is expressed as a logical goal (a 
constraint) of the form rel(Args) required to be 
satisfied by whatever definition of the relation rel is 
given in the enterprise rulebase. The argument 
vector Args typically comprises ontological 
variables occurring in the users’ plans. Such 
variables are usually ones whose values fall within 
specifiable finite domains, and so the rulebase is in 
general a constraint logic program. The declared 
requirements are desired to be conjointly solvable 
when the plans have been performed. They ensure 
that the artefacts manipulated will possess 
acceptable attribute values and that actions are 
performed in accordance with a required schedule.  
     Not all constraints need be declared explicitly. 
Certain temporal constraints are implicit in the 
structuring of plans. In the example above, it is 
implicit that we have, for instance, st1<et1, et1<st2 
and et2<st3. The implementation automatically 
identifies such constraints and adds them to the 
declared ones. Declared constraints and rules for the 
example might include the following: 
 
    constraints = { max_dur(st3, et3, 3), correct_weight(b), ... }  
    rulebase = {  
      max_dur(S, E, D) :- domain([S, D, E], 1, 1000), E-S<D. 
      correct_weight(B) :-  
          type(B, T), weight(B, W), conforms(T, W). 
      conforms(steel, W) :- inrange(W, 3.5, 3.9).  
      conforms(alloy, W) :- inrange(W, 1.7, 2.6). ...   } 
 
The constraints aim to ensure that the elapse-time 
between starting the manufacture of item b and 
ending it is no greater than 3 time units, and that its 
weight will be in the right range for its metal type. 
The variables S, D and E here are restricted to a 
finite domain of time values expressed notionally as 
integers 1...1000. In practice the domain would 
comprise serial date numbers. 
 
2.3 Users, Roles and Tasks 
Each user of the system is viewed as a role-holder in 
the enterprise. Their role is to pursue concurrently a 
set of tasks of the kind described in 2.1 whilst 
satisfying the constraints. In the simplest 
arrangement, each user freely devises their plan and 

associated constraints. Coordination between users 
arises from the system’s treatment of all their 
constraints as a global set and from allowing a 
constraint to relate ontological variables occurring in 
the plans of more than one user. For instance, one 
user might require that one of their actions be started 
only after the ending of some other user’s action. 
Each user includes, in their role definition, ontology 
declarations to stipulate the source of the variables 
they use. For example, the declarations 
 
    ontology(ann, own, [a, st1, et1]). 
    ontology(ann, john, [st10]).  
 
declare that ann is using variables a, st1 and et1 
devised by herself and also a variable st10 devised 
by john. Conventions are applied to prevent 
ambiguity among variables.  
     The system also enables a user U1 to assign a 
role, or a role update, to another user U2. This 
process is implemented as U1 performing, within 
their own role, a special ‘assign’ action whose effect 
is to create and convey to U2 an electronic artefact 
whose content defines the assigned role or update. 
This arrangement provides the basis for a hierarchy 
of responsibilities that is used to control the process 
by which users revise their constraints if a constraint 
failure arises while they pursue their various tasks. 
The details of these mechanisms are not important in 
this paper but can be found in [1, 2], together with 
concrete illustrations of how they work in practice. 
 
 
3   Plan Execution 
The system shows to each user, via the portal 
interface, his progress in performing the plan. At 
any moment he can see the stage reached in each 
task. He may scroll back through a task to see when 
past actions were begun and completed, or scroll 
forward to review actions still to be done. In 
particular, the interface highlights the next action (or 
the next block of concurrent actions) to be done.  
     Alongside each action the interface displays, in a 
cellular format, the current domains of the action’s 
start time and end time, as shown in Figure 1. In 
each case the domain consists of those time points 
shown as empty white cells. Each of these satisfies 
(is a solution of) the current constraints, which 
include an implicit constraint that the cell shall be no 
earlier than the current time on the portal clock. A 
white cell containing “*” signifies that the user has 
already committed to that particular time point, 
having previously clicked in that cell (when it was 
white and empty) to indicate that commitment. A 
grey cell signifies a time point that the user cannot 



choose because it does not satisfy the current 
constraints. Thus, at the stage represented by Figure 
1 — where the portal clock reads “7” (i.e. July 7th 
2004) — the temporal constraints stored internally 
in the system are such as to imply:  
 
    { st1=4, et1=5, st2=5, et2=6, st3=7, 7<et3,  
      et3<10, et3<st4, st4<et4, ... etc. } 
 

TASK "t1" 4 5 6 7 8 9 10 11
st1 *
et1 *
st2 *
et2 *
st3 *
et3
st4
et4

  test(b)>

 July 2004 

<make(a)

  test(a)>

<make(b)

 
Fig. 1: progress of task in the interface. 

 
These features of the system are driven by two 
engines, a Plan Interpreter and a Constraint 
Evaluator. The former is responsible mainly for 
displaying the state of progress through the plan and 
for responding to the user’s commitments to begin 
or end actions. Its response to actions consists not 
only in recording and displaying the temporal 
commitments made but also in managing stored 
abstractions of any artefacts created or manipulated 
by those actions, as will be described later on.  
     The constraint evaluator applies algorithms that 
aim to simplify the current constraint set as much as 
possible. Initially this set contains all the explicit 
source constraints contributed by the various users 
and the implicit constraints (as described earlier) 
upon the temporal variables, together with 
predefined initial finite domains for selected 
variables (including the temporal ones). The 
evaluator need not operate synchronously with the 
interpreter (for instance, it may in principle remain 
dormant until all tasks have ended and then be 
invoked to check the constraints retrospectively), but 
in practice it makes sense for it to simplify 
constraints while the tasks are being performed in 
order to maximize the informativeness of the 
interface. The internal form of the constraint set is 
invisible to the user, but the interface indicates the 
solutions implied by the set. From Figure 1 the user 
can see that the current feasible solutions for st4 are 
{7, 8, 9, 10, 11, ...} but does not know (or need to 
know) whether the constraint set actually contains 
the constraint 7<st4 or merely implies it through 
other constraints such as 7<et3, et3<st4.  
     As noted earlier, actions in our system are 
generally concerned with artefacts, these being 

viewed as the primary deliverables of the enterprise. 
Each one is represented in the system as a binding of 
the form Name=art(Attributes), which is created in 
an internal workspace when its associated creating 
action (such as make or assemble) is performed. The 
form taken by Attributes will be one of various 
predefined schemas, according to the category of 
artefact. A panel, for instance, might have attributes 
[panel, Type, Weight, Size]. Requirements upon 
Attributes are elicited from the user by a standard 
constraint of the form assist(Name, Attributes). 
When a creating action is performed this constraint, 
if present, pops up a request for the user to select 
values for the attributes of the named artefact. By 
this means the system constructs in the workspace a 
concrete instance of the artefact binding, such as 
 
    c = art([panel, steel, 3.7, (10, 20)]) 
 
The “real” activity entailed in actually making or 
manipulating the artefact is conducted off-line 
during the interval between the action’s start and 
end times. The system and its interface just provides 
online guidance and control of the users’ activities 
as they work through their plans, and constructs a 
symbolic record of what they have achieved by way 
of constraint solutions and artefact representations.  
     Actions such as assemble, which presume the 
prior existence of artefacts, are automatically 
suspended by the plan interpreter if those artefacts 
have not yet been made available in the workspace. 
That is, the user is prevented from starting such an 
action until they are available: he may have to leave 
a task, or some block within it, in abeyance until the 
awaited artefacts have been created, either through 
acting on some other part of his own plan or through 
the activity of other users. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2: outline of the system. 
 

 
Figure 2 gives an outline of the system, showing 
several users’ plans related through their ontological 
variables and obliged to satisfy conjointly the global 

plan

ontologies 

constraints 

plan interpreter 

constraint 
evaluator 

workspace 



constraints. The effect of execution is to determine 
solutions (or solution-sets) for the variables and to 
build a symbolic record of the artefacts. 
 
 
4   Decision-Making Example 
In this example a task t2 first assembles an artefact c 
and then subjects it to painting, drying, testing, 
packaging and dispatching. Painting and drying can 
be carried out in two ways. If the weather is warm 
(ambient temperature > 25oC) then a quick-drying 
(q) paint is used and the panel is dried in an exterior 
(e) area. Otherwise a normal (n) paint is used and 
the panel is dried in an internal (i) oven. So task t2 
has a decision-point and appears as follows: 
 
    t2 = < assemble(c, [a, b], st1, et1),  
        if_then_else(“temp > 25oC”,  
        < paint(c, q, st2, et2), dry(c, e, st3, et3) > 
        < paint(c, n, st4, et4), dry(c, i, st5, et5) >), 
        test(c, st6, et6), package(c, st7, et7), dispatch(c, st8, et8) > 
 
The temporal requirements are: external drying 
takes >3 days, internal drying >2 and all other 
actions >1. The task as a whole must take <11 days. 
  
constraints = {  
min_dur(st1, et1, 1), min_dur(st2, et2, 1), min_dur(st3, et3, 3), 
min_dur(st4, et4, 1), min_dur(st5, et5, 2), min_dur(st6, et6, 1), 
min_dur(st7, et7, 1), min_dur(st8, et8, 1), max_dur(st1, et8, 11), 
... and implicit temporal constraints, artefact constraints, etc. } 
 
We will suppose that the user starts the assemble 
action on July 4th and ends it on July 6th. Figure 3 
shows the portal interface at this point. 

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2
> 25 o C et2

  dry(c, e)> st3
      yes et3
      no <paint(c, n) st4

et4
  dry(c, i)> st5

et5
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

TASK "t2"
 July 2004 

!"#$%

!"#$%

 
Fig. 3: position at July 6th before the decision. 

 
The interface displays the decision-point with two 
radio buttons, inviting the user to indicate the truth 
or falsity of “temp > 25oC”. If he clicks “yes” then 
the interface responds as shown in Figure 4. 

     The white cells indicate that, in order to complete 
the task within 11 days, the user must start the 
(quick-dry) paint action no later than July 8th.  
 

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2
> 25 o C et2

  dry(c, e)> st3
      yes et3
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

TASK "t2"
 July 2004 

!"#$%&

 
Figure 4: position at July 6th after the decision. 

 
He actually starts it on July 7th, completes it on July  
8th, starts the dry action on the same day and 
completes that action on July 11th. The interface at 
that point is given in Figure 5 and shows the new 
temporal options for the remaining actions. 
 

4 5 6 7 8 9 10 11 12 13 14 15
<assemble(c, [a, b]) st1 *

et1 *
 temp <paint(c, q) st2 *
> 25 o C et2 *

  dry(c, e)> st3 *      yes et3 *
 test(c) st6

et6
 package(c) st7

et7
 dispatch(c)> st8

et8

 July 2004 
TASK "t2"

!"#$%&

 
Figure 5: position at July 11th. 

 
The user was relied upon in this example to respond 
to the ambient temperature condition by making an 
off-line observation of the weather. More generally, 
however, we allow the possibility that the system 
has an on-line connection to a temperature sensor 
that automatically tests the condition and updates the 
task structure in the interface accordingly.  
     We next consider how to extract reusable 
material representing the experience of pursuing, to 
any chosen extent, a task like the one just illustrated. 
 
 
5   Extracting and Reusing Experience 
Our conceptual model was originally designed 
mainly to enable any particular enterprise to set up a 
simple portal-based interface in which users’ 
activities could be guided and monitored. The model 
does not presume the level of abstraction at which 
activities and requirements are formulated. In the 



simplest case it can be implemented as a light-
weight, single-user workplace diary, whilst at the 
other end of the spectrum it can be implemented as a 
highly detailed and highly controlling multi-user 
management system.  
     The model further enables us to formulate the 
notion of extracting experience from running the 
system, experience that might then be stored for 
subsequent reuse by the same enterprise or exported 
to other enterprises for adaptation and assimilation 
into their own workplace contexts.  
     To put some structure upon this notion of 
experience we need firstly to give a more precise 
characterization of a task within a plan. An informal 
grammar for a simple subset of the plan language is 
the following: 
 
    action := atomic action | if_then_else(cond, block, block) 
    block := action | seq-block | conc-block | pre:block 
    (where cond and pre are any predicates) 
    seq-block := <block, ..., block> 
    conc-block := {block, ..., block} 
    task := seq-block | conc-block 
    plan := {task, ..., task} 
 
Given a task T, a subtask t of T is then defined as: 
 
     t := subsequence of a seq-block in T |  
            subset of a conc-block in T 
 
so that a subtask has the same type as a task. 
Defining a subtask enables us to formulate the 
experience of performing any part of a task. 
However, we must take a further step in this 
formulation to reflect the fact that when performing 
a task containing branch-points — that is, 
if_then_else actions — the user (or the system) 
makes decisions each of which commits to just one 
branch. The user’s experience is restricted to just the 
branches actually taken.  
     We therefore define a linearization of a task T. A 
linearization L(T) of T is the result of replacing each 
branch-point if_then_else(cond, block1, block2) in T 
by either cond:block1 or cond:block2. If the selected 
block already has its own precondition pre then 
prefixing it by cond just gives the block an expanded 
precondition cond∧ pre.  
     An extractable experience in performing part of a 
task T is called an episode. Using the above 
definitions, an episode E is any linearization L(t: t is 
a subtask of T). 
     An episode is tantamount to a trace of the user’s 
traversal through some or all of the actions 
contained in the original task. However, there is 
significantly more knowledge to be extracted than 
the trace alone because, in the course of performing 
this episode, commitments were also made in order 

to satisfy the constraints and action preconditions. 
More precisely, the epsiode E has associated with it 
an assignment θE of values to ontological variables 
such as time-points and artefact attributes. Some of 
these variables may be ones declared (in the 
programs within the constraint-defining rulebase) to 
be finite-domain variables whose values must 
always lie within prescribed domains. The temporal 
variables, in particular, are usually of this kind. As 
constraint evaluation and user activity proceeds, the 
value of each such variable consists of some non-
empty subset of the initially-declared domain. By 
the time some task has been completed it may be 
that these domains have become reduced to 
singletons (i.e. unique solutions), but this need not 
always be the case.  
     The assignment θE by itself has no meaning 
without reference to the constraints that it satisfies. 
Many of the constraints in the enterprise-wide global 
set may be irrelevant to the episode under 
consideration. The relevant subset CE can be 
identified syntactically as comprising just those 
constraints that depend directly or (by transitive 
closure) indirectly upon at least one variable 
occurring in the episode. However, even these have 
no meaning without reference to their definitions DE 
in the rulebase. So DE must also be identified in 
order to make sense of θE. The logical relationship 
between these entities is then that the (relevant) 
requirements DE imply all the (instantiated) 
constraint predicates in CE.θE (denoting the 
application to CE of the relevant bindings in θE).  
     We know also that the episode must satisfy the 
set PE of its action preconditions (if any). These may 
be predicated upon ontological variables, and so the 
information extracted from them is PE.θE.  
     The remaining knowledge associated with 
episode E concerns the set AE  of artefacts created 
by it. These can be identified from the syntactical 
content of  E alone on the basis of the various 
species of artefact-creating actions contained in it. 
By the same means one can identify the set A*E of 
those artefacts that E presumed to pre-exist in the 
workspace. The episode thus has an associated 
artefact-mapping ME = A*E→AE. The information 
extracted from this is ME.θE, which captures any 
contribution made by the constraints to the 
determination of the artefacts’ attributes.  
     Given all the above, the total package extracted is 
a tuple (E, θE, CE, DE, ME). In the light of this we 
now return to the example in Section 4. Via an 
interface tool the user can at any stage extract such a 



package by selecting an arbitrary linear subtask as 
defined above. It is not technically necessary that the 
selected subtask be restricted to just that part of the 
task already performed. Thus the package may, in 
general, consist partly of what has already been done 
and partly of what is intended to be done in the 
future. For instance, suppose that on July 11th 
(Figure 5) the user selects the subtask extending 
from the assemble action up to the test action (which 
he has not yet performed). He thereby extracts: 
 
    E = <assemble(c, [a, b], st1, et1), 
        “temp > 25oC” :  
          < paint(c, q, st2, et2), dry(c, e, st3, et3) >, 
          test(c, st6, et6) > 
    θE = { st1=4, et1=6, st2=7, et2=8, st3=8, et3=11, 
          st6={11, 12}, et6={12, 13},  
          and any attribute bindings on a, b, c } 
    CE = the relevant constraints;  
    DE = the relevant constraint definitions 
    PE = “temp > 25oC” 
    ME = { {a, b}→c }θE 
 
This can be interpreted as a description of one way 
of assembling artefact c from pre-existing artefacts a 
and b and proceeding as far as testing it. Assumed 
attribute values for c, a and b will be specified 
somewhere within θE. The temporal assignments in 
θE show commitments to specific time-points for the 
actions prior to testing, but offer a range of time-
points for the testing itself. The relevant constraints 
and their definitions supply the logical explanation 
(meaning) of these assignments, and PE informs us 
that for this episode the weather has to be warm.  
     Given this characterization of an episode E, an 
interesting question is how to reuse E when 
developing some other task. That task can be viewed 
as a tree whose branch-points, if any, occur 
wherever decisions are made (as in Section 4). The 
reuse operation will consist of attaching E as a new 
twig at a position in this tree. Let B denote the sub-
branch that extends from the root of the tree down to 
the intended attachment position. In attaching the 
new twig we will want to be assured that this 
operation is compatible with the assumptions 
associated with both E and B as regards the 
satisfiability of constraints and action preconditions 
as well as the dependencies between artefacts.  
     Prior to the attachement operation, the task under 
development already has its own associated 
constraint definitions D. After the operation the 
definitions become expanded to D∪ DE, in order to 
support both the constraints C of the prior state of 
the task and the constraints CE of the newly-attached 

twig. Let V* be the intersection of the ontological 
variables in C with those in CE. If V* is non-empty 
then the values of its variables potentially become 
further constrained by the attachment operation. Let 
λ denote the further instantiation or domain 
narrowing (as appropriate), if any, that these 
variables experience. Then, if the assimilation of the 
new twig is to continue to offer feasible and correct 
solutions for the new state of the task we require, 
firstly, that Cλ and CE.θEλ shall be implied by 
D∪ DE and contain no variables bound to empty 
domains. Secondly, we require the preconditions PE 
associated with the twig to be logically consistent 
with those PB on the branch B. Both these 
requirements can be easily tested by invoking the 
constraint evaluator and precondition evaluator 
already available in the system.  
     There remains one further condition needed to 
support the operation, namely that if E depends upon 
pre-existing artefacts A*E then B must already 
contain the means of producing them. B’s syntax 
alone identifies the set AB of artefacts it is capable 
of producing. They will need to have attribute values 
that are compatible with those that E expects, as 
determined by the constraints. For this it is sufficient 
that ABλ ⊇  A*E.θEλ, which is also easy to test.  
      The simplicity in formulation of the above 
conditions for the feasibility of assimilating episodic 
experience into a task under development is owed to 
the declarative features of the framework, whilst the 
testing of them is facilitated by the logical 
machinery already available for supporting the 
standard operation of the portal.    
 
 
6   Related Work 
Our system has some similarity to the open-source 
uPortal [3] deployed in some US universities and 
developed by the Java Architectures Special Interest 
Group. Its ability to reuse past experience to support 
future portal activity shares motivation with [5], 
whilst its focus upon user work patterns is similar to 
that driving the ontology-driven KA2 system [6].  
     For finite-domain processing we use the Sicstus 
Prolog CLP(FD) engine. This has enough power to 
evaluate constraints in the intervals between user 
actions. It invokes the Pillow library to transform the 
state of the constraints into HTML web pages 
driving the interface. Other constraint technologies 
such ILOG Rules [7] might have been used instead, 
but most are more complex linguistically without 
offering greater expressive power.  



     We have not detailed our dealings with constraint 
failure. In [1] we show how its origin can be 
localized and its remedy sought by conservative 
belief revision and/or abductive constraint solvers 
like the Sicstus-based A-system [8]. These aims arise 
in other work on coherent workflow management [9, 
10, 11, 12], some of which use logic programming 
but not CLP(FD). 
 
 
7   Conclusion 
We presented simple but expressive constructs for 
the procedural and declarative elements of enterprise 
activity. Logic programming for the declarative side 
gives access to many inferential technologies from 
artificial intelligence. These include finite-domain 
(FD) constraint systems as illustrated here, which in 
turn support OR-based tools for optimization, 
scheduling and decision making.  
     The implementation has been applied in a real-
world context, namely managing multiple roles in an 
academic enterprise. There, artefacts are electronic 
documents such as text documents, spreadsheets and 
emails, containing information created and shared 
by the academic and administrative users, and the 
portal’s abstract artefact-schemas connect directly to 
real documents residing on servers. In that same 
context we have also implemented the inverse 
process of deriving plans, construed as new portal 
tools, from statistical analysis of user behaviour [4]. 
     Recent years have seen increasing use of project-
based organisational structure for delivering bespoke 
products, sometimes involving multi-firm networks. 
Such organisations survive on their ability to set up 
and perform projects, key to which is the integration 
of project-based learning into the business [13, 14]. 
Here, projects are treated as the structures we call 
episodes, enabling learning while performing. We 
therefore believe that our model contributes a new 
approach to the devising of flexible knowledge 
management tools for conveying process-oriented 
experience and ideas from one project to another. 
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