
Optimized Multiple Wavetable Interpolation

JONATHAN MOHR
Augustana Faculty

University of Alberta
Camrose, Alberta

CANADA

http://www.augustana.ca/˜mohrj /

XIAOBO LI
Department of Computing Science

University of Alberta
Edmonton, Alberta

CANADA

http://www.cs.ualberta.ca/ l̃i /

Abstract: One effective approach to music analysis/synthesis is multiple wavetable interpolation, which matches an
audio signal at selected breakpoints by determining weightings for several wavetables; the sound is resynthesized
using multiple wavetable additive synthesis by interpolating between the weightings for each wavetable at consec-
utive breakpoints. This article presents a new breakpoint-matching algorithm which uses the single-source acyclic
weighted shortest path algorithm to choose breakpoint matches in a globally optimal way.

Key-Words: Music analysis/synthesis, multiple wavetable interpolation, spectral matching.

1 Introduction
Multiple wavetable interpolation [1, 2] is a form
of analysis/synthesis in which a digital waveform is
converted to the frequency domain by a short-time
Fourier transform and reduced to a set of shared
breakpoints [3] by piecewise linear approximation
(PLA) of the spectral envelopes of its harmonics; the
spectrum at each breakpoint is then matched by de-
termining weightings for a small number of selected
wavetables, and the sound is resynthesized using mul-
tiple wavetable additive synthesis [4, 5] by interpo-
lating between the weightings for each wavetable at
consecutive breakpoints.

A number of spectra are selected to comprise a
set of basis spectra—a wavetable bank1—that will be
used in weighted additive combinations to approxi-
mate the actual spectrum at each breakpoint of each
tone to be synthesized. Typically, these basis spec-
tra are selected from the breakpoint spectra, but they
could be selected by other means, including spectral
principal components analysis (PCA) [8], a genetic al-
gorithm [4, 5], a clustering algorithm [9], an iterative
combinatorial method [10], or by hand-selection [1].

Given a particular wavetable bank, a set of
breakpoint data representing a particular tone, and the

1The basis spectra are here collectively referred to as a wave-
table bank, although for the purposes of breakpoint matching they
are initially represented in the frequency domain as vectors of har-
monic amplitudes; at synthesis time, each vector is converted to
an actual wavetable—a table of the time-domain amplitude values
of one cycle of the waveform—for use by a table-lookup oscilla-
tor [6, 7].

number of oscillators (Nosc) to be used in resynthe-
sis, the breakpoint matching algorithm selects, by in-
dex, at most Nosc wavetables from the bank which,
in weighted combination, best match the spectrum
at each breakpoint according to some error measure.
As Horner, Beauchamp, and Haken have shown [5],
the problem of determining the weightings (amplitude
factors) of a set of basis spectra that provide the best
match to a particular spectrum in a least-squares sense
is an instance of the general linear least squares prob-
lem and can be solved by use of the normal equations
[11].

In contrast to multiple wavetable synthesis [4, 5],
which uses all of the selected basis spectra in each
match, multiple wavetable interpolation uses only a
subset of the basis spectra at each match point (break-
point). If the subset of the wavetables used at one
breakpoint differs from the subset used at the next
breakpoint, two or more oscillators must be used
to crossfade the changing wavetables between match
points in order to avoid audible clicks and spectral dis-
continuities [1].

Horner [2] tested multiple wavetable interpola-
tion on three different mid-range instrumental tones:
a trumpet F4, a piano C4, and a muted trombone
B[3. Basis spectra were selected using a genetic al-
gorithm; only the first 20 harmonics of each spectrum
were used to evaluate the quality of the matches to the
spectra at selected match points (ten equally spaced
in time in the attack portion and ten similarly spaced
through the rest of the tone). The need to crossfade
between changing wavetables was dealt with by im-

posing two simple constraints: if synthesis is to be
performed with Nosc oscillators, only Nosc − 1 wave-
tables can be used at each match point, and at most
one wavetable is allowed to change from one match
point to the next. This method might be called con-
strained matching.

A sample implementation of constrained match-
ing was also provided. It performs an exhaustive
search to select the best combination of Nosc−1 wave-
tables to use at the breakpoint with the peak RMS am-
plitude, then works backward and forward to neigh-
boring match points, changing at most one of the
wavetables, using exhaustive search to decide what
change to make, if any.

Figure 1 illustrates some of the possible combi-
nations of wavetable selections at consecutive break-
points, Bi and Bi+1, given four oscillators2 . Of the
possibilities illustrated, only that in part (c) would
be possible using constrained matching. In addition,
Horner’s method would allow the same three wave-
tables to be used at consecutive breakpoints, leaving
one oscillator unused for the duration between Bi and
Bi+1.

This article presents a method that satisfies the
requirement that wavetables must be faded in and out
at the beginning and end of each span of use, re-
spectively, but is not subject to the restriction of se-
lecting Nosc − 1 wavetables at each breakpoint. The
method uses the single-source acyclic weighted short-
est path algorithm [12] to find a globally optimal
set of weighted wavetable matches across all break-
points, given a particular error measure and a specified
method of choosing an initial best match of a specified
size at each breakpoint.

2 Optimized Breakpoint Matching
Optimized breakpoint matching is a three-stage pro-
cess. First, an initial match is selected for each break-
point spectrum. Next, the set of wavetables of each
initial match is overlapped with the sets selected for
preceding and subsequent breakpoints in order to give
the optimizer some flexibility about when to fade a
wavetable in or out. Finally, the optimizer decides
which wavetables will actually be used at each break-
point and assigns wavetables to oscillators.

2The dots represent oscillators that have been assigned a par-
ticular wavetable at the indicated breakpoint; the open circles in-
dicate oscillators at zero amplitude. The downward- and upward-
angled arrows are intended to suggest the fade-out and fade-in of
a wavetable to or from zero amplitude, respectively.

2.1 The Initial Match
In the first stage of the breakpoint matching algorithm,
an initial match of the desired size is found for each
breakpoint. The number of different wavetables used
in the match, Nwt, can maximally be the same as the
number of oscillators to be used in the synthesis stage,
but may also reasonably be less than Nosc, since the
set of wavetables to be considered for final use at a
given breakpoint may be augmented with additional
tables in later stages of the matching algorithm.

The best possible match at each breakpoint
would be found by an exhaustive search of all

(

Ntables
Nosc

)

combinations of wavetables selected Nosc at a time,
where Nosc is the number of oscillators, from a wave-
table bank of size Ntables. However, the cost of such a
search becomes prohibitive for more than 3 or 4 oscil-
lators (depending on the size of the wavetable bank)
[13]. Furthermore, finding the best possible match of
size Nosc for each breakpoint spectrum at this stage of
the algorithm does not necessarily produce the best fi-
nal result, since it is necessary to fade out a wavetable
that ceases to be used from one breakpoint to the next
or to fade in one that comes into use; as a result of
this requirement, a set of matches to breakpoint spec-
tra that has greater consistency (i.e., that uses many
of the same wavetables over a number of consecutive
breakpoints) may lead to a better overall result than a
set of matches with high specificity but greater variety
of wavetable usage.

One way to reduce the cost of a search is to fo-
cus the search by pruning the search tree. This can
be done in the present case by performing an exhaus-
tive search for the best matches of some size less
than Nosc and then extending the first-level search
by a second level that seeks to augment only those
sets of wavetables that provided a best match to at
least one breakpoint spectrum in the first-level search.
For example, if a 4-wavetable match is desired, the
search performed at this stage could search for the best
3-wavetable matches in the first level and augment
those sets with a fourth wavetable in the second-level
search (a “3+1” search). Alternatively, the first-level
search could seek only 2-wavetable matches which
would be augmented with two additional wavetables
(a “2+2”search) in the second-level search.

2.2 Overlapping of Wavetable Sets
The second stage of the breakpoint matching algo-
rithm is intended to provide more flexibility in the
subsequent optimization stage which, as part of its

Bi Bi+1

(a)

Bi Bi+1

(b)

Bi Bi+1

(c)

Bi Bi+1

(d)

Bi Bi+1

(e)

Figure 1. Possible oscillator assignments with four oscillators.

task of assigning wavetables to oscillators, must de-
cide when to fade a wavetable in or out of use. For
example, the initial matches for some consecutive set
of breakpoint spectra3 might include a wavetable that
passes out of use and then back into use, as illustrated
in Figure 2.

In this case, the optimizer is likely to pick one
of the two assignments of wavetables to oscillators
shown in Figure 2, parts (b) and (c), where the dash
indicates the point at which the wavetable assigned
to the relevant oscillator at the previous breakpoint
has been faded out to zero amplitude and a new
wavetable—the one assigned to this oscillator at the
next breakpoint—begins a fade-in from zero ampli-
tude. If the use of wavetable 21 at breakpoint w results
in a lower overall error level than the use of wavetable
13 at both breakpoints v and x, then the first option
will be used; otherwise, the latter option will be pre-
ferred. (It is assumed here that wavetables 5 and 8 are
very important in achieving a good match at all five
breakpoints, since they appear in all five matches.)

However, it is possible—indeed, highly likely—
that an even lower overall error level would be
achieved by allowing the optimizer to use wavetable
13 instead of 21 at breakpoint w: the higher error re-
sulting from substituting wavetable 13 for 21 at break-
point w in Figure 2(b) will likely be offset by the
lower error levels achieved by using three-wavetable

3The letters u . . . y are used as breakpoint identifiers instead of
actual breakpoint numbers because this is a hypothetical example.
The dashes indicate points at which wavetables are faded out and
in.

matches instead of two-wavetable matches at both
breakpoints v and x, and a three-wavetable match will
surely be better than a two-wavetable match at break-
point w in option (c).

The optimizer could be tuned to look for special
cases like this through a look-ahead or look-behind
routine, but a more general solution to the problem
of selecting the best points for fade-in and fade-out
of wavetables can be expected to yield even better re-
sults. For example, it could be the case that the use of
wavetable 21 at breakpoint w is crucial to achieving
a low error measure at that breakpoint but that a two-
wavetable match would be more tolerable at break-
point y than at breakpoint x. If the optimizer were
allowed to use wavetables from the initial matches
at previous or subsequent breakpoints, then matches
such as those depicted in parts (d) and (e) of Figure 2
would also be possible and may provide a lower over-
all error than either of the options (b) and (c).

The general solution adopted for this breakpoint
matching algorithm is to include a stage in which the
wavetable sets found by the initial matching phase
for each breakpoint are overlapped with the wave-
table sets at preceding and following breakpoints be-
fore the optimizer makes oscillator-assignment deci-
sions in the following stage. An overlap distance of
two breakpoints on either side of the current break-
point was used in our testing of this algorithm. In-
creasing the overlap distance increases the number of
possibilities that must be evaluated by the optimizer,
so it is best to limit the amount of overlap to distances
from one to three.

u: 5 8 13
v: 5 8 13
w: 5 8 21
x: 5 8 13
y: 5 8 13

(a)

u: 5 8 13
v: 5 8 —
w: 5 8 21
x: 5 8 —
y: 5 8 13

(b)

u: 5 8 13
v: 5 8 13
w: 5 8 —
x: 5 8 13
y: 5 8 13

(c)

u: 5 8 13
v: 5 8 —
w: 5 8 21
x: 5 8 21
y: 5 8 —

(d)

u: 5 8 —
v: 5 8 21
w: 5 8 21
x: 5 8 21
y: 5 8 —

(e)

Figure 2. A sequence of initial wavetable matches (a) and some possible optimized oscillator assignments. The
matches in parts (d) and (e) are possible only if the optimizer is allowed to use wavetables from the initial matches
at previous or subsequent breakpoints.

2.3 Optimization of Oscillator Assignments

In the final phase of the optimized breakpoint match-
ing algorithm, a weighted wavetable is assigned to
each available oscillator at each breakpoint such that
the overall error is minimized, taking into account the
need to fade a wavetable in or out when it begins or
ceases to be used.

The optimization of oscillator assignments is
achieved by modeling the problem as a vertex-
weighted directed acyclic graph (DAG) and using
the single-source acyclic weighted shortest path algo-
rithm [12, §24.2]. A DAG is constructed such that
each vertex represents a particular wavetable set at a
particular breakpoint and each edge represents a le-
gal transition to some wavetable set at the next break-
point. The weight (cost) of each vertex is the least-
squares error of the fit of the weighted wavetables to
the breakpoint spectrum. The sequence of vertices on
the shortest path from the start vertex to the end ver-
tex represents the globally optimal sequence of sets of
wavetables, one set per internal breakpoint.

The wavetables of each set are then assigned to
oscillators so as to ensure continuity of wavetable as-
signments from one breakpoint to the next.

2.3.1 Construction of the DAG

The construction of the DAG on which the shortest
path algorithm will be invoked must take into account
the requirement to fade in a wavetable that will begin
to be used at some internal breakpoint and to fade out
one that ceases to be used.

The algorithm that adds vertices to the DAG
must also generate vertices that do not include all the
wavetables of the best match at a given breakpoint so
that one or more oscillators can be used to fade out a

wavetable from the previous breakpoint to the current
one and to fade in another wavetable from the cur-
rent breakpoint to the next. In particular, if the set of
wavetables at the current vertex of the graph is Scurrent

and the set of wavetables eligible for use at the next
breakpoint is Snext, then vertices should be generated
at the next breakpoint to represent the wavetable set
Scurrent ∩ Snext and all the subsets of this set.

If the match represented by the current vertex in-
cludes one or more unallocated oscillators or wave-
tables that have just been faded out to zero amplitude
(i.e., if |Scurrent| < Nosc), then any of these “zero
wavetables” can be replaced by any member of the
set Snext at the next breakpoint, and vertices should be
added to the DAG to represent these possible matches.

These two possibilities can be used in combina-
tion as well: any or all members of the current set can
become “zeros” at the same time that any zeros in the
current set are replaced by wavetables from Snext at
the next breakpoint4 .

However, a vertex should not be added to the
graph at the current breakpoint if there can be no out-
going edges from it to any vertex associated with the
next breakpoint. For example, if Nosc = 3 and the
wavetable sets for the current and next breakpoints
are {2, 3, 5, 7, 8} and {4, 5, 6, 8, 9}, respectively,
then the algorithm should avoid generating a vertex
at the current breakpoint for the wavetable selection
{2, 3, 7}, since all three wavetables would have to be
faded out simultaneously by the next breakpoint. It
is assumed that each match to a spectrum at an inter-
nal breakpoint must consist of at least one wavetable,

4The generation of duplicate wavetable sets at the next break-
point is to be avoided: a zero in the current set cannot be replaced
by a member of Snext that is already in the wavetable set of an
adjacent vertex as a result of the first possibility above.

since only the external breakpoints (the beginning and
end of the tone) correspond to silence.

Because a one-wavetable match to a breakpoint
spectrum is not likely to be very accurate (except at
those breakpoints for which the spectrum was selected
for inclusion in the wavetable bank), our implementa-
tion of the optimized matching algorithm provides for
the specification of a minimum number of wavetables
to be used in the final matches. In our testing, the
minimum match size was Nosc − 2. This constraint
reduced the number of vertices added to the DAG,
and thus the work done by the optimizer, without sig-
nificantly affecting the final result of the optimization
stage.

The full recursive algorithm for constructing the
DAG is presented in pseudocode in [9].

3 Results
A set of 198 tones played by sixteen different instru-
ments, spanning the range from A1 to B6 by minor
thirds, was selected from the McGill University Mas-
ter Samples collection [14] for the purpose of testing
the proposed analysis/synthesis method. The tones
were divided into groups according to pitch ranges
in order to allow more harmonics to be used in the
synthesis of lower-pitched tones than for higher tones.
The tones were analyzed using a period-synchronous
phase vocoder from the SNDAN sound analysis suite
[15], and breakpoints were selected by piecewise lin-
ear approximation. The basis spectra for the wave-
table bank for each group were selected by applying
a clustering algorithm to the breakpoint spectra of the
tones in that group (with some hand-tuning of the re-
sulting selections).

The running time of the single-source acyclic
weighted shortest path algorithm is Θ(V + E) if the
graph is implemented with an adjacency list represen-
tation. However, the size of the graph is not simply
determined by the size of the initial best match to each
breakpoint spectrum nor by the number of oscillators
to be used in synthesis. Because the number of ver-
tices is determined by the number of combinations of
wavetables drawn from the set of eligible wavetables
at each breakpoint, the size of the graph is related to
the complexity of the tone being analyzed.

There is a general relationship, however, be-
tween the average number of vertices and edges per
breakpoint and the specificity of the initial search for
best matches. The graph resulting from an initial
“3+1” search is three to four times as large, per break-

point, as the graph constructed from the results of an
initial “2+1” search; a graph derived from an initial
“4+0” search is, on average, about one-quarter larger
per breakpoint than one resulting from a “3+1” search.

The sequence of matches found by the shortest
path algorithm is globally optimal in a mathemati-
cal sense, but may not provide the best sequence of
matches from a perceptual point of view. For example,
several studies [16, 17] have found that the attack por-
tion of a tone has high perceptual relevance, so smaller
errors in matching spectra in the attack portion may be
more perceptually significant than larger errors in the
sustain or release portions. However, the algorithm is
globally optimal with respect to a given error measure;
an error measure could include a higher weighting for
errors in the attack portion of a tone.

As is the case with almost any algorithm, there
are trade-offs to be made between the time expended
in seeking a result and the quality of the result found,
and the breakpoint matching algorithm presented here
is no different, as will be seen in the tables of results of
multi-level exhaustive searches and oscillator assign-
ment optimization presented in the next two sections.

All timing information was derived by execut-
ing C++ programs on a 500 MHz Intel Pentium II
Celeron-based system with 256 MB of memory and
750 MB of swap space, running the Linux operating
system, kernel version 2.4.5. Programs were compiled
with the GNU g++ compiler, version 2.95.3, against
the Glibc C library, version 2.2.5 (Linux libc 6),
and the libstdc++-3 Standard C++ library, ver-
sion 2-2-2.10.0.

3.1 Multi-Level Exhaustive Search Results
A summary of the results of multi-level exhaustive
search for initial matches to the breakpoint spectra of
the 43 tones in Group 1 (pitches from A]1 to C]3) is
presented in Table 1, which lists the mean execution
time (in seconds) and the mean RMS error for each
type of search, in increasing order by time. (Com-
plete tables of results are available in the companion
technical report [18].)

The table confirms that, in general, a search that
takes more time (i.e., traverses more of the search tree)
produces better results, but there are some cases that
do not conform to this general model. For example,
for a 5-table match, a “3+2” search is to be preferred
to a “4+1” search since it produces better results in
significantly less time.

These results should not be considered in isola-

Type of Group 1
Search Time Error

1+0 0.15 196.4
1+1 1.32 134.4
2+0 6.41 132.9
1+2 7.20 101.6
2+1 12.3 100.9
3+0 145 98.6
3+1 157 82.1
2+2 181 81.4

2+2+1 199 70.5
3+2 477 68.6
4+0 2114 79.4
4+1 2132 69.2

Table 1. Summary of multi-level exhaustive search
results for Group 1.

tion, but in conjunction with the results of the opti-
mization phase, below. It will be seen that a “3+1”
search executes about an order of magnitude faster
than a “4+0” search, yet yields about the same or
better error rates, on average, after optimization. A
“2+1” search is another order of magnitude faster than
a “3+1” search, at the cost of an increased average
error of about 50%; however, after optimization, the
difference in average matching error is reduced to be-
tween 2% and 5%.

3.2 Oscillator Assignment Optimization
The mean optimization time, total time, and RMS er-
ror of the optimization of the matches to breakpoint
spectra of the tones in Group 1 found by each search
type for 3, 4, and 5 oscillators are summarized in Ta-
ble 2. The lowest mean RMS error value for a given
number of oscillators is highlighted.

These data suggest that single-level exhaustive
searches (especially “4+0” searches) tend not to be
worth the computation time they require. Although
the “4+0” search took an order of magnitude more
time, the optimization of “3+1” matches in Group 1
gave the same (best) result as the “4+0” optimization.
Similarly, although “3+0” searches resulted in the best
optimized 3-oscillator matches (on average) for tones
in Group 1, the “1+2” and “2+1” initial searches were
of comparable quality but required an order of magni-
tude less search time.

In general, the best n-oscillator final matches
were achieved by optimizing n-table initial matches.

Search Group 1
Type Topt Ttotal Error

3 Oscillators
1+0 1.52 1.67 121.9
1+1 0.94 2.25 119.9
2+0 1.00 7.41 118.9
1+2 2.39 9.58 113.7
2+1 2.48 14.8 114.0
3+0 2.87 148 113.5

4 Oscillators
1+2 13.3 20.5 97.8
2+1 13.2 25.5 97.6
3+0 15.6 160 96.9
3+1 46.5 203 94.5
2+2 54.4 236 95.1
4+0 66.8 2181 94.5

5 Oscillators
3+1 220 377 83.5
2+2 253 434 83.2

2+2+1 340 540 81.9
3+2 358 835 81.8
4+0 284 2398 82.5
4+1 351 2483 81.5

Table 2. Summary of 3-, 4-, and 5-oscillator optimiza-
tion results for various initial search types.

For example, none of the lowest mean RMS error
levels are achieved in the 3-oscillator case by opti-
mizing initial “1+0,” “1+1,” or “2+0” matches; sim-
ilarly, initial “1+2,” “2+1,” and “3+0” searches lead to
poorer 4-oscillator final matches than initial searches
of depth 4.

The detailed results [18] show that the best final
matches do not necessarily result from optimizing the
best initial matches. For example, the best final 3-
oscillator match to the bass clarinet G2 tone resulted
from optimizing the initial “1+2” match, even though
the “3+0” and “2+1” initial matches were better. Nor
do optimizations that take more time always produce
better final matches: the best 3-oscillator matches to
both the bass clarinet G2 and the horn E2 were found
by the fastest of the six optimizations tested.

No single search and optimization method gave
the best results in all cases. A good strategy would
be to optimize the matches found by two different
medium-cost searches and use the better of the final
two matches for each instrumental tone.

Constrained Matching
Oscillators Time Error

3 1.29 136.1
4 11.3 106.7
5 156 90.0

Table 3. Mean matching time and RMS error for con-
strained matching of tones in Group 1.

3.3 Comparison with the Constrained
Matching Method

Horner’s constrained matching method [2] was imple-
mented and tested on the same instrumental tones on
which our optimization method was tested, using the
same wavetable banks for the five groups of tones5.
Table 3 indicates the average matching time and RMS
error of 3-, 4-, and 5-oscillator constrained matches to
the breakpoint spectra of the tones in Group 1.

Figure 3 compares the average results of the con-
strained matching method with those of optimized
matching using 3, 4, and 5 oscillators for the tones
of Group 1. In the graph, lines connect the data points
for a given number of oscillators such that each line
traverses the points in the same order as they appear in
Table 2. It shows that, while the constrained matching
method is faster than any of the types of multi-level
exhaustive search optimization for a given number of
oscillators, the error levels produced by constrained
matching are significantly higher than those of the op-
timized matches, and are closer to those achieved by
optimization with one fewer oscillators.

If oscillators are relatively cheaper than com-
putation time, or if the speed with which results are
achieved is more important than the quality of the re-
sults, then the constrained matching method is to be
recommended. However, since the spectral matching
procedure need be performed only once for each tone,
a higher quality result using fewer oscillators would
typically be desired, and the time required to achieve
that goal would be of secondary importance. Thus, the
method presented here for selecting optimal matches
that fully utilize the available oscillators is likely to be
preferred in most cases.

5It should be clearly noted that this comparison with Horner’s
method is restricted to the breakpoint spectrum matching and os-
cillator assignment components only. Horner did not use large,
general-purpose wavetable banks, but used a genetic algorithm to
select small sets of basis spectra—two to ten wavetables in size—
that were particular to each instrument being matched.

4 Conclusion and Suggestions for
Further Research

The proposed three-stage optimization method—
selecting an initial match to each breakpoint spec-
trum, overlapping the matches of adjacent breakpoints
to form wavetable sets, then optimizing oscillator as-
signments by constructing a vertex-weighted directed
acyclic graph and executing the single-source acyclic
weighted shortest path algorithm on it—avoids the
two ad hoc restrictions of constrained matching: that
the match to each breakpoint spectrum be limited to
a size one less than the number of oscillators to be
used in synthesis, and that the matching process be-
gin with the peak-amplitude breakpoint and work out-
ward. It has been demonstrated that the optimization
method yields significantly improved matches com-
pared to the constrained matching method.

The main limitation of this method is that, due
to the use of shared breakpoints and the calculation
of a single weighted average frequency differential
for each breakpoint, multiple wavetable interpolation
synthesis does not work as well for tones with in-
harmonic partials as for purely harmonic tones. Lee
and Horner [19] used a form of group synthesis, with
independent frequency deviations for each group, to
simulate the stretched partials of piano tones. So and
Horner [20] introduced a hierarchical grouping tech-
nique to extend this form of group wavetable synthe-
sis to instruments that exhibit more complicated inhar-
monicity than the piano, such as plucked string tones.
It would be interesting to explore the possibility of
optimizing the assignment of wavetables to oscilla-
tors across groups of wavetable matches when adapt-
ing these methods to multiple wavetable interpolation
synthesis.

Another possible avenue of research would be
the addition of a stochastic component like that used
in spectral modeling synthesis [21] or transient model-
ing synthesis [22] to the optimized multiple wavetable
interpolation model in order to model the noise which
is so clearly present in many instrumental tones. The
inherently harmonic nature of multiple wavetable syn-
thesis limits its ability to lend realism to the resynthe-
sis of tones that include the scrapes, thumps, chiffs,
and air flow noises of actual instruments but that are
otherwise harmonic in structure.

Further work is also required to find a perceptu-
ally verified error measure. In an attempt to give more
emphasis to matching error in the attack and release
phases of a tone, Horner [4, 5, 2] used a relative spec-

80

90

100

110

120

130

140

150

1 10 100 1000

M
ea

n
R

M
S

 e
rr

or

Mean total time

Optimized, 3-osc
Optimized, 4-osc
Optimized, 5-osc

Constrained, 3-osc
Constrained, 4-osc
Constrained, 5-osc

Figure 3. Comparison of Horner’s constrained matching with optimized multi-level exhaustive search results.

tral error measure that in effect divides the error at
each match point by the RMS amplitude of the signal
at that point. However, a relative error measure tends
to overemphasize artifacts near zero amplitude. Wun
and Horner [23] tested a variant of this relative error
measure that takes into account the masking of some
partials by other partials within a critical bandwidth,
and found that it provided minor improvement. A bet-
ter solution might be to use an adaptive error mea-
sure which, like Horner’s relative error measure, gives
greater weight to the lower-amplitude parts of the tone
but, unlike the relative error measure, does not over-
emphasize the portions with near-zero amplitude.

References

[1] M.-H. Serra, D. Rubine, and R. Dannenberg,
“Analysis and synthesis of tones by spectral in-
terpolation,” Journal of the Audio Engineering
Society, vol. 38, pp. 111–128, Mar. 1990.

[2] A. Horner, “Computation and memory tradeoffs
with multiple wavetable interpolation,” Jour-
nal of the Audio Engineering Society, vol. 44,
pp. 481–496, June 1996.

[3] A. Horner and J. Beauchamp, “Piecewise-linear
approximation of additive synthesis envelopes:
A comparison of various methods,” Computer
Music Journal, vol. 20, pp. 72–95, Summer
1996.

[4] A. Horner, Spectral Matching of Musical Instru-
ment Tones. PhD thesis, University of Illinois at
Urbana-Champaign, 1993.

[5] A. Horner, J. Beauchamp, and L. Haken, “Meth-
ods for multiple wavetable synthesis of musi-
cal instrument tones,” Journal of the Audio En-
gineering Society, vol. 41, pp. 336–355, May
1993.

[6] H. Chamberlin, “Advanced real-time music syn-
thesis techniques,” BYTE, vol. 5, pp. 70–94,
180–196, Apr. 1980.

[7] C. Roads, The Computer Music Tutorial. Cam-
bridge, MA: MIT Press, 1996.

[8] G. Sandell and W. Martens, “Prototyping and
interpolation of multiple musical timbres using
principal components-based analysis,” in Pro-
ceedings of the 1992 International Computer
Music Conference (A. Strange, ed.), pp. 34–
37, International Computer Music Association,
1992.

[9] J. Mohr, Music Analysis/Synthesis by Opti-
mized Multiple Wavetable Interpolation. PhD
thesis, University of Alberta, Edmonton, Al-
berta, Canada, 2002.

[10] A. Ng and A. Horner, “Iterative combinato-
rial basis spectra in wavetable matching,” Jour-
nal of the Audio Engineering Society, vol. 50,
pp. 1054–1063, Dec. 2002.

[11] W. H. Press et al., Numerical Recipes in C: The
Art of Scientific Computing. Cambridge: Cam-
bridge University Press, second ed., 1992.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction to Algorithms. Cam-
bridge, MA: MIT Press, second ed., 2001.

[13] J. Mohr and X. Li, “Computational challenges
in multiple wavetable interpolation synthesis,”
in Computational Science—ICCS 2003, Interna-
tional Conference, Melbourne, Australia and St.
Petersburg, Russia, June 2–4, 2003 (P. M. A.
Sloot et al., eds.), no. 2657 in Lecture Notes
in Computer Science, pp. 447–456, Springer-
Verlag, 2003.

[14] F. Opolko and J. Wapnick, “McGill Uni-
versity Master Samples.” 11-volume
set of audio CD’s, 1987. Available
from McGill University, Montreal, via
http://www.music.mcgill.ca/-
resources/mums/html/index.htm.
(2004-10-31).

[15] J. W. Beauchamp, “Unix workstation software
for analysis, graphics, modifications, and syn-
thesis of musical sounds,” in Ninety-fourth
Convention of the Audio Engineering Society,

(Berlin), Audio Engineering Society, New York,
1993. Preprint 3479.

[16] J. M. Grey and J. A. Moorer, “Perceptual evalu-
ations of synthesized musical instrument tones,”
Journal of the Acoustical Society of America,
vol. 62, pp. 454–462, Aug. 1977.

[17] K. Jensen, “The timbre model,” in Proceed-
ings of the Workshop on Current Research
Directions in Computer Music, (Barcelona),
MOSART, Nov. 15–17 2001. Available on-
line at http://www.iua.upf.es/mtg/-
mosart/papers/p08.pdf (2004-10-31).

[18] J. Mohr, “Optimized multiple wave-
table analysis/synthesis: Results in de-
tail,” Tech. Rep. TR02-19, University
of Alberta, Edmonton, Alberta, Canada,
Sept. 2002. Available online at http:-
//www.cs.ualberta.ca/cgi-bin/-
techreport.cgi?action:menu (2004-
10-31).

[19] K. Lee and A. Horner, “Modeling piano tones
with group synthesis,” Journal of the Audio En-
gineering Society, vol. 47, pp. 101–111, Mar.
1999.

[20] C. So and A. B. Horner, “Wavetable matching
of pitched inharmonic instrument tones,” Jour-
nal of the Audio Engineering Society, vol. 52,
pp. 516–529, May 2004.

[21] X. Serra and J. Smith III, “Spectral model-
ing synthesis: A sound analysis/synthesis sys-
tem based on a deterministic plus stochastic de-
composition,” Computer Music Journal, vol. 14,
pp. 12–24, Winter 1990.

[22] T. S. Verma and T. H. Y. Meng, “Extending spec-
tral modeling synthesis with transient modeling
synthesis,” Computer Music Journal, vol. 24,
pp. 47–59, Summer 2000.

[23] C.-W. Wun and A. Horner, “Perceptual wave-
table matching for synthesis of musical instru-
ment tones,” Journal of the Audio Engineering
Society, vol. 49, pp. 250–261, Apr. 2001.

