
A Simple Implementation and Performance Evaluation Extended-Role
Based Access Control

Wook Shin and Hong Kook Kim

Dept. of Information and Communications,
Gwangju Institute of Science and Technology,
1 Oryong-dong Buk-gu, Gwangju, 500-712,

Republic of Korea

Abstract:This paper addresses the complexity issues of extended-role based access control (E-RBAC)
implemented under an embedded environment. Although E-RBAC can provide more trusted environment than the
traditional trusted operating systems by prohibiting the attacks consisting of ordinary operations, it is expected that
its implementation has performance overhead due to the procedural constraints of E-RBAC. An implementation of
E-RBAC suggested in this paper reduces the overhead of E-RBAC, and it is also shown that the overhead is not
significant compared to that of the previous Intrusion Detection System (IDS) solutions.

Key-Words:Extended Role Based Access Control, Secure Embedded Kernel.

1 Introduction
Traditional UNIX compatible systems have been
operated under Discretionary Access Control (DAC)
policy. Although DAC was a flexible and general
purpose scheme, insufficiencies in security have been
pointed out [1]. Therefore, other security policies such
as mandatory access control and role based access
control have been adopted into the design of operating
systems to establish more trusted computing base.
Mandatory Access Control (MAC) was introduced
and it provides a more concrete trusted environment
by controlling the flow of information [2], [3], [4].
Role Based Access Control (RBAC) was adopted to
provide a more flexible execution environments while
the security information is administrated in a
centralized manner [5], [6].

Although several access control policies have been
introduced for the development of Trusted Operating
Systems (TOS), the ability of the security kernel in
TOS is still limited. Current security kernels cannot
deny some attacks consisting of ordinary operations,
which is due to the manner of a decision making
process in traditional access controls. In the current
access control schemes, access control information is
extracted from the access subject and object at the
moment of an access, and its validity is lost after a
decision. In the decision process, the legality of an
access is decided based on the traditional access
matrix information or the pre-defined relation between
access subjects and access objects, while the

associated information or hidden information between
the operations is not considered at all.

The Extended Role Based Access Control
(E-RBAC) was proposed to overcome the limitation
and to extend the functionality of traditional access
controls [7]. E-RBAC controls accesses based on
associated access control information as well as the
traditional access control information.

On the contrary to the traditional access controls, an
E-RBAC system considers additional information to
make access decisions, thus it is expected that its
implementation has more performance overhead than
the implementations of the previous security kernels.
Therefore, in a designer viewpoint, it is necessary to
make sure how much overheads are introduced in the
implementation. In this paper, we implement a simple
E-RBAC system under an embedded environment and
evaluate its performance overhead.

This paper is organized as follows. In Sect. 2, we
briefly review the E-RBAC concept and its model. In
Sect. 3, the implementation architecture is discussed
and the results of the performance evaluations are
presented in Sect. 4. In Sect. 5, we conclude this paper.

2 The Extended Role Based Access
Control (E-RBAC)
E-RBAC limits accesses based on the associated
access control information. The information is
represented as an ordered set of operations that are

The permitted behavioral patterns of log file
managementPositive

(lf, open) (lf, read) (lf, close)

(lf, open) (lf, write) (lf, close)

(lf, open) (lf, close)

The permitted behavioral patterns of log file
managementPositive

(lf, open) (lf, read) (lf, close)

(lf, open) (lf, write) (lf, close)

(lf, open) (lf, close)

Fig. 1: Examples of several operation sequences having a
positive PC.

The prohibited behavioral pattern of the race
condition attackNegative

(s1, execute) (f1, unlink) (f1, f2, symlink)

The prohibited behavioral pattern of the race
condition attackNegative

(s1, execute) (f1, unlink) (f1, f2, symlink)

Fig. 2: Examples of several operation sequences having a
negative PC.

specified as procedural constraints (PC) in the
E-RBAC model [7]. PC is defined as a partially
ordered set of permissions with a positive or a negative
value. A positive PC unit describes a permissible
sequence of executions but a negative PC unit
represents a dangerous one.

Fig. 1 shows examples of operation sequences
having the positive PC. The positive PCs describe the
permitted execution sequences related with log file
management. As shown in Fig. 1, there are three
allowed execution sequences: First, open a log file,
read it several times, and close the file. Second, users
can write some data after opening the log file, and
close it. Third, open the file, and then close the log file
without any action. In this system, `read-write' access
is not permitted for the log file. It is reasonable

Fig. 3: An example of a negative PC represented by

CCPN.

because read-only and write-only operations are
enough to record and inquire audit data. Moreover,
some attacks erase the log record that includes
attacker's information. The attacks read and find the
record of the log data, and then remove the record or
replace it with the other information. Putting all
accounts together, it is reasonable not to support
`read-write' operations. This kind of context can be a
part of the security policy of the system, and the
positive PCs support its enforcement effectively.

Fig.2 shows an example of the negative PC. The
negative PC models a race condition attack against a
sendmail daemon [8]. The attack executes the
sendmail program, and repeats linking and unlinking
to redirect the binding between the sendmail program
and a temporary file. The core execution sequence of
the attack can be modeled as the state-transition
diagram. E-RBAC detects and denies the attack if the
execution sequence is specified.

E-RBAC considers procedural information as well
as the traditional access information to judge the
legality of each access so that the system prohibits
system intrusions more effectively. An operation is
denied if it accomplishes a negative execution
procedure, or if it deviates from the defined positive
sequences.

E-RBAC has its formal model to specify an
E-RBAC system and to verify correctness of security
configuration of the system. The Coloured Petri Net
(CPN) based formal model, Constrained CPN (CCPN)
was proposed and it specifies the E-RBAC system
including the positive and negative PCs [7].

Fig. 4: Examples of an attack execution and its detection.

The specification can be verified with automated tools
such as CPN Tools [9]. Fig.3 shows an example of
negative PC which is modeled with CCPN formalism.

3 Implementation
TOS has been implemented based on various

kernels [2], [3], [4], [5], [6], [10]. There was no even a
de facto standard for the implementation, although the
core function of access control and the security policy
of the implementations are not so different. However,
there was a remarkable movement in the field of TOS
based on monolithic Linux kernels. The Linux
Security Module (LSM) [11] was developed to
provide a bottle-neck interface for access controls.
Various access control policies can be enforced by the
policies are implemented as the Loadable Kernel
Modules. LSM is accepted officially as one of the
security mechanisms of the Linux kernel from the
kernel version 2.6. Additionally, SELinux, the most
representative security kernel based on Linux, adopted
it as its core framework of access controls. Therefore,
LSM consolidates itself as the standard access control
framework in Linux systems.

However, the LSM approach is not so reasonable
for our implementation, because the LSM is too heavy
mechanism to be ported into our tiny system. We
implement our system on an embedded board,
IFC-ETK100 [13], using the se3208 32 bit EISC
processor [14]. The se3208 processor is a 16-bit
processor actually, but it emulates 32-bit operations
internally. Since there is no Memory Management
Unit (MMU), the operating system is uClinux version
2.4.19 that can support the environment without MMU.
The target embedded system has limitations in
computational power and functions being compared to
the Linux systems on desktop machines. Many
functions defined in LSM are not necessary in the

embedded target. Some technologies in LSM are not
supported in the system such as Loadable Kernel
Module (LKM). Therefore, it can be an overhead to
adopt the LSM architecture into such lightweight
systems. Moreover, the LSM approach is not proven
as the best or the most efficient solution for TOS
development [12].

Therefore, we implement our access control
structure by directly modifying kernel functions of the
system instead of taking the LSM architecture. At first,
we simply add the field of a permission vector to the
data structures of process and files. The permission
vectors are calculated in terms of permitted roles. The
relation between processes, roles, behaviors, and
permissions is also evaluated as E-RBAC model
which is described in [7], and the set of allowed
permissions for the roles is calculated finally. Access
control decision functions (ADF) decide the legality of
each access comparing the roles of a process and a file.
They are implemented as kernel functions. Their
functions are not so different from those of the other
TOS implementations.

In addition, we add fields to trace the current state of
the process in term of the CCPN model. Each process
has its state information, and the state is changed by
the execution of operations of the process. ADF
calculates the next state according to the current state
and the action that the process wants to execute. All
processes itinerate CCPN by executing operations.
From the traces, we can investigate the execution
sequence of operations of each access subject.

Fig. 5 (a) shows the execution time of the simple
execution program and Fig. 5 (b) shows the results of
the copy program. Each program is executed
repeatedly from 100 times to 1000 times, and the
execution time is measured by using the wait3()
function. As shown in the figures, without procedural
constraints, there is no significant overhead in the
E-RBAC system compared to the original kernel.

On the other hand, Fig. 5 (c) shows the different
execution times between original kernel and our
implementation. With procedural constraints, there is
an overhead caused from the state tracing. It is shown
from Fig. 6 that the overhead linearly increases as the
repetition increases and the average of the overhead is
about 7 milliseconds which corresponds to 10 percent
increase in overhead. The overhead is almost equal to
or larger than the overheads of SELinux [10].
However, it is not larger than the overhead of an
application level IDS solution, snort [15], when the
overhead of operations in snort is measured in a
firewall-applied environment.

Simple Execution Test

0
10
20
30
40
50
60
70
80

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Repetitions

T
im

e
 C

o
s
ts

 (
s
e
c

Original Kernel Modified Kernel

(a)

File Copy Test

0
0.5

1
1.5

2
2.5

3
3.5

4

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Repetitions

T
im

e
 C

o
s
ts

 (
s
e
c

Original Kernel Modified Kernel

(b)

Execution Test 2

0

20

40

60

80

100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Repetitions

T
im

e
 C

o
s
ts

 (
s
e
c

Original Kernel Modified Kernel

(c)

Fig. 5: Comparison of the execution time between the

original kernel and the modified kernel using E-RBAC from
(a) a simple execution program, (b) a copy program, and (c)
a log read program.

Overheads

0
1
2

3
4
5

6
7
8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Repetitions

T
im

e
 C

o
s
ts

 (
s
e
c

(Avg. : 0.006732 sec)

Fig. 6: The overheads.

4 Conclusion

In this paper, we introduced an E-RBAC
implementation and discussed its performance
evaluation results. The extended access control
efficiently limits attack trials consisting of allowed
operations. For example, the implementation detected
the sendmail race condition attack successfully.

Also, the performance overhead was evaluated with
three simple programs. When operations were
executed without procedural constraints, there was no
significant overhead. On the contrary, the performance
overhead was observed with procedural constraints.
However, the overhead was not larger than the current
IDS solution. Considering that E-RBAC provides
more fundamental security mechanisms which cannot
be by-passed, this amount of overhead can be a
bearable overhead. Moreover, usually in lightweight
systems such as our embedded environment, it is
impossible to execute heavy programs such as IDS.

Acknowledgement
This research was partially supported by the
University Research Program of the Ministry of
Information and Communication, Republic of Korea.
In addition, this work was supported in part by the
Korea Science and Engineering Foundation (KOSEF)
through the Ultra-Fast Fiber-Optic Networks Research
Center at Gwangju Institute of Science and
Technology.

References:
[1] Sandhu, R. and Samarati, P., Access Control:

Principles and Practice, IEEE Communications,
Volume 32, Number 9, September 1994.

[2] UNICOS Multilevel Security (MLS) Feature
User's Guide, SG-2111 10.0, Cray Research, Inc.
1990.

[3] Branstad, M., Tajalli, H., Mayer, F., Security
issues of the Trusted Mach system., Proc. of 4th
Aerospace Computer Security Applications
Conference, pp. 362-367, 1998.

[4] Flask: http://www.cs.utah.edu/flux/fluke
[5] Ott, A., The Rule Set Based Access Control

(RSBAC) Linux Kernel Security Extension, 8th Int.
Linux Kongress, Enschede 2001

[6] Trusted Solaris:
http://wwws.sun.com/software/solaris/trustedsolar
is/index.html

[7] Shin, W., Lee, J.G., Kim, H.K., and Sakurai, K.
Procedural Constraints in the Extended RBAC and
the Coloured Petri Net Modeling, IEICE
Transactions on Fundamentals, Special Section on
Cryptography and Information Security(to be
issued), Vol.E88-A, No.1, Jan. 2005.

[8] [8lgm]-Advisory-20.UNIX.SunOS-
sendmailV5.1-Aug-1995.README

[9] CPN Tools: http://wiki.daimi.au.dk/cpntools/
[10] Loscocco, P., Smalley, S., Integrating Flexible

Support for Security Policies into the Linux
Operating System. Proc. of the FREENIX Track:
2001 USENIX Annual Technical Conference
(FREENIX '01), 2001.

[11] LSM: http://lsm.immunix.org/
[12] gresecurity: http://www.grsecurity.net/lsm.php
[13] InterFC: http://www.interfc.co.kr
[14] Advanced Digital Chips Inc.:

http://www.adc.co.kr
[15] Snort: http://www.snort.org

