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Abstract:This paper addresses the complexity issues of extended-role based access control (E-RBAC) 
implemented under an embedded environment. Although E-RBAC can provide more trusted environment than the 
traditional trusted operating systems by prohibiting the attacks consisting of ordinary operations, it is expected that 
its implementation has performance overhead due to the procedural constraints of E-RBAC. An implementation of 
E-RBAC suggested in this paper reduces the overhead of E-RBAC, and it is also shown that the overhead is not 
significant compared to that of the previous Intrusion Detection System (IDS) solutions. 
 
Key-Words:Extended Role Based Access Control, Secure Embedded Kernel. 
 
1   Introduction 
Traditional UNIX compatible systems have been 
operated under Discretionary Access Control (DAC) 
policy. Although DAC was a flexible and general 
purpose scheme, insufficiencies in security have been 
pointed out [1]. Therefore, other security policies such 
as mandatory access control and role based access 
control have been adopted into the design of operating 
systems to establish more trusted computing base. 
Mandatory Access Control (MAC) was introduced 
and it provides a more concrete trusted environment 
by controlling the flow of information [2], [3], [4]. 
Role Based Access Control (RBAC) was adopted to 
provide a more flexible execution environments while 
the security information is administrated in a 
centralized manner [5], [6].  

Although several access control policies have been 
introduced for the development of Trusted Operating 
Systems (TOS), the ability of the security kernel in 
TOS is still limited. Current security kernels cannot 
deny some attacks consisting of ordinary operations, 
which is due to the manner of a decision making 
process in traditional access controls. In the current 
access control schemes, access control information is 
extracted from the access subject and object at the 
moment of an access, and its validity is lost after a 
decision. In the decision process, the legality of an 
access is decided based on the traditional access 
matrix information or the pre-defined relation between 
access subjects and access objects, while the 

associated information or hidden information between 
the operations is not considered at all. 

The Extended Role Based Access Control 
(E-RBAC) was proposed to overcome the limitation 
and to extend the functionality of traditional access 
controls [7]. E-RBAC controls accesses based on 
associated access control information as well as the 
traditional access control information.  

On the contrary to the traditional access controls, an 
E-RBAC system considers additional information to 
make access decisions, thus it is expected that its 
implementation has more performance overhead than 
the implementations of the previous security kernels. 
Therefore, in a designer viewpoint, it is necessary to 
make sure how much overheads are introduced in the 
implementation. In this paper, we implement a simple 
E-RBAC system under an embedded environment and 
evaluate its performance overhead.  

This paper is organized as follows. In Sect. 2, we 
briefly review the E-RBAC concept and its model. In 
Sect. 3, the implementation architecture is discussed 
and the results of the performance evaluations are 
presented in Sect. 4. In Sect. 5, we conclude this paper. 
 
 
2   The Extended Role Based Access 
Control (E-RBAC) 
E-RBAC limits accesses based on the associated 
access control information. The information is 
represented as an ordered set of operations that are  
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Fig. 1: Examples of several operation sequences having a 
positive PC. 

 
The prohibited behavioral pattern of the race 
condition attackNegative

(s1, execute) (f1, unlink) (f1, f2, symlink)

The prohibited behavioral pattern of the race 
condition attackNegative

(s1, execute) (f1, unlink) (f1, f2, symlink)

 
 

Fig. 2: Examples of several operation sequences having a 
negative PC. 
 
specified as procedural constraints (PC) in the 
E-RBAC model [7]. PC is defined as a partially 
ordered set of permissions with a positive or a negative 
value. A positive PC unit describes a permissible 
sequence of executions but a negative PC unit 
represents a dangerous one.  

Fig. 1 shows examples of operation sequences 
having the positive PC. The positive PCs describe the 
permitted execution sequences related with log file 
management. As shown in Fig. 1, there are three 
allowed execution sequences: First, open a log file, 
read it several times, and close the file. Second, users 
can write some data after opening the log file, and 
close it. Third, open the file, and then close the log file 
without any action. In this system, `read-write' access 
is not permitted for the log file. It is reasonable 

 
 
Fig. 3: An example of a negative PC represented by 

CCPN. 
 

because read-only and write-only operations are 
enough to record and inquire audit data. Moreover, 
some attacks erase the log record that includes 
attacker's information. The attacks read and find the 
record of the log data, and then remove the record or 
replace it with the other information. Putting all 
accounts together, it is reasonable not to support 
`read-write' operations. This kind of context can be a 
part of the security policy of the system, and the 
positive PCs support its enforcement effectively.  

Fig.2 shows an example of the negative PC. The 
negative PC models a race condition attack against a 
sendmail daemon [8]. The attack executes the 
sendmail program, and repeats linking and unlinking 
to redirect the binding between the sendmail program 
and a temporary file. The core execution sequence of 
the attack can be modeled as the state-transition 
diagram. E-RBAC detects and denies the attack if the 
execution sequence is specified.  

E-RBAC considers procedural information as well 
as the traditional access information to judge the 
legality of each access so that the system prohibits 
system intrusions more effectively. An operation is 
denied if it accomplishes a negative execution 
procedure, or if it deviates from the defined positive 
sequences.  

E-RBAC has its formal model to specify an 
E-RBAC system and to verify correctness of security 
configuration of the system. The Coloured Petri Net 
(CPN) based formal model, Constrained CPN (CCPN) 
was proposed and it specifies the E-RBAC system 
including the positive and negative PCs [7].  



 
 
Fig. 4: Examples of an attack execution and its detection. 
 

The specification can be verified with automated tools 
such as CPN Tools [9]. Fig.3 shows an example of 
negative PC which is modeled with CCPN formalism. 

 
 

3   Implementation 
TOS has been implemented based on various 

kernels [2], [3], [4], [5], [6], [10]. There was no even a 
de facto standard for the implementation, although the 
core function of access control and the security policy 
of the implementations are not so different. However, 
there was a remarkable movement in the field of TOS 
based on monolithic Linux kernels. The Linux 
Security Module (LSM) [11] was developed to 
provide a bottle-neck interface for access controls. 
Various access control policies can be enforced by the 
policies are implemented as the Loadable Kernel 
Modules. LSM is accepted officially as one of the 
security mechanisms of the Linux kernel from the 
kernel version 2.6. Additionally, SELinux, the most 
representative security kernel based on Linux, adopted 
it as its core framework of access controls. Therefore, 
LSM consolidates itself as the standard access control 
framework in Linux systems.  

However, the LSM approach is not so reasonable 
for our implementation, because the LSM is too heavy 
mechanism to be ported into our tiny system. We 
implement our system on an embedded board, 
IFC-ETK100 [13], using the se3208 32 bit EISC 
processor [14]. The se3208 processor is a 16-bit 
processor actually, but it emulates 32-bit operations 
internally. Since there is no Memory Management 
Unit (MMU), the operating system is uClinux version 
2.4.19 that can support the environment without MMU. 
The target embedded system has limitations in 
computational power and functions being compared to 
the Linux systems on desktop machines. Many 
functions defined in LSM are not necessary in the 

embedded target. Some technologies in LSM are not 
supported in the system such as Loadable Kernel 
Module (LKM). Therefore, it can be an overhead to 
adopt the LSM architecture into such lightweight 
systems. Moreover, the LSM approach is not proven 
as the best or the most efficient solution for TOS 
development [12].  

Therefore, we implement our access control 
structure by directly modifying kernel functions of the 
system instead of taking the LSM architecture. At first, 
we simply add the field of a permission vector to the 
data structures of process and files. The permission 
vectors are calculated in terms of permitted roles. The  
relation between processes, roles, behaviors, and 
permissions is also evaluated as E-RBAC model 
which is described in [7], and the set of allowed 
permissions for the roles is calculated finally. Access 
control decision functions (ADF) decide the legality of 
each access comparing the roles of a process and a file. 
They are implemented as kernel functions. Their 
functions are not so different from those of the other 
TOS implementations. 

In addition, we add fields to trace the current state of 
the process in term of the CCPN model. Each process 
has its state information, and the state is changed by 
the execution of operations of the process. ADF 
calculates the next state according to the current state 
and the action that the process wants to execute. All 
processes itinerate CCPN by executing operations. 
From the traces, we can investigate the execution 
sequence of operations of each access subject. 

Fig. 5 (a) shows the execution time of the simple 
execution program and Fig. 5 (b) shows the results of 
the copy program. Each program is executed 
repeatedly from 100 times to 1000 times, and the 
execution time is measured by using the wait3() 
function. As shown in the figures, without procedural 
constraints, there is no significant overhead in the 
E-RBAC system compared to the original kernel.  

On the other hand, Fig. 5 (c) shows the different 
execution times between original kernel and our 
implementation. With procedural constraints, there is 
an overhead caused from the state tracing. It is shown 
from Fig. 6 that the overhead linearly increases as the 
repetition increases and the average of the overhead is 
about 7 milliseconds which corresponds to 10 percent 
increase in overhead. The overhead is almost equal to 
or larger than the overheads of SELinux [10]. 
However, it is not larger than the overhead of an 
application level IDS solution, snort [15], when the 
overhead of operations in snort is measured in a 
firewall-applied environment. 



 
Simple Execution Test
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(a) 
 

File Copy Test
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(b) 
 

Execution Test 2
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(c) 
 
Fig. 5: Comparison of the execution time between the 

original kernel and the modified kernel using E-RBAC from 
(a) a simple execution program, (b) a copy program, and (c) 
a log read program. 

 
 
 
 
 

 
Overheads
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Fig. 6: The overheads. 
 
 
 
4   Conclusion 

In this paper, we introduced an E-RBAC 
implementation and discussed its performance 
evaluation results. The extended access control 
efficiently limits attack trials consisting of allowed 
operations. For example, the implementation detected 
the sendmail race condition attack successfully.  

Also, the performance overhead was evaluated with 
three simple programs. When operations were 
executed without procedural constraints, there was no 
significant overhead. On the contrary, the performance 
overhead was observed with procedural constraints. 
However, the overhead was not larger than the current 
IDS solution. Considering that E-RBAC provides 
more fundamental security mechanisms which cannot 
be by-passed, this amount of overhead can be a 
bearable overhead. Moreover, usually in lightweight 
systems such as our embedded environment, it is 
impossible to execute heavy programs such as IDS. 
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