Investigating factors influencing the response time in J2EE web applications
Ágnes Bogárdi-Mészöly, Gábor Imre, Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Budapest 1111, Goldmann György tér 3. IV. em.
HunGary
Abstract: - The factors influencing the response time are a key issue in distributed systems. This paper presents the results of performance measurements which focus how the software and the client workload affect the response time of a J2EE web application. Among the software factors the settings of the application server and the implementation of the web application were changed during the several measurements. In order to check which parameters are the main performance factors independence tests have been carried out.
Key-Words: - performance analysis, web application, distributed systems, Java 2 Enterprise Edition, Enterprise Java Beans, chi square test of independence
1 Introduction

Distributed systems and network applications play an important role in computer science nowadays. In the beginning the Web was mainly used to display static content, and then many companies have realized that a properly designed information system can offer a strong support to their activities. The web applications providing dynamic content offer a solution to this challenge. During the development of these web applications raise many demands (e.g. security, interoperability with other systems), which are to implement in a reusable way. To satisfy such demands, some complex architectures using a number of technologies were created. One of the most prominent technology in this field is Java 2 Enterprise Edition (J2EE), supported by several vendors. Different technologies can be compared in many aspects; however the most common consideration is performance, because managing business processes the improper performance of a web application can cause serious loss to the company.
The performance of a web application is affected by several factors (hardware, software, network, client workload). The goal of our work is to analyze the effect of some of them. Hence we measured the average response time of a test web application while changing the values of the studied factors. The results were analyzed using statistical methods, in particular independence tests, in order to investigate which factors influence principally the performance.
The rest of this paper is organized as follows. Section 2 covers related work. Section 3 reviews the process of the performance measurement and discusses the results. We draw the conclusions in Section 4.
2 Related work
Several research projects are conducted on performance evaluation of enterprise applications. The DynaServer project [1] served as the base of our work. In [2], the effect of application implementation method, container design, and efficiency of the communication layers on the performance scalability of J2EE application servers is investigated. In our experiments we focused on other performance factors.
Some industry-standard benchmarks address the standardization of evaluation of application servers. In the field of J2EE, ECPerf [3] and now its successor, SPECjAppServer [4] are the most popular benchmarks. TPC-W [5] is a benchmark that is not tied to any particular implementation technology. The main difference between the benchmark applications of TPC-W and jAppServer is that the former one uses the database tier heavier, while the latter one stresses the EJB container.
Performance measurements can serve as the base for performance modeling and prediction. The performance-related problems of enterprise-class applications emerge very often only at the end of the software project. With the help of properly designed performance modeling, the performance metrics of a system can be determined at earlier stages of the development process. In the past few years there have been proposed several methods addressing this goal.
A group of them are based on queuing networks, or the extended or layered versions of queuing networks. Approaches belonging to this group are the Software Performance Engineering proposed by Smith [6], and some extensions of it, like the ones by Cortellessa et al. [7], [8]. These methods require some performance-related information which can be inserted in the UML model of the system, whereby it can be transformed into an appropriate queuing network model. By solving this model using analytical and simulation model solutions, prediction of performance metrics is possible.
The next group of approaches uses Petri-nets or Generalized Stochastic Petri Nets as formalism, like [9] and [10]. Petri nets can represent blocking and synchronization aspects much more than queuing networks, which on the other hand are more suitable for modeling resource contention and scheduling strategies. The powerful combination of these two formalisms is presented in [11].
A third proposed approach for describing and analyzing performance related aspects of software systems makes use of stochastic extensions of process algebras, like TIPP (TIme Processes and Performability evaluation) [12], EMPA (Extended Markovian Process Algebra) [13] and PEPA (Performance Evaluation Process Algebra) [14].
3 Contributions
3.1 The measurement process

The test web application is an auction site similar to eBay. The source code of the original implementation is part of the DynaServer project [1]. The original implementation was modified at several places; many design patterns [15] were applied on it to improve the performance of the application. The modified source code is accessible at [16]. It contains approximately 100 classes and 15 000 lines of code. The user of the application can perform 27 interactions, for example browsing items, selling, buying, and bidding. The database contains about 500 000 users, 20 000 items, 200 000 bids and 300 000 comments, so the size of the database during the measurement was 172 MB including indices.

The application server and the database server run on the same PC, with a 1.3 GHz AMD Athlon processor, 640 MB SDRAM, 60 GB, 7200 RPM Ultra ATA hard disk. The operating system was Windows 2000 with service pack 4. The J2EE application server is IBM WebSphere 5.0 [17], one of the most frequent among commercial application servers; the database management system was IBM DB2 7.2. The emulation of the browsing clients and the measuring of response times was performed by OpenSTA 1.4.2, an open source load generator running on an other PC with 1.1 GHz Intel Celeron processor, 256 MB SDRAM, 20 GB, 5400 RPM Ultra ATA hard disk. With OpenSTA, it was possible to generate or write test scripts which emulated realistic browsing of the auction site. Each test run took 10 minutes, during this time one virtual client was started in every 2 seconds, until the number of concurrent clients had reached 200 (Fig. 1).

[image: image1.wmf]0

50

100

150

200

250

0:01

1:21

2:41

4:01

5:21

6:41

8:01

9:21

Time (minute)

Number of active users

Fig. 1. The client load
Between two test runs, the implementation of the test web application, the type of the client load and certain settings of the application server were changed. The individual implementations of the application differed from each other in the number of Enterprise Java Beans (EJBs), which are reusable server-side components of the J2EE architecture [18]. Varying of the number of EJBs was possible by merging the EJBs. The methods of an EJB were copied into other EJBs, so the original EJB could be dropped, because another EJB took over its functions. The number of EJBs can be a performance factor because of the instantiation mechanism of the EJBs. This is performed by the EJB container according to the volume of load, so more instances are created when load increases while instances are destroyed when load decreases. If we merge the functions of more EJBs into one, the new EJB will use more memory, its creation will last longer, but it will be able to serve more types of requests.
The type of the client load was characterized by the percentage of read-write interactions which could be changed by modifying scripts which emulated the users.
An application server has several settings, which can affect the performance. During our measurement the sizes of certain thread pools and the connection pools were changed. As one can see in Fig. 2, the request of the client goes through more subsystems before it is served.
The web server, the web container and the EJB container have thread pools, these threads serve the requests coming from the previous subsystem. The maximum size of the thread pools can be set, so the resource usage of the system can be controlled. The thread pool of the EJB container does not exist if the EJB container and the caller (e.g. a servlet) thread are in the same JVM (like in our measurement), in this case the method of the EJB runs in the thread of the caller.
[image: image2.emf]

Web container

Datasource

EJB container

Network

Web server

Clients

DBMS

Fig. 2. Subsystems processing client requests
The database connections are pooled by the data source, and the size of the connection pool can also be maximized.

Table 1 summarizes the changed parameters and their values during the measurements.

	Name of parameter
	Values during the measurements

	Size of connection pool
	10, 22

	Size of web container thread pool
	35, 60, 85

	Size of web server thread pool
	40, 70, 100

	Write percentage of database accesses
	5, 15, 30

	Number of EJBs
	6, 11, 16

Table 1. The values of input parameters
When choosing the values of the parameters we followed the guidelines below. The sizes of the thread pools have the default settings of the application server, and both larger and smaller values. At the write percentages of database accesses we used the typical values of standard benchmarks. The values 5 and 15 are more characteristic to workloads of e-business applications, while the value 30 represents a more update intensive workload. The original implementation of the application used 18 EJBs (session beans, more specifically). We gradually decreased this number to 4, by merging the functions of the EJBs. The values 6, 11 and 16 divide this range evenly.
3.2 The results

The common shape of performance metrics is represented in Fig. 3. Increasing the number of concurrent clients, the resource (processor) usage and the throughput (served requests/second) grows linearly, while the average response time advances barely. After the saturation of the resource usage, the throughput remains constant, and an increase in the response time can be observed. In the overloaded phase, the throughput falls while the response time becomes unacceptable high.
[image: image7.emf]

Number of concurrent users (load)

Weak load Strong load Overload

Resource usage

Throughput

Response time

Fig. 3. The performance metrics as a function of the number of clients

In our measurements the bottleneck was always the processor usage on the server machine. This result coincides with the results observed in the experiments of the DynaServer project which focuses on bottleneck analysis [1]. Investigating the effect of the individual parameters is informative.
Chi square tests of independence are executed to investigate whether each input and output values are independent. The null hypothesis (H0) is: There is no relationship between each input and output (variables are independent). Alternate hypothesis (H1) is: There is a relationship between each input and output (variables are not independent).
The input values are presented in Table 1. The output is the average response time of the first 8000 request. Since the output is a continuous distribution, it is discretized (Fig. 4).
[image: image3.png]Observed frequency

15

13

77

21

2004 3037
Response time (ms)

as
60 Size of web,
35 container thread
pool

Fig. 4. Output discretization and observed frequencies in case the input is the size of the web container thread pool
Practically intervals of equal lengths and intervals with integer endpoints are used. The length of intervals is enlarged until each observed joint frequency has been different from null. Thus the intervals are relatively long.

The observed and expected frequencies are shown in Table 2. The first row in every cell is the observed frequency (O), the second row in every cell is the expected frequency under the assumption (E), where
[image: image4.wmf]N

k

k

E

j

i

.

.

*

=

.
	
	Response time

	
	505-1138
	1138-1771
	1771-2404
	2404-3037
	3037-3670
	∑

(ki.)

	Size of web container thread pool
	35
	28

16.67
	15

13.67
	8

13.33
	2

8
	1

2.33
	54

	
	60
	15

16.67
	15

13.67
	11

13.33
	9

8
	4

2.33
	54

	
	85
	7

16.67
	11

13.67
	21

13.33
	13

8
	2

2.33
	54

	
	∑

(k.j)
	50
	41
	40
	24
	7
	162

(N)

Table 2. Contingency table in case the input is the size of the web container thread pool
The chi square statistic is
[image: image5.wmf]å

-

=

E

E

O

2

2

)

(

c

. The results are computed by MATLAB [19]. The MATLAB programs can be downloaded from [16]. The detailed results are depicted in Table 3.
	Input
	Number of intervals
	
[image: image6.wmf]2

c

statistic
	Degrees of freedom
	H0

	Size of connection pool
	5
	6.2625
	4
	True

	Size of web container thread pool
	5
	30.9605
	8
	False

	Size of web server thread pool
	3
	7.1922
	4
	True

	Write percentage of database accesses
	10
	9.6112
	18
	True

	Number of EJBs
	6
	11.5780
	10
	True

Table 3. The detailed result of the executed chi square statistics

In most cases the H0 hypothesis is true, that is each input and output are independent, there is no relationship between them. But in case of the size of the web container thread pool input the null hypothesis is rejected at every acceptable level, because the chi square statistic is greater than critical values in chi square table. It means that the size of web container thread pool and response time are not independent, there is a relationship between them.
4 Conclusions
The results of the independence tests show that the size of the web container thread pool has a considerable effect on performance. As far the other parameters are concerned (size of connection pool, size of web server thread pool, write percentage of database accesses, number of EJBs), the independence tests show that they are independent from the response time, but we have to interpret these results carefully. We cannot state that the four other parameters cannot influence the performance under certain circumstances, but for the measured interval and client load the independence has been proven with statistical methods.
The explanation to the results could be that during most of the experiments, the web container thread pool was the bottleneck of the system, hence the varying of other parameters has no or very small effects on the response time. A detailed bottleneck analysis is subject of future work. If the web container thread pool proves to be the bottleneck, using independence tests can be a new method to identify the bottlenecks of information systems.
References:
[1] Dyna Server project homepage can be found at - http://www.cs.rice.edu/CS/Systems/DynaServer/
[2] Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel, Performance and scalability of EJB applications, 17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (Oopsla'02), 2002
[3] ECPerf project homepage can be found at - http://ecperf.theserverside.com/ecperf/index.jsp
[4] Standard Performance Evaluation Corporation (SPEC), SPECjAppServer website - http://www.spec.org/osg/jAppServer/
[5] Transaction Processing Performance Council, TPC-W - http://www.tpc.org/tpcw/
[6] C.U. Smith, Performance Engineering of Software Systems, Addison Wesley, 1990
[7] V. Cortellessa, A. D’Ambrogio and G. Iazeolla, Automatic Derivation of Software Performance Models from CASE Documents, Performance Evaluation, Vol. 45, 2001, pp. 81-105
[8] V. Cortellessa and R. Mirandola, Deriving Queueing Network Based Performance Model from UML Diagrams, ACM Proc. International Workshop Software and Performance, 2000, pp. 58-70
[9] S. Bernardi, S. Donatelli and J. Merseguer, From UML Sequence Diagrams and Statecharts to Analysable Petri Net Models, ACM Proc. International Workshop Software and Performance, 2002, pp. 35-45
[10] P. King and R. Pooley, Derivation of Petri Net Performance Models from UML Specifications of Communication Software, Proc. 25th UK Performance Eng. Workshop, 1999
[11] Samuel Kounev and Alejandro Buchmann, Performance Modelling of Distributed E-Business Applications using Queueing Petri Nets, Proc. of the 2003 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS'03), 2003
[12] U. Herzog, U.Klehmet, V. Mertsiotakis and M. Siegle, Compositional Performance Modelling with the TIPPtool, Performance Evaluation, Vol. 39, 2000, pp. 5-35
[13] M. Bernardo and R. Gorrieri, A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time, Theoretical Computer Science, Vol. 202, 1998, pp. 1-54
[14] S. Gilmore and J. Hillston, The PEPA Workbench: A Tool to Support a Process Algebra-Based Approach to Performance Modelling, Proc. Seventh International Conference Modelling techniques and Tools for Performance Evaluation, 1994, pp. 353-368
[15] Floyd Marinescu, EJB Design Patterns, John Wiley and Sons, 2002
[16] The source code can be downloaded from http://avalon.aut.bme.hu/~agi/research
[17] WebSphere Application Server homepage - http://www3.ibm.com/software/info1/websphere
[18] Ed Roman, Scott Ambler and Tyler Jewell, Mastering Enterprise JavaBeans, John Wiley and Sons, 2002
[19] MATLAB http://www.mathworks.com/products/matlab/

_1160692122.unknown

_1166533387.unknown

_1160692124.unknown

_1160692121.xls
Diagram3

		0.0006944444

		0.0041666667

		0.0076388889

		0.0111111111

		0.0145833333

		0.0180555556

		0.0215277778

		0.025

		0.0284722222

		0.0319444444

		0.0354166667

		0.0388888889

		0.0423611111

		0.0458333333

		0.0493055556

		0.0527777778

		0.05625

		0.0597222222

		0.0631944444

		0.0666666667

		0.0701388889

		0.0736111111

		0.0770833333

		0.0805555556

		0.0840277778

		0.0875

		0.0909722222

		0.0944444444

		0.0979166667

		0.1013888889

		0.1048611111

		0.1083333333

		0.1118055556

		0.1152777778

		0.11875

		0.1222222222

		0.1256944444

		0.1291666667

		0.1326388889

		0.1361111111

		0.1395833333

		0.1430555556

		0.1465277778

		0.15

		0.1534722222

		0.1569444444

		0.1604166667

		0.1638888889

		0.1673611111

		0.1708333333

		0.1743055556

		0.1777777778

		0.18125

		0.1847222222

		0.1881944444

		0.1916666667

		0.1951388889

		0.1986111111

		0.2020833333

		0.2055555556

		0.2090277778

		0.2125

		0.2159722222

		0.2194444444

		0.2229166667

		0.2263888889

		0.2298611111

		0.2333333333

		0.2368055556

		0.2402777778

		0.24375

		0.2472222222

		0.2506944444

		0.2541666667

		0.2576388889

		0.2611111111

		0.2645833333

		0.2680555556

		0.2715277778

		0.275

		0.2784722222

		0.2819444444

		0.2854166667

		0.2888888889

		0.2923611111

		0.2958333333

		0.2993055556

		0.3027777778

		0.30625

		0.3097222222

		0.3131944444

		0.3166666667

		0.3201388889

		0.3236111111

		0.3270833333

		0.3305555556

		0.3340277778

		0.3375

		0.3409722222

		0.3444444444

		0.3479166667

		0.3513888889

		0.3548611111

		0.3583333333

		0.3618055556

		0.3652777778

		0.36875

		0.3722222222

		0.3756944444

		0.3791666667

		0.3826388889

		0.3861111111

		0.3895833333

		0.3930555556

		0.3965277778

		0.4

		0.4034722222

		0.4069444444

		0.4104166667

		0.4138888889

		0.4173611111

		0.4208333333

Time (minute)

Number of active users

0

3

5

8

10

13

15

18

20

23

25

28

30

33

35

38

40

43

45

48

50

53

55

58

60

63

65

68

70

73

75

77

80

83

85

88

90

93

95

98

100

103

104

108

110

113

114

118

120

123

125

128

130

133

135

138

140

143

145

148

150

150

155

158

158

161

163

166

168

171

172

175

177

179

180

182

184

187

189

192

194

193

194

194

194

194

194

193

192

192

192

192

192

189

189

189

189

187

187

187

186

186

185

185

185

185

185

185

185

184

184

183

183

181

181

181

181

181

181

181

181

65

Munka1

		

		0:01		0

		0:06		3

		0:11		5

		0:16		8

		0:21		10

		0:26		13

		0:31		15

		0:36		18

		0:41		20

		0:46		23

		0:51		25

		0:56		28

		1:01		30

		1:06		33

		1:11		35

		1:16		38

		1:21		40

		1:26		43

		1:31		45

		1:36		48

		1:41		50

		1:46		53

		1:51		55

		1:56		58

		2:01		60

		2:06		63

		2:11		65

		2:16		68

		2:21		70

		2:26		73

		2:31		75

		2:36		77

		2:41		80

		2:46		83

		2:51		85

		2:56		88

		3:01		90

		3:06		93

		3:11		95

		3:16		98

		3:21		100

		3:26		103

		3:31		104

		3:36		108

		3:41		110

		3:46		113

		3:51		114

		3:56		118

		4:01		120

		4:06		123

		4:11		125

		4:16		128

		4:21		130

		4:26		133

		4:31		135

		4:36		138

		4:41		140

		4:46		143

		4:51		145

		4:56		148

		5:01		150

		5:06		150

		5:11		155

		5:16		158

		5:21		158

		5:26		161

		5:31		163

		5:36		166

		5:41		168

		5:46		171

		5:51		172

		5:56		175

		6:01		177

		6:06		179

		6:11		180

		6:16		182

		6:21		184

		6:26		187

		6:31		189

		6:36		192

		6:41		194

		6:46		193

		6:51		194

		6:56		194

		7:01		194

		7:06		194

		7:11		194

		7:16		193

		7:21		192

		7:26		192

		7:31		192

		7:36		192

		7:41		192

		7:46		189

		7:51		189

		7:56		189

		8:01		189

		8:06		187

		8:11		187

		8:16		187

		8:21		186

		8:26		186

		8:31		185

		8:36		185

		8:41		185

		8:46		185

		8:51		185

		8:56		185

		9:01		185

		9:06		184

		9:11		184

		9:16		183

		9:21		183

		9:26		181

		9:31		181

		9:36		181

		9:41		181

		9:46		181

		9:51		181

		9:56		181

		10:01		181

		10:06		65

Munka1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

&A

&P. oldal

Idő (perc)

Aktív felhasználók száma

Terhelés

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Munka2

		

Munka3

		

