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Abstract: - In this paper the problem of optical FMCW (frequency modulated continuous wave) distance estimation is 
considered. A measurement acquisition system is realized from which the real data are collected. A simple signal 
model is tested and verified using both simulated and measured data. According to this signal model a distance 
estimation procedure is introduced. A performance comparison of the distance measurements obtained from real and 
synthetic data reveals that the achieved measurement accuracy of the real system can be precisely predicted from 
simulations for the system specifications under consideration and that the distance sensor is therefore accurately 
modeled. Further we investigate the effects of systematic errors on the distance estimation performance in the 
acquisition system. It is shown that systematic errors are negligible compared to stochastic errors and the variance of 
the measurements is close to optimal. 
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1   Introduction 
Optical time-of-flight (TOF) distance measurement 
systems are used in many industrial and military 
applications. One advantage of optical systems is their 
ability to obtain measurements without contact. In 
contrast to microwave radar systems where the carrier 
frequency is modulated, in optical systems the intensity 
of the laser beam is modulated. Depending on the 
modulating signal, pulse- or continuous wave (CW) 
modulation, various methods exist for estimating the 
TOF [1]. Most common for optical distance sensors are 
the pulse method and the CW phase difference method. 
In this paper a FMCW-system (frequency modulated 
continuous wave) is investigated. In contrast to the 
previous mentioned methods, FMCW systems are not 
often used for optical distance measurements yet. One 
advantage of FMCW is its multi target capability, what 
means two or more axial targets can be detected and 
their absolute locations or their displacement can be 
measured, respectively. A verification of the theoretical 
description for FMCW-systems by the corresponding 
real measurements has not been previously 
accomplished. In [2] an FMCW-system is introduced 
and investigated concerning the stochastic distance 
estimation errors. While systematic errors are neglected, 
it is shown that the stochastic error is close to optimal 
and limited by the Cramer-Rao bound.  
In this paper the deterministic errors in the FMCW-
system are analyzed, that have their reasons e.g. in 
frequency depending hardware components, calibration 
errors or finite sampling effects. In section 2 the 

principle of distance measurements via FMCW is 
described. After deriving the signal model, the 
algorithms for distance estimation are discussed. For 
simplicity the focus of our investigations lies on the 
single target scenario. The data acquisition by real 
measurements with an experimental setup developed at 
the Ruhr-Universität Bochum as well as by generating 
synthetic data is presented in section 3. Based on the 
signal spectrum the model mismatch is investigated. 
Furthermore, the estimation bias of both experimental 
and simulated measurements is compared for series of 
measurements and analyzed concerning systematic 
errors. 
 
 
2   FMCW distance measurements 
TOF distance measurement systems exploit the well-
known relation between distance D and TOF τ 
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via the speed of light c. The factor ½ occurs due to light 
propagation towards the target and back. The refractive 
index n is assumed to be one in this paper, what is 
almost correct for measurements in air. With (1) the 
distance measurement boils down to a time-delay 
measurement. Depending on the modulating signal, 
different algorithms exist to obtain the time-delay τ. 
 
 
 
 



2.1   Signal model 
In this paper the FMCW method is applied, where a 
linear chirp is used as modulating signal. Using a 
homodyne detector reduces the bandwidth of the signal 
that has to be measured. Furthermore, the chirp linearity 
is of great importance for the derivation of the signal 
model. The linear chirp is described by 

2
0( ) rect exp j 2 c

c c

Bts t f t t
T T

π π
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⋅ +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 (2) 

with the chirp duration Tc, the chirp bandwidth Bc and 
the center frequency f0. The received signal 

( ) ( )r t A s t τ= ⋅ −   (3) 
is time shifted by τ. The amplitude A of the signal 
depends on the reflection properties of the target and is 
assumed to be constant over the measurement time. By 
using a homodyne detector and a low pass filter, and 
under the assumption τ << Tc the instantaneous 
frequency (IF) signal 
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is obtained. Generally, the transmitted signal is reflected 
at m different axial targets. Hence the IF-signal is the 
superposition of multiple sinusoidal functions with 
different time-shift. In (4) n(t) describes the additive 
measurement noise, which is inevitable in real systems. 
It is assumed to be Gaussian white noise with variance 
σn

2 and zero mean. By establishing the instantaneous 
frequency fif and the corresponding phase ϕif 
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the signal model for the IF-signal during the 
measurement time can be written as 
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The distance estimation problem reduces to the classic 
harmonic retrieval problem or estimating the frequencies 
and corresponding phases of a multi tone signal [3]. For 
single tone signals one possibility is the estimation in 
time-domain by linear regression, as proposed in [4]. 
This estimation is sensitive to chirp nonlinearities and 
misses the potential of multi-tone estimation, 
respectively. In the case of a nonlinear chirp the 
frequency of the IF-signal is no longer constant over 
time and the estimation problem gets much more 
complicated. 
Of course the frequency fif as well as the corresponding 
phase ϕif depend on the target distance. Therefore the 
estimation of frequency and phase of the IF-signal 

combined with (5) and (1) yields simple distance 
measurements. 
 
 
2.2   Algorithm 
As the signal model is very simple, the corresponding 
algorithms should be reduced to a few necessary steps, 
too. For simplicity the following algorithm is introduced 
for a single tone estimation. Later it will be easy to 
extend for multiple tone estimation. The IF-signal for a 
single target scenario is given by (6) with m = 1: 

( )( ) cos 2 ( )if ifg t A f t n tπ ϕ= ⋅ + + . (7) 

Computing the spectrum of the IF-signal leads to the 
frequency fif of g(t) at the position of the maximum in the 
magnitude of the spectrum. The phase ϕif is the 
corresponding phase of the spectrum at fif. 
The selected estimation procedure works as follows. To 
reduce leakage effects, which occur in the FFT because 
of the fractional relation between the known sampling 
frequency and the unknown signal frequency, it is 
essential to use a window function [5]. In this case a 
hanning-window is applied. Furthermore, the Hilbert-
transform is performed to obtain the complex base-band 
representation. In the ideal case the signal frequency 
corresponds to the maximum of the spectrum. Thus, an 
iterative maximum search is applied, based on FFT. 
Interpolation is used to obtain sub-sample resolution. 
The position of the maximum gives an estimator for the 
signal frequency fif. The corresponding phase of the 
spectrum at fif yields an estimator for the signal phase ϕif. 
According to the described procedure the estimation is 
processed in the following steps. 
 
step 1: '( ) ( ) window functiong t g t= ⋅  (8) 
step 2: ( )hilbert '( )hg g t=  (9) 
step 3: ( )( ) fft ( )hG f g t=  (10) 

step 4: ( )ˆ( ) max ( )ifG f G f=  (11) 

step 5: ( )ˆˆ angle ( )if ifG fϕ =  (12) 

Using (5) and (1) two distance estimators are obtained. 
The coarse estimator, based on the frequency estimation, 
is 
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while the fine estimator, based on the phase estimation, 
is 
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The coarse estimator ˆ
coarseD  avoids the ambiguity 

problem and is used to determine the unknown integer k 



in (14). The advantage of the fine estimator ˆ
fineD  is the 

smaller variance [6]. 
 
 
3   System Simulations and experimental 
results 
In the following section the data acquisition and the 
estimation errors are described. The data are collected 
from a real measurement system as well as synthetically 
generated. By comparing the results of the two different 
estimations, conclusions about the model mismatch and 
systematic errors in the estimation procedure are pointed 
out. 
 
 
3.1   Data acquisition 
The realized distance measurement system has the 
following specifications. The chirp generator is based on 
a fractional divider PLL [7]. Its parameters are 
Tc = 3 ms, Bc = 100 MHz and f0 = 750 MHz. The chirp 
signal is split in a 3-dB coupler. A laser diode with a 
wavelength of λ = 635 nm is used in the transmitter. The 
receiver consists of an avalanche photo diode. The 
transmitted and the received signal are mixed and low 
pass filtered. This anti-aliasing filter has a cut-off 
frequency of 100 kHz. Afterwards the signal is 
digitalized with an analog-to-digital converter. Its 
sampling rate is fs = 1 MHz and it has a resolution of 
12 bit. The recorded measurement data are processed on 
a PC. MATLAB is used for evaluating the algorithms 
and displaying the results. Fig. 1 shows the block 
diagram of this system. 
 

 
 

Fig. 1: Block diagram of the measurement system 
 
Several internal errors are avoided by using an internal 
reference path that is measured after each distance 
measurement. The target is placed on a rail with a 
stepper motor, which has a position accuracy of 
0.01 mm. 
 
In the simulations the synthetic data are generated 
according to (7) using MATLAB with respect to the 
parameters of the realized sensor. The signal-to-noise 
ratio (SNR) is given by 
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and is chosen according to SNR values estimated from 
the real measurements. Fig. 2 shows the power density 
spectrum of the simulated IF-signal, while Fig. 3 shows 
the power density spectrum of the measured IF-signal. 
Comparing these two figures shows well accordance 
between the two signals in frequency domain. In both 
figures a single maximum is clearly visible. We 
conclude that the measured signal is well described by 
(7) and the synthetic data. 
 

 
Fig. 2: Power density spectrum of the simulated IF-signal with 

SNR = 20 dB, A = 20 mV and fs = 1 MHz 
 

 
Fig. 3: Power density spectrum of the the measured IF-signal 

with SNR = 20 dB, A = 20 mV and fs = 1 MHz 
 
However it remains unclear at this point weather there is 
a model mismatch that results in different positions of 
the maximum or deviating corresponding phases for a 
given distance. 
 
 
3.2   Error comparison 
To analyze the performance of the measurement system 
two kinds of errors are distinguished. Systematic errors, 
also called deterministic errors, are represented by the 
estimation bias 

ˆ
ˆE( )De D D= −   (16) 

and stochastic errors are represented by the variance of 
the distance estimation 
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where E(.) denotes the statistical expectation, which is 
calculated by the mean value D  of N measurements at 
one distance: 
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Thus in the following the bias is calculated with 
ˆˆ

De D D= −   (19) 
The true distance D is known from the position of the 
stepper motor. Therefore (19) gives the absolute distance 
error. The variance of a series of measurements at M 
different distances is calculated with 
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(20) shows, that the variance does not depend on the true 
distance D, but is given by the deviation of the single 
measurements from their mean value. 
Stochastic errors occur due to noise. For a given SNR 
the stochastic error is limited by the Cramer-Rao bound 
(CRB), which is a lower bound for the variance of 
unbiased estimators [8]. The performance of the 
measurement system concerning stochastic errors is 
investigated in [2]. The CRB of the distance estimation 
for this sensor is 
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which is not dependent on the distance itself. It is shown 
that the variance of the distance estimation by real 
measurements, as well as by simulated measurements 
follows the CRB very accurate, what shows that the 
estimation procedure is close to optimal concerning 
stochastic errors. 
While we showed in section 3.1 that the spectrum of the 
real IF-signal is well characterized by the simulated 
signal, here we investigate systematic errors in distance 
estimation. To analyze the appearance of systematic 
errors the distance between transmitter and target is 
varied in steps of 1 cm between 3.2 m and 4.8 m, so that 
M = 161. At each distance 50 measurements are 
performed, that means N = 50. At first simulated 
measurements with synthetic data are investigated. In 
Fig. 4 the estimation error ˆˆ

De  vs. target distance D is 
presented, obtained by the fine estimation with (14).  
 

 
Fig. 4: Distance error versus target distance for simulated 
measurements with synthetic data with SNR = 20 dB, 50 

averages per distance; 
-+- line is the respective standard deviation 

 
The average distance error for the simulation of 50 
measurements is approximately +/- 0.05 mm. The 
standard deviation of the entire series of measurements, 
calculated with the square root of (20), is 0.12 mm. 
For an equal scenario a real measurement is 
accomplished. The result is shown in Fig. 5. 
 

 
Fig. 5: Distance error versus target distance for real 

measurements with SNR = 20 dB, 50 averages per distance; 
-+- line is the respective standard deviation 

 
For the real measurements the bias is about +/- 0.12 mm 
and the standard deviation is 0.134 mm. The bias has a 
periodic nature caused by systematic errors. With the 
results of Fig. 4 we conclude, that the algorithm does not 
produce a significant bias. The estimation error 
decreases with an increasing number of averages. 
Therefore, the bias in Fig. 5 must be an effect of the 
system hardware. A possible reason is a slightly 
nonlinear chirp. 
Otherwise the standard deviations of both simulated and 
real measurements yields good agreement with the 
corresponding CRB as demonstrated in Tab. 1. 
 

 simulated 
measurements 

real 
measurements 

Cramer-
Rao bound 

standard 
deviation 0.120 mm 0.134 mm 0.116 mm 

 
Tab. 1: Standard deviation of the distance measurements 



As a result of these studies the estimation bias of the real 
measurements is smaller than the respective standard 
deviation. Thus the bias does not influence the 
measurement accuracy, if no averaging is applied. In 
consequence a model mismatch exists between (7) and 
the IF-signal measured with the real system. On the 
other hand it is negligible for the considered settings, 
especially for SNR = 20 dB. Therefore, the simple signal 
model introduced in section 2.1 well describes the 
measured signal. In addition the proposed distance 
estimation procedure does not affect the estimation 
accuracy. Only for higher SNR a significant model 
mismatch exists, so that in this case the model must be 
adjusted or the system hardware must be revised in order 
to reduce the systematic error even more.  
 
 
4   Conclusion 
In this paper a FMCW system is developed as a possible 
alternative solution to the most common systems for 
optical distance measurements. A sensor based on the 
FMCW-method has been investigated both from 
simulated and real measurements. The paper describes 
the simple signal model for which a distance estimation 
procedure is proposed. The FMCW-method extracts the 
distance information from the instantaneous frequency 
signal in frequency domain. Simulation results obtained 
from synthetic data generated according to the signal 
model are compared to measurements recorded from a 
real FMCW distance sensor. For both cases, the 
measurement accuracy is analyzed. It is shown that the 
used signal model accurately represents the system for 
the settings in consideration. In this distance sensor 
systematic errors are negligible due to proper design of 
hardware and algorithms and stochastic errors yield 
measurement variance close to optimal.  
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