
Extending the DPO Approach for Topological Validation of
Metamodel-Level Graph Rewriting Rules

TIHAMÉR LEVENDOVSZKY, LÁSZLÓ LENGYEL, HASSAN CHARAF
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Goldmann Gy. tér 3, Budapest, H-1111
HUNGARY

Abstract: - Model transformation systems are an important contribution to the field of automated software
engineering. This paper summarizes the theoretical background implemented in Visual Modeling and
Transformation System (VMTS) to validate the topology of the transformation steps. The mathematical
formalism is based on the double pushout approach, which is extended to rewriting steps consisting of
metamodel elements. Firstly the instantiation relationship is transformed to a homomorphic mapping, then the
theorems from DPO approach is applied in conjunction with the validation-related propositions. The
theoretical results are accompanied with practical considerations throughout the paper, and the propositions
are turned into algorithms to facilitate their applications.

Key-Words: - Software model transformation, graph rewriting, DPO approach, metamodeling, VMTS

1 Introduction
 Due to the standardization of the Unified
Modeling Language [1] and the Model-Driven
Architecture [2] the demand for model
transformation systems has been increased. The
Visual Modeling and Transformation System
(VMTS) [3][4] was developed to demonstrate the
feasibility of graph rewriting-based model
transformation systems built on metamodeling
techniques. This paper summarizes the theoretical
results applied by VMTS to perform topological
validation on the transformation steps.
 For the sake of notation conventions and the
seamless discussion we give a definition for labeled
directed graphs (LDG) homomorphism. These
follow the conventions applied in [5].

Definition 1. (Labeled directed graphs, LDG):
Let ΩV and ΩE be two given alphabet for node and
edge labels, respectively. Then the labeled directed
graph is a six-tuple:

GGGG
EV le,lv,t,s,G,GG = , (1)

where VG is the set of vertices, EG is the set of
edges; Gs and Gt are the source and target functions
(Gs , Gt : EG → VG), which map an edge to its source
and target vertices, respectively; and finally Glv :

VG →ΩV and Gle : EG → ΩE, which assign a label to
a vertex and an edge from the appropriate alphabet.

We can consider UML models as an LDG, where
the node and edge information (type, attribute) is
stored in the label. One may store this information
as an XML document (a standard approach to this
can be found in OMG’s XMI specification [6]).
Regarding the labels of the vertices and the edges as
an XML document can be a suitable implementation
strategy for a UML class diagram applied for
instance in [4]. To get closer to the category theory
framework we define graph homomorphism.

Definition 2. (graph homomorphism for LDGs):
A graph homomorphism f: G→H is a pair of
functions: EEEVVV HG:f,HG:ff →→= , which
preserves the sources, targets and labels, that is, it
satisfies the following conditions:

• E
HG

V fttf oo =

• E
HG

V fssf oo =

• G
V

H lvflv =o

• G
E

H lefle =o

One can create a directed graph: where the
vertices are LDGs and the edges are homomorphic
mapping between the LDG vertices. Thus we have
obtained an informal notion of the category of the
directed graphs (Graph).

2 Related Work
 Graph rewriting [5][7] is a powerful tool for
graph transformations with strong mathematical
background. Originally it was developed as the

natural generalization of Chomsky grammars to
generate and parse visual languages. Instead of the
graph language approach we will use the mechanism
of the individual parsing steps, so-called rewriting
rules, for graph transformations. The graph
transformation is defined as a sequence of rewriting
rules, where each such rule is a pair of graphs, called
the LHS (left hand side) and RHS (right hand side).
The rewriting rule operates as follows: the LHS of a
rule is matched against the input graph (or host
graph), and the matching portion of that graph is
replaced with the RHS of the rule. The replacement
process is referred to as firing of the rewriting rule.
Model transformation systems mainly use context
elements [7] to describe the rewriting rules that
change the edges between objects.
 Algebraic graph rewriting [5] provides a way to
manipulate objects in a graph category, where the
objects are labeled directed graphs, and the arrows
are graph homomorphisms. There are two main
branches of algebraic graph rewriting, namely the
double pushout (DPO) and the single pushout (SPO)
approaches.
 The DPO approach accomplishes the rule firing
by two steps: after finding a redex (the part of the
host graph matched by the rule), the first step
removes the elements (vertices and edges) from the
redex which are in the redex, but not in the RHS
graph. This modified redex is referred to as interface
graph. Then as a second step the elements of the
RHS graph not in the interface graph but in the RHS
graph are glued to the interface graph. The rewriting
rule is characterized by a double pushout. The
application of the rules results in a direct derivation
of the host graph. The category theory framework
provides a more flexible and more general
background, so the DPO approach can be applied to
many graph-like categories. For labeled and directed
graphs the existence of the pushout (which is the
condition to fire a rule) can be ensured by forcing
the so-called gluing condition. The gluing condition
consists of two parts. Firstly, the identification
condition, which states that different vertices in the
production rule cannot match the same vertex in the
host graph. Secondly, the dangling edge condition
has to be dealt with as well: if a vertex should be
deleted which is connected to an edge that is not
inside the redex, the production rule cannot be fired.
Unfortunately, this makes impossible to delete a
connected vertex without considering its
environment.
 The single pushout approach uses partial graph
homomorphisms to form a single pushout as a rule
firing condition, and if a conflict occurs when

violating the gluing condition, deletion has priority
over preservation.
 In the algebraic approaches there is a central
topic: the parallel and sequential independence. Two
alternative direct derivations are parallel
independent, if their redexes overlap in elements
(edges or vertices) which are preserved by both
derivations. Two consecutive derivations are
sequentially independent if the second one is not
dependent on the elements added by the first one,
and the second one does not delete any items
accessed by the first one. In the DPO approach the
two independences are equivalent, because the
equivalence condition is buried in the gluing
condition. To take advantage of this property we
have chosen the DPO approach as a formal
background for our applications.

3 Contributions
 In VMTS there are a few assumptions we used in
establishing the formal model. Since VMTS is a
metamodeling environment, the metamodel of the
input model and the output model is always
available. The rewriting rules consist of metamodel
elements, and instead of an occurrence an
instantiation has to be found in the host graph (input
model). These concepts and their practical
applications are deeply discussed in [4].

3.1 A Formal Instantiation Relationship
 In order to treat the concept of the instantiation
within the framework of category theory we need to
ensure a homomorphic mapping between the model
elements and their metaelements.
 First we introduce the notion of type preserving
mapping. Let graph Meta be a UML class diagram.
Let graph Instance be a UML object diagram
instantiating Meta. Type Preserving Mappings
(TPM) are mappings from Meta to Instance, such
that every model element in Instance is mapped to
its type element in Meta. This mapping not
necessarily utilizes all meta elements (if one
considers abstract classes, for instance) in Meta.
Before resolving this issue we define Type
Preserving Mapping (TPM) in a more formal way.

Definition 3. (Type Preserving Mapping):
Let Meta be an LDG, with labels conforming to the
UML class diagram. Let be another LDG Instance
given with labels conforming the UML object
diagram. Let us further assume that Instance
instantiates Meta according to the instantiation rules
enforced by the UML. There are two functions

Booleanlv,lv:i InstanceMeta
V → (2)

Booleanle,le:i InstanceMeta
E → (3)

which return true if and only if the Meta graph
element having the label given as the first function
argument is the type of the Instance element having
the label given as the second argument. A mapping
between an Instance and a Meta LDG is called Type
Preserving Mapping (TPM) if and only if the
Instance element is mapped to its type elements and
to no other elements.

Practically, if we consider an XMI-like approach
outlined above, iV and iE can be implemented as
simple comparison between the XML tag
representing the type of the Instance element, and
the XML tag holding the name of the Meta element.
In other tools this relationship may be denoted by a
reference or other linking methods peculiar to the
applied programming environment. In the following
statement we connect graph homomorphism and
TPM.

Proposition 1. Let Meta be an LDG with labels
conforming to the UML class diagram. Let another
LDG Instance be given with labels conforming the
UML object diagram. We further assume that
Instance instantiates Meta according to the
instantiation rules enforced by the UML. If Meta
does not contain inheritance relationship (nor
abstract classes, which would be semantically
meaningless without inheritance) then the TPM
between the Instance and Meta graph is a graph
homomorphism.
 Proof. First a TPM is created between Instance
and Meta. Because every vertex and edge has a type,
every Instance element participates in the mapping.
Since there is no inheritance every instance element
is mapped to only one Meta element. It means that
this mapping is a pair of function.
Now it is shown that the adjacent vertices of the
Instance graph are mapped to adjacent vertices in
Meta. Suppose we have :A and :B vertices which are
connected in Instance via link :l, but their types (A
and B, respectively) are not connected in Meta with
L which is the association type for :l (Fig. 1). It
implies that Instance has violated the rules of
instantiation (defined by the UML standard), the
Instance is not the instance of the Meta. That
contradicts the condition of the proposition.

Fig. 1. Instantiation

Proposition 2. Let Meta be an LDG with labels
conforming to the UML class diagram. Let another
LDG Instance be given with labels conforming the
UML object diagram. In addition we assume that
Instance instantiates Meta according to the
instantiation rules enforced by the UML. Let An
denote the set of the associations connected to the
nth layer of a class hierarchy. Let Ln represent the
set of the links instantiating elements of An. Instance
can be mapped to Meta via graph homomorphism if
and only if no :O object is attached to link from
more than one Ln set, where An belongs to the class
hierarchy of C, which is the type of :O.

Proof. Firstly, it is shown, that if the conditions
in the proposition are satisfied, a TPM exists. The
objects of the classes not participating in an
inheritance hierarchy are mapped to their types. The
objects of the classes participating in an inheritance
hierarchy are mapped to the class which has the
association instantiated by the link attached to the
given object. This mapping is a TPM. Then it is
demonstrated that the adjacent vertices of Instance
are mapped to adjacent vertices of Meta. For
vertices not participating in the inheritance hierarchy
the statement holds based on Proposition 1. For the
vertices participating in inheritance hierarchy this
property is enforced by the condition. Because of the
type compatibility an :X object can be assigned to its
exact type X or any ancestors of X, but to only one
of them. Thus it is chosen such that the association
of the link is attached to it to preserve the adjacency.
Secondly, the inverse direction is shown. Let it be
assumed that the mapping can be created, but links
from more than one inheritance level are instantiated
and assigned to an :X object. Hence this should be
assigned to X or one of its ancestor. We cannot
choose either of them because if we select a class
based on an association of a specific level, the other
will violate the adjacency in Meta, which contradicts
our assumption.

The direct consequence of the propositions above
is, that, in general, the UML object diagram cannot
be mapped to UML class diagram by graph
homomorphism. Hence we must construct a
metamodel which considers the practical aspects and
has the same expressivity as the original, but the
instantiation relationship is a homomorphic TPM.
First the equivalence of metamodels is defined.

Definition 4 (equivalence of metamodels).
Let Meta1 and Meta2 be two LDGs, with labels
conforming to the UML class diagram. Meta1 and
Meta2 are equivalent if and only if any LDG
provided with labels conforming to UML object

diagram which is instance of Meta1 is instance of
Meta2 as well, and vice versa. If only one direction
is satisfied, namely, all instances of Meta1 are the
instance of Meta2, then Meta2 is compatible with
Meta1. Hence equivalence can be defined as
bidirectional compatibility. If at least one instance of
Meta1 are contained by at least one instance of
Meta2, then Meta2 is partially compatible with
Meta1.

Contrary to the compatibility property, partial
compatibility is symmetric.
 Then an algorithm is given which creates an
equivalent metamodel where the instantiation
relationship is a homomorphic TPM. An example
for this algorithm can be found in [3].

Algorithm outline 1 (creating homomorphic
meta)
1. Walk through the inheritance hierarchy and

copy all inherited data (attributes associations)
from the ancestors to the derived class. We take
care of the multiplicity values with variable
multiplicity.

2. Remove inheritance.
3. Remove all abstract classes.

The algorithm uses a wide-spread technique to
eliminate inheritance: it copies all the data and
relations to the derived classes, but we must be
careful with the association multiplicities, because
its value must be distributed among the new nodes:
their sum must be the old value. To handle this, we
use variable names to denote multiplicity and we
refer to them from another association. A detailed
discussion of this algorithm can be found in [8].

Proposition 3. The homomorphic metamodel
and its generator metamodel is equivalent.
 Proof: If an instance LDG instantiates the
generator metamodel, it instantiates its
homomorphic metamodel as well. The algorithm
removes abstract classes only, which are not
concerned with instantiation at all, so all the object
types (classes) have been preserved with their
attribute and other properties. If there was an
association connected to a class it still remained
after the transformation. If a class had an inherited
association after the transformation it has the same
association directly. Hence all the links that
instantiate the generator metamodel instantiate the
homomorphic metamodel as well. If an instance
LDG instantiates the homomorphic metamodel, it
instantiates its generator metamodel as well. For
objects and classes the statement can be shown

similarly to the inverse direction. The only changes
in the associations are that some of the direct
associations have become inherited. This change has
no influence on instantiation.

The multiplicity values produced by the
algorithm were designed such that it conforms to
equivalence.

Proposition 4. Let Meta1 and Meta2 be an
LDG, with labels conforming to the UML class
diagram, and they are homomorphic metamodels. If
Meta1 is compatible with Meta2, Meta1 is a (not
always connected) subgraph of Meta2 not regarding
the multiplicity labels. The following formula is
always true:

Meta2Meta1 MM ⊆ , (4)
where Meta1M and Meta2M are the sets of the allowed
multiplicity for Meta1 and Meta2 side respectively
at the same topological position.
In case of partial compatibility, where the zero
multiplicity values are not allowed, it is enough to
enforce the following conditions for each
corresponding multiplicity pairs:

Meta2Meta1 SupMSupM ≤ , (5)
∅≠∩ Meta2Meta1 MM (6)

where Sup is the supremum of the set which
contains the allowed multiplicity values.
 Proof:
If every instance of Meta1 also instantiates Meta2, it
implies the following: if we construct an instance of
Meta1 which instantiates all classes in Meta1, then it
means that Meta2 must contain all the classes from
Meta1.

For partial compatibility the conditions mean that
(i) if there is an association in Meta1 there must be
one with at least with the same supremum (that
implies the containment) (ii) we ensure that there is
an instance of Meta1 that instantiates every element
of Meta1, and there is an instance of Meta2 which
contains it. The latter condition is not necessary but
rather useful. It is rather obvious to check the
situations detailed above for the allowed multiplicity
sets.

3.2 Validating the transformation steps
 Hence we have a homomorphic metamodel we
can establish the category theory framework and the
instantiation. To clarify the notations and the basic
constructs we define the well-known category of
LDGs called Graph.

Definition 5. (Category of LDGs, Graph): (i)
Objects: LDGs, (ii) Arrows: LDG homomorphisms,

(iii) Composite operator: composite of graph
homomorphisms.
For these composites we show that they are
homomorphisms as well. Suppose HG:φ → and

KH:ψ → mappings are graph homomorphisms,

EGu∈ , VGnm, ∈ , and m(u)sG = , n(u)tG = .
Based on the definition of the homomorphism:

EE H(u)φ ∈

VVV H(n)φ(m),φ ∈

(m)φ(u))(φs VE
H =

(m)φ(u))(φt VE
H = (7)

Applying ψ homomorphism using the definition
again:

EEE K(u))(φψ ∈ , VVVVV K(n))(φψ(m)),(φψ ∈ ,

(m))(φψ(u)))(φ(ψs VVEE
K = ,

(m))ψ(φ(u)))(φ(ψt VEE
K = (8)

which means that φψ o is also homomorphism.
Graph homomorphisms can be thought as creating
composite functions, which are (i) associative:

fg)(hf)(gh oooo = , (9)
 (ii) and the identity arrows are the identity functions
for both vertices and edges. Then it is obvious for an
arbitrary f: A→B that

ffidB =o , and fidf A =o . (10)

Based on the previous definition one can easily
validate that both the meta LDGs and instance
LDGs are objects in Graph, and partial
compatibilities (lkm, lg, gdm, dhm, rhm, krm)
inclusions (l, r, l*, r*, m, d, m*) and instantiations
(lm, km, rm, gm, dm, hm) are arrows.
 Then the transformation step of the DPO
approach is extended with the metamodels as it is
depicted in Fig. 2.

Fig. 2. The diagram of the transformations step with
metamodels.

As it is well-known from the DPO approach, the
inner double square forms a double pushout. For
each participants of this double pushout a
metamodel is provided via a TPM homomorphic
mapping.

We assume partial compatibility morphisms
between the meta-LDGs based on Proposition 4 and
for semantic reasons: it is not optimal to have an
LHS metamodel which can be instantiated such that
it never matches. In case of RHS without ensuring
this assumption the rewriting is an error prone
operation, because the result may not conform to the
destination metamodel. So we summarize this in a
definition.

Definition 6. If an LHS and an RHS satisfies the
condition of partial compatibility elaborated in
Proposition 4 with respect to GM and HM, and they
contain nonzero multiplicity values, they are called
proper metamodels.

Proposition 5. If the morphisms are inclusions in
the outer double square, and the inner square is a
double pushout, the outer double square is a double
pushout.
 Proof:
As it is known the category Graph has all pushouts,
which means that for every pair of morphism there
is a pushout in the category. It can be proven [5] that
if given two morphism b: A→B, c: A→C, then the
pushout 〈D, g: B→D, f: C→D〉 can be constructed
as ≈+=≈+=)C(BD,)C(BD EEEVvV i.e. the
quotient set of the disjoint union modulo

A}a|g(a){f(a), ∈≈= smallest equivalence
relation that maps each element to its equivalence
class. For Graph the pushout construction is
accomplished componentwise, i.e. for the edge set
and the vertex set, respectively. If the morphisms are
inclusions, a diagram depicted in Fig. 3 can be
established which is a pushout [9]. Based on
Proposition 4, it can be seen, that if the match exists,
then there is a partial compatibility between
corresponding metamodels. The properness
conditions (c.f. Definition 6) are assumed to be
fulfilled for semantic reasons, so there are inclusion
morphisms between the metamodels as it is shown
in Fig 2. Hence the outer double square is a
pushout.
 Assume a rewriting rule which does not violate
the dangling edge condition, but we have classes A
and B connected by the association a on the
metamodel level, which does violate it via removing
B without removing a. Then the rule instantiates A,

B, and a, and will remove :B without removing l
(which is the instance of a), which contradicts to our
original assumptions.

Fig. 3. A Doolittle diagram with inclusions in Set (a
category with sets as objects and functions as morphisms)

Based on the proof of Proposition 5 the next
proposition is rather straightforward.

Proposition 6. If the meta square is a double
pushout and proper metamodels are assumed then
the rule cannot violate the dangling edge condition.

Conforming to the DPO approach results in “free”
propositions like below:

Proposition 7. If two LHS metamodels do not
contain elements in common, then the order of the
rules are invariant and can be executed parallel.
 Proof: Direct consequence of the DPO
Parallelism theorem, because in this case the
instance level will not overlap either.
Proposition 7 is especially useful if the
transformation environment is expected to offer
parallel execution of the rules automatically without
collision and side-effects. Proposition 5-6 facilitate
to validate the rewriting rule on the metamodel level
without knowing what the actual redex is.

Algorithm outline 2. (detecting gluing time RH
error)
1. If the partial compatibility does not hold for the
LM and GM (it can be checked using Proposition 4),
we can signal an error message or automatically
adjust it emitting a warning message. In case of RM
and HM if the compatibility holds for, no additional
error check is necessary.
2. If only the partial compatibility is satisfied then
there are two cases: (i)When RM allows a larger
instance (with greater multiplicity) then it is
considered an error which can be detected and
reported. (ii)When RM allows a smaller instance it
can be a part of the instance specified by HM. In this
case the rewriting might cause an error, but seamless
situations are also possible. This type of error can
only be detected at gluing time checking the created
changes again HM.

3. When HM is not partially compatible with RM,
an error message should be reported or an automatic
adjustment can be performed (based on the
conditions in Proposition 4) with warning.

4 Conclusion
 A formal background has been proposed for
checking topological validity of model
transformation rules. The applied mathematical
formalism is category theory and the double pushout
approach, as it was used successfully in the field of
graph rewriting.
 Since it is required by the category theory, the
instantiation relationship needs to be transformed to
conform to the rules of the homomorphic mapping.
To ensure the interchangeability between the
transformed and the original metamodel, the
definitions of equivalence and compatibility have
been introduced. It has been proved, that the original
and the transformed metamodels are equivalent on
the instance level. Then criteria have been proven to
check the topological validity of the rewriting rules
and with the provided algorithm several erroneous
transformation rule can be detected and prompted
back to the user. A proposition condition for parallel
execution has been also proven for the metamodel-
based rewriting rules.
 Future work includes an extension to the SPO
approach and performing constraint transformations
for homomorphized metamodels.

References:
[1] Object Management Group, Unified Modeling
Language Specification, v1.5, www.uml.org
[2] OMG Model Driven Architecture homepage,

www.omg.org/mda/
[3] The VMTS Homepage.
 http://avalon.aut.bme.hu/~tihamer/research/vmts/
[4] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A

Systematic Approach to Metamodeling Environments and
Model Transformation Systems in VMTS, Electronic Notes
in Theoretical Computer Science, International Workshop
on Graph-Based Tools (GraBaTs) Rome, 2004

[5]G. Rozenberg (ed.), Handbook on Graph Grammars and
Computing by Graph Transformation: Foundations, Vol.1.
World Scientific, Singapore, 1997.

[6] XML Metadata Interchange (XMI), v2.0, www.omg.org
[7]D. Blostein, H. Fahmy, A. Grbavec, Practical Use of Graph

Rewriting, Technical Report No. 95-373, Department of
Computing and Information Science, Queen’s University,
Kingston, Ontario, Canada, January, 1995.

[8]T. Levendovszky, H. Charaf, Parametrized Multiplicity
Constraints in UML Like Metamodels, microCAD 2004,
Miskolc, pp. 287-291

[9] M. Barr, C. Wells: Category Theory Lecture Notes for
ESSLLI,
www.folli.uva.nl/CD/1999/library/pdf/barrwells.pdf, 1999.

