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Abstract: - Model transformation systems are an important contribution to the field of automated software 
engineering. This paper summarizes the theoretical background implemented in Visual Modeling and 
Transformation System (VMTS) to validate the topology of the transformation steps. The mathematical 
formalism is based on the double pushout approach, which is extended to rewriting steps consisting of 
metamodel elements. Firstly the instantiation relationship is transformed to a homomorphic mapping, then the 
theorems from DPO approach is applied in conjunction with the validation-related propositions. The 
theoretical results are accompanied with practical considerations throughout the paper, and the propositions 
are turned into algorithms to facilitate their applications. 
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1 Introduction 
 Due to the standardization of the Unified 
Modeling Language [1] and the Model-Driven 
Architecture [2] the demand for model 
transformation systems has been increased. The 
Visual Modeling and Transformation System 
(VMTS) [3][4] was developed to demonstrate the 
feasibility of graph rewriting-based model 
transformation systems built on metamodeling 
techniques. This paper summarizes the theoretical 
results applied by VMTS to perform topological 
validation on the transformation steps. 
 For the sake of notation conventions and the 
seamless discussion we give a definition for labeled 
directed graphs (LDG) homomorphism. These 
follow the conventions applied in [5]. 
 

Definition 1. (Labeled directed graphs, LDG): 
Let ΩV and ΩE be two given alphabet for node and 
edge labels, respectively. Then the labeled directed 
graph is a six-tuple: 

GGGG
EV le,lv,t,s,G,GG = , (1) 

where VG is the set of vertices, EG is the set of 
edges; Gs and Gt are the source and target functions 
( Gs , Gt : EG → VG ), which map an edge to its source 
and target  vertices, respectively; and finally Glv :

VG →ΩV and Gle : EG → ΩE, which assign a label to 
a vertex and an edge from the appropriate alphabet. 
 

We can consider UML models as an LDG, where 
the node and edge information (type, attribute) is 
stored in the label. One may store this information 
as an XML document (a standard approach to this 
can be found in OMG’s XMI specification [6]). 
Regarding the labels of the vertices and the edges as 
an XML document can be a suitable implementation 
strategy for a UML class diagram applied for 
instance in [4]. To get closer to the category theory 
framework we define graph homomorphism. 
 

Definition 2. (graph homomorphism for LDGs): 
A graph homomorphism f: G→H is a pair of 
functions: EEEVVV HG:f,HG:ff →→= , which 
preserves the sources, targets and labels, that is, it 
satisfies the following conditions: 

• E
HG

V fttf oo =

• E
HG

V fssf oo =

• G
V

H lvflv =o

• G
E

H lefle =o

One can create a directed graph: where the 
vertices are LDGs and the edges are homomorphic 
mapping between the LDG vertices. Thus we have 
obtained an informal notion of the category of the 
directed graphs (Graph). 
 
2 Related Work 
 Graph rewriting [5][7] is a powerful tool for 
graph transformations with strong mathematical 
background. Originally it was developed as the 



natural generalization of Chomsky grammars to 
generate and parse visual languages. Instead of the 
graph language approach we will use the mechanism 
of the individual parsing steps, so-called rewriting 
rules, for graph transformations. The graph 
transformation is defined as a sequence of rewriting 
rules, where each such rule is a pair of graphs, called 
the LHS (left hand side) and RHS (right hand side). 
The rewriting rule operates as follows: the LHS of a 
rule is matched against the input graph (or host 
graph), and the matching portion of that graph is 
replaced with the RHS of the rule. The replacement 
process is referred to as firing of the rewriting rule. 
Model transformation systems mainly use context 
elements [7] to describe the rewriting rules that 
change the edges between objects.  
 Algebraic graph rewriting [5] provides a way to 
manipulate objects in a graph category, where the 
objects are labeled directed graphs, and the arrows 
are graph homomorphisms. There are two main 
branches of algebraic graph rewriting, namely the 
double pushout (DPO) and the single pushout (SPO) 
approaches.  
 The DPO approach accomplishes the rule firing 
by two steps: after finding a redex (the part of the 
host graph matched by the rule), the first step 
removes the elements (vertices and edges) from the 
redex which are in the redex, but not in the RHS 
graph. This modified redex is referred to as interface 
graph. Then as a second step the elements of the 
RHS graph not in the interface graph but in the RHS 
graph are glued to the interface graph. The rewriting 
rule is characterized by a double pushout. The 
application of the rules results in a direct derivation 
of the host graph. The category theory framework 
provides a more flexible and more general 
background, so the DPO approach can be applied to 
many graph-like categories. For labeled and directed 
graphs the existence of the pushout (which is the 
condition to fire a rule) can be ensured by forcing 
the so-called gluing condition. The gluing condition 
consists of two parts. Firstly, the identification 
condition, which states that different vertices in the 
production rule cannot match the same vertex in the 
host graph. Secondly, the dangling edge condition 
has to be dealt with as well: if a vertex should be 
deleted which is connected to an edge that is not 
inside the redex, the production rule cannot be fired. 
Unfortunately, this makes impossible to delete a 
connected vertex without considering its 
environment.  
 The single pushout approach uses partial graph 
homomorphisms to form a single pushout as a rule 
firing condition, and if a conflict occurs when 

violating the gluing condition, deletion has priority 
over preservation. 
 In the algebraic approaches there is a central 
topic: the parallel and sequential independence. Two 
alternative direct derivations are parallel 
independent, if their redexes overlap in elements 
(edges or vertices) which are preserved by both 
derivations. Two consecutive derivations are 
sequentially independent if the second one is not 
dependent on the elements added by the first one, 
and the second one does not delete any items 
accessed by the first one. In the DPO approach the 
two independences are equivalent, because the 
equivalence condition is buried in the gluing 
condition. To take advantage of this property we 
have chosen the DPO approach as a formal 
background for our applications.  
 
3 Contributions 
 In VMTS there are a few assumptions we used in 
establishing the formal model. Since VMTS is a 
metamodeling environment, the metamodel of the 
input model and the output model is always 
available. The rewriting rules consist of metamodel 
elements, and instead of an occurrence an 
instantiation has to be found in the host graph (input 
model). These concepts and their practical 
applications are deeply discussed in [4]. 
 
3.1 A Formal Instantiation Relationship  
 In order to treat the concept of the instantiation 
within the framework of category theory we need to 
ensure a homomorphic mapping between the model 
elements and their metaelements.  
 First we introduce the notion of type preserving 
mapping. Let graph Meta be a UML class diagram. 
Let graph Instance be a UML object diagram 
instantiating Meta. Type Preserving Mappings 
(TPM) are mappings from Meta to Instance, such 
that every model element in Instance is mapped to 
its type element in Meta. This mapping not 
necessarily utilizes all meta elements (if one 
considers abstract classes, for instance) in Meta.
Before resolving this issue we define Type 
Preserving Mapping (TPM) in a more formal way. 
 

Definition 3. (Type Preserving Mapping): 
Let Meta be an LDG, with labels conforming to the 
UML class diagram. Let be another LDG Instance 
given with labels conforming the UML object 
diagram. Let us further assume that Instance 
instantiates Meta according to the instantiation rules 
enforced by the UML. There are two functions 

Booleanlv,lv:i InstanceMeta
V → (2) 



Booleanle,le:i InstanceMeta
E → (3) 

which return true if and only if the Meta graph 
element having the label given as the first function 
argument is the type of the Instance element having 
the label given as the second argument. A mapping 
between an Instance and a Meta LDG is called Type 
Preserving Mapping (TPM) if and only if the 
Instance element is mapped to its type elements and 
to no other elements. 
 

Practically, if we consider an XMI-like approach 
outlined above, iV and iE can be implemented as 
simple comparison between the XML tag 
representing the type of the Instance element, and 
the XML tag holding the name of the Meta element. 
In other tools this relationship may be denoted by a 
reference or other linking methods peculiar to the 
applied programming environment. In the following 
statement we connect graph homomorphism and 
TPM. 
 

Proposition 1. Let Meta be an LDG with labels 
conforming to the UML class diagram. Let another 
LDG Instance be given with labels conforming the 
UML object diagram. We further assume that 
Instance instantiates Meta according to the 
instantiation rules enforced by the UML. If Meta 
does not contain inheritance relationship (nor 
abstract classes, which would be semantically 
meaningless without inheritance) then the TPM 
between the Instance and Meta graph is a graph 
homomorphism. 
 Proof. First a TPM is created between Instance 
and Meta. Because every vertex and edge has a type, 
every Instance element participates in the mapping. 
Since there is no inheritance every instance element 
is mapped to only one Meta element. It means that 
this mapping is a pair of function. 
Now it is shown that the adjacent vertices of the 
Instance graph are mapped to adjacent vertices in 
Meta. Suppose we have :A and :B vertices which are 
connected in Instance via link :l, but their types (A 
and B, respectively) are not connected in Meta with 
L which is the association type for :l (Fig. 1). It 
implies that Instance has violated the rules of 
instantiation (defined by the UML standard), the 
Instance is not the instance of the Meta. That 
contradicts the condition of the proposition. 
 

Fig. 1. Instantiation 

Proposition 2. Let Meta be an LDG with labels 
conforming to the UML class diagram. Let another 
LDG Instance be given with labels conforming the 
UML object diagram. In addition we assume that 
Instance instantiates Meta according to the 
instantiation rules enforced by the UML. Let An
denote the set of the associations connected to the 
nth layer of a class hierarchy. Let Ln represent the 
set of the links instantiating elements of An. Instance 
can be mapped to Meta via graph homomorphism if 
and only if no :O object is attached to link from 
more than one Ln set, where An belongs to the class 
hierarchy of  C, which is the type of :O.

Proof. Firstly, it is shown, that if the conditions 
in the proposition are satisfied, a TPM exists. The 
objects of the classes not participating in an 
inheritance hierarchy are mapped to their types. The 
objects of the classes participating in an inheritance 
hierarchy are mapped to the class which has the 
association instantiated by the link attached to the 
given object. This mapping is a TPM. Then it is 
demonstrated that the adjacent vertices of Instance 
are mapped to adjacent vertices of Meta. For 
vertices not participating in the inheritance hierarchy 
the statement holds based on Proposition 1. For the 
vertices participating in inheritance hierarchy this 
property is enforced by the condition. Because of the 
type compatibility an :X object can be assigned to its 
exact type X or any ancestors of X, but to only one 
of them. Thus it is chosen such that the association 
of the link is attached to it to preserve the adjacency. 
Secondly, the inverse direction is shown. Let it be 
assumed that the mapping can be created, but links 
from more than one inheritance level are instantiated 
and assigned to an :X object. Hence this should be 
assigned to X or one of its ancestor. We cannot 
choose either of them because if we select a class 
based on an association of a specific level, the other 
will violate the adjacency in Meta, which contradicts 
our assumption. 
 

The direct consequence of the propositions above 
is, that, in general, the UML object diagram cannot 
be mapped to UML class diagram by graph 
homomorphism. Hence we must construct a 
metamodel which considers the practical aspects and 
has the same expressivity as the original, but the 
instantiation relationship is a homomorphic TPM. 
First the equivalence of metamodels is defined. 
 

Definition 4 (equivalence of metamodels). 
Let Meta1 and Meta2 be two LDGs, with labels 
conforming to the UML class diagram. Meta1 and 
Meta2 are equivalent if and only if any LDG 
provided with labels conforming to UML object 



diagram which is instance of Meta1 is instance of 
Meta2 as well, and vice versa. If only one direction 
is satisfied, namely, all instances of Meta1 are the 
instance of Meta2, then Meta2 is compatible with 
Meta1. Hence equivalence can be defined as 
bidirectional compatibility. If at least one instance of 
Meta1 are contained by at least one instance of 
Meta2, then Meta2 is partially compatible with 
Meta1.

Contrary to the compatibility property, partial 
compatibility is symmetric. 
 Then an algorithm is given which creates an 
equivalent metamodel where the instantiation 
relationship is a homomorphic TPM. An example 
for this algorithm can be found in [3]. 
 

Algorithm outline 1 (creating homomorphic 
meta) 
1. Walk through the inheritance hierarchy and 

copy all inherited data (attributes associations) 
from the ancestors to the derived class. We take 
care of the multiplicity values with variable 
multiplicity. 

2. Remove inheritance. 
3. Remove all abstract classes. 
 

The algorithm uses a wide-spread technique to 
eliminate inheritance: it copies all the data and 
relations to the derived classes, but we must be 
careful with the association multiplicities, because 
its value must be distributed among the new nodes: 
their sum must be the old value. To handle this, we 
use variable names to denote multiplicity and we 
refer to them from another association. A detailed 
discussion of this algorithm can be found in [8]. 
 

Proposition 3. The homomorphic metamodel 
and its generator metamodel is equivalent. 
 Proof: If an instance LDG instantiates the 
generator metamodel, it instantiates its 
homomorphic metamodel as well. The algorithm 
removes abstract classes only, which are not 
concerned with instantiation at all, so all the object 
types (classes) have been preserved with their 
attribute and other properties. If there was an 
association connected to a class it still remained 
after the transformation. If a class had an inherited 
association after the transformation it has the same 
association directly. Hence all the links that 
instantiate the generator metamodel instantiate the 
homomorphic metamodel as well. If an instance 
LDG instantiates the homomorphic metamodel, it 
instantiates its generator metamodel as well. For 
objects and classes the statement can be shown 

similarly to the inverse direction. The only changes 
in the associations are that some of the direct 
associations have become inherited. This change has 
no influence on instantiation. 
 

The multiplicity values produced by the 
algorithm were designed such that it conforms to 
equivalence. 
 

Proposition 4. Let Meta1 and Meta2 be an 
LDG, with labels conforming to the UML class 
diagram, and they are homomorphic metamodels. If 
Meta1 is compatible with Meta2, Meta1 is a (not 
always connected) subgraph of Meta2 not regarding 
the multiplicity labels. The following formula is 
always true:  

Meta2Meta1 MM ⊆ , (4) 
where Meta1M and Meta2M are the sets of the allowed 
multiplicity for Meta1 and Meta2 side respectively 
at the same topological position. 
In case of partial compatibility, where the zero 
multiplicity values are not allowed, it is enough to 
enforce the following conditions for each 
corresponding multiplicity pairs: 

Meta2Meta1 SupMSupM ≤ , (5) 
∅≠∩ Meta2Meta1 MM  (6) 

where Sup is the supremum of the set  which 
contains the allowed multiplicity values. 
 Proof:  
If every instance of Meta1 also instantiates Meta2, it 
implies the following: if we construct an instance of 
Meta1 which instantiates all classes in Meta1, then it 
means that Meta2 must contain all the classes from 
Meta1.

For partial compatibility the conditions mean that 
(i) if there is an association in Meta1 there must be 
one with at least with the same supremum (that 
implies the containment) (ii) we ensure that there is 
an instance of Meta1 that instantiates every element 
of Meta1, and there is an instance of Meta2 which 
contains it. The latter condition is not necessary but 
rather useful. It is rather obvious to check the 
situations detailed above for the allowed multiplicity 
sets. 
 
3.2 Validating the transformation steps  
 Hence we have a homomorphic metamodel we 
can establish the category theory framework and the 
instantiation. To clarify the notations and the basic 
constructs we define the well-known category of 
LDGs called Graph.

Definition 5. (Category of LDGs, Graph): (i) 
Objects: LDGs,  (ii) Arrows: LDG homomorphisms, 



(iii) Composite operator: composite of graph 
homomorphisms. 
For these composites we show that they are 
homomorphisms as well. Suppose HG:φ → and 

KH:ψ → mappings are graph homomorphisms, 

EGu∈ , VGnm, ∈ , and m(u)sG = , n(u)tG = .
Based on the definition of the homomorphism: 

EE H(u)φ ∈

VVV H(n)φ(m),φ ∈

(m)φ(u))(φs VE
H =

(m)φ(u))(φt VE
H = (7) 

Applying ψ homomorphism using the definition 
again:  

EEE K(u))(φψ ∈ , VVVVV K(n))(φψ(m)),(φψ ∈ ,

(m))(φψ(u)))(φ(ψs VVEE
K = ,

(m))ψ(φ(u)))(φ(ψt VEE
K = (8) 

which means that φψ o is also homomorphism. 
Graph homomorphisms can be thought as creating 
composite functions, which are (i) associative: 

fg)(hf)(gh oooo = , (9) 
 (ii) and the identity arrows are the identity functions 
for both vertices and edges. Then it is obvious for an 
arbitrary f: A→B that  

ffidB =o , and fidf A =o . (10) 
 

Based on the previous definition one can easily 
validate that both the meta LDGs and instance 
LDGs are objects in Graph, and partial 
compatibilities (lkm, lg, gdm, dhm, rhm, krm) 
inclusions (l, r, l*, r*, m, d, m*) and instantiations 
(lm, km, rm, gm, dm, hm) are arrows.  
 Then the transformation step of the DPO 
approach is extended with the metamodels as it is 
depicted in Fig. 2. 
 

Fig. 2. The diagram of the transformations step with 
metamodels. 

 

As it is well-known from the DPO approach, the 
inner double square forms a double pushout. For 
each participants of this double pushout a 
metamodel is provided via a TPM homomorphic 
mapping.  
 

We assume partial compatibility morphisms 
between the meta-LDGs based on Proposition 4 and 
for semantic reasons: it is not optimal to have an 
LHS metamodel which can be instantiated such that 
it never matches. In case of RHS without ensuring 
this assumption the rewriting is an error prone 
operation, because the result may not conform to the 
destination metamodel. So we summarize this in a 
definition. 
 

Definition 6. If an LHS and an RHS satisfies the 
condition of partial compatibility elaborated in 
Proposition 4 with respect to GM and HM, and they 
contain nonzero multiplicity values, they are called 
proper metamodels.

Proposition 5. If the morphisms are inclusions in 
the outer double square, and the inner square is a 
double pushout, the outer double square is a double 
pushout. 
 Proof: 
As it is known the category Graph has all pushouts, 
which means that for every pair of morphism there 
is a pushout in the category. It can be proven [5] that 
if given two morphism b: A→B, c: A→C, then the 
pushout  〈D, g: B→D, f: C→D〉 can be constructed 
as ≈+=≈+= )C(BD,)C(BD EEEVvV i.e. the 
quotient set of the disjoint union modulo 

A}a|g(a){f(a), ∈≈= smallest equivalence 
relation that maps each element to its equivalence 
class. For Graph the pushout construction is 
accomplished componentwise, i.e. for the edge set 
and the vertex set, respectively. If the morphisms are 
inclusions, a diagram depicted in Fig. 3 can be 
established which is a pushout [9]. Based on 
Proposition 4, it can be seen, that if the match exists, 
then there is a partial compatibility between 
corresponding metamodels. The properness 
conditions (c.f. Definition 6) are assumed to be 
fulfilled for semantic reasons, so there are inclusion 
morphisms between the metamodels as it is shown 
in Fig 2.  Hence the outer double square is a 
pushout. 
 Assume a rewriting rule which does not violate 
the dangling edge condition, but we have classes A
and B connected by the association a on the 
metamodel level, which does violate it via removing 
B without removing a. Then the rule instantiates A,



B, and a, and will remove :B without removing l
(which is the instance of a), which contradicts to our 
original assumptions. 

Fig. 3. A Doolittle diagram with inclusions in Set (a 
category with sets as objects and functions as morphisms) 
 

Based on the proof of Proposition 5 the next 
proposition is rather straightforward. 
 

Proposition 6. If the meta square is a double 
pushout and proper metamodels are assumed then 
the rule cannot violate the dangling edge condition. 
 
Conforming to the DPO approach results in “free” 
propositions like below: 
 

Proposition 7. If  two LHS metamodels do not 
contain elements in common, then the order of the 
rules are invariant and can be executed parallel. 
 Proof: Direct consequence of the DPO 
Parallelism theorem, because in this case the 
instance level will not overlap either. 
Proposition 7 is especially useful if the 
transformation environment is expected to offer 
parallel execution of the rules automatically without 
collision and side-effects. Proposition 5-6 facilitate 
to validate the rewriting rule on the metamodel level 
without knowing what the actual redex is.  
 

Algorithm outline 2. (detecting gluing time RH 
error) 
1. If the partial compatibility does not hold for the 
LM and GM (it can be checked using Proposition 4), 
we can signal an error message or automatically 
adjust it emitting a warning message. In case of RM 
and HM if the compatibility holds for, no additional 
error check is necessary.  
2. If only the partial compatibility is satisfied then 
there are two cases: (i)When RM allows a larger 
instance (with greater multiplicity) then it is 
considered an error which can be detected and 
reported. (ii)When RM allows a smaller instance it 
can be a part of the instance specified by HM. In this 
case the rewriting might cause an error, but seamless 
situations are also possible. This type of error can 
only be detected at gluing time checking the created 
changes again HM. 

3. When HM is not partially compatible with RM, 
an error message should be reported or an automatic 
adjustment can be performed (based on the 
conditions in Proposition 4) with warning. 
 
4 Conclusion 
 A formal background has been proposed for 
checking topological validity of model 
transformation rules. The applied mathematical 
formalism is category theory and the double pushout 
approach, as it was used successfully in the field of 
graph rewriting. 
 Since it is required by the category theory, the 
instantiation relationship needs to be transformed to 
conform to the rules of the homomorphic mapping. 
To ensure the interchangeability between the 
transformed and the original metamodel, the 
definitions of equivalence and compatibility have 
been introduced. It has been proved, that the original 
and the transformed metamodels are equivalent on 
the instance level. Then criteria have been proven to 
check the topological validity of the rewriting rules 
and with the provided algorithm several erroneous 
transformation rule can be detected and prompted 
back to the user. A proposition condition for parallel 
execution has been also proven for the metamodel-
based rewriting rules. 
 Future work includes an extension to the SPO 
approach and performing constraint transformations 
for homomorphized metamodels. 
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