
Learning from Noise Data with the Help of Logic Programming Systems

ELENA BAUER GABRIELLA KÓKAI
Department of Programming Systems Department of Programming Systems

Friedrich-Alexander University Erlangen-Nuremberg Friedrich-Alexander University Erlangen-Nuremberg
Martensstrasse 3, 91058 Erlangen Martensstrasse 3, 91058 Erlangen

GERMANY GERMANY

www2.informatik.uni-erlangen.de/˜kokai

Abstract: - This paper presents an overview of the recent systems, that combine inductive logic programming with
genetic algorithms. The systems are described and then compared to their design and their behaviour with correct
and incorrect training data.

Key-Words: - Inductive Logic Programming, Evolutionary Algorithms, Genetic Algorithms, Genetic Pro-
gramming, Concept Learning, Relational Learning, First Order Logic

1 Introduction

Evolutionary algorithms (EA) are stochastic general
purpose search-algorithms, that have been applied to a
wide range of machine learning problems. EAs can not
learn recursive structures, but they have the advantage
that the whole hypothesis space is searched through.

Learning from examples in first-order logic, also
known as inductive logic programming (ILP), is also
a central topic in machine learning. ILP can learn re-
cursive structures, but ILP has the disadvantage that
the hypthesis space is only partially searched through.

In 1994 Wigham and McKay had the idea to com-
bine EAs and ILP to utilise the advantages of both ap-
proaches: The ability of genetic algorithms to search
a wide search-space efficiently and the ability of ILP
to learn recursive structures. In this paper five ge-
netic logic programming (GLP) systems are described.
They are compared first to their physical structure
and then to their performance on correct and incorrect
training data.

This paper is organized as follows. Section 2 in-
troduces evolutionary algorithms and inductive logic
programming. Section 3 describes five systems which
combine EAs and ILP. Section 4 compares the systems
to their design and section 5 to their accuracy. Finally
section 6 summarizes the results and gives an outlook
to future work.

2 Theoretical Background

This section gives a briefly introduction to the two
learning methods EA and ILP which are used by the

Figure 1: The evolution process

five systems that are to be discussed.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EA) [7] are population-
based learning algorithms and they can deal with com-
paratively difficult optimisation-problems. EAs of-
fer an efficiently search-algorithm to a lot of learning
tasks. The cycle of an EA is shown in figure 1.

Genetic algorithms (GA) and genetic programming
(GP) are partitions of EAs.

2.2 Inductive Logic Programming

Inductive logic programming (ILP) is a machine learn-
ing approach, in which correlations of objects are as-
certained by induction. Hypotheses are searched for
and evaluated by comparing their classification results
with a sufficiently large number of instances for which
knowledge exists, whether their objects are correlated



Background knowledge

Examples

Goal predicate

Generalisation
++

Specialisation

Figure 2: General construction of ILP

or not [11]. It is thus assumed that hypotheses clas-
sifying these training instances correctly will also ap-
proximate the target function well over any other set of
instances. The learned hypotheses can be interpreted
as Prolog programs, since they consist of a set of rules,
that is, first order Horn clauses.

The most used operators (see Figure 2) with which
consistent and complete programs can be generated are
specializing and generalizing. A hypothesis H is con-
sistent, if H covers no negative example. H is com-
plete, if it covers all positive examples. In addition to
consistency and completeness there is a third feature
to evaluate a hypothesis: simplicity, which results in
shorter hypotheses.

Specializing is a learning method where the re-
quired starting hypothesis stipulates that it must ter-
minate for all positive and some negative examples.
Result is a modified starting hypothesis. The actual
hypothesis is specializied as long as negative exam-
ples are no longer derivable. Generalizing can easily
be regarded as the opposite of specializing. Here the
process does not terminate for some positive exam-
ples. Frequently the starting hypothesis is the empty
program or the program in which the errors are to be
found.

3 Introduction of the GLP-systems

In this section the GLP-systems are described by their
data representation, their architecture, their operators
(selection, mutation, crossover, seeding) and their fit-
ness functions.

3.1 REGAL

RElational Genetic Algorithm based Learner
(REGAL, [6]) is a distributed GA-based learner,
which learns first-order logic concept descriptions
from examples.

The concept description language, used by
REGAL, is a Horn clause language. A predicate for
example has the form predicate(x1, x2, ..., xm,K).
x1, x2, ..., xm are variables and the term K is a dis-
junction of constants. One single individual is a con-
junction of predicates and is encoded as a bitstring. A
language template defines the order and complexity of
the resulting bitstring.

In REGAL one single process, called the supervi-
sor, coordinates a set of so called Nodal Genetic Al-
gorithms (NGAs). Each of these NGAs searches a
partition of hypothesis space given by the supervisor
and sends its best results back frequently. The supervi-
sor extracts a temporary solution from these results. If
this is a satisfactory solution, the supervisor stops the
NGAs and finishes the search, otherwise the supervi-
sor can focus the search to other parts of the hypothesis
space by modifying the set of the examples assigned to
each NGA.

REGAL uses a special operator to select individuals
within the genetic algorithm. This operator is called
the Universal Suffrage (US) operator. A number of
positive training examples are randomly selected. All
the individuals that cover one of these selected exam-
ples are determined. One individual is selected with
the probability proportional to its fitness. The selected
individual is then replaced with its offspring.

REGAL has four different crossover operators for
reproduction. For further explanation of the classical
uniform or classical two-point crossover see [7]. The
specializing and generalizing operator works by flip-
ping bits. The more bits in a bitstring are set the more
general is the bitstring and vice versa. If the general-
izing operator is chosen, new substrings are generated
by OR-ing the bits of randomly selected correspond-
ing substrings of the parents. Substrings that are not
selected are copied unchanged into the new individu-
als. The specializing operator works analogously with
a logical AND.

The mutation operator inverts every bit in the bit-
string with the same probability.

The seeding operator gets as parameter a positive
instance and returns an individual which covers this
instance. This operator is used while initializing and
as mutation operator.

The fitness function depends on completeness, con-
sistency and simplicity.

3.2 G-NET

G-NET [1], a succesor of REGAL has the same con-
cept description language and for this reason the same



data representation as REGAL.
The architecture of G-NET encompasses the three

nodes:
• Genetic nodes (G-nodes), where individuals are

reproduced,
• Evaluation nodes (E-nodes), where individulas

are evaluated, and
• Supervisor node, which coordinates the compu-

tation of the G-nodes according to a coevolutive
strategy [1].

The main improvement lies in the coevolutive strategy.
The selection operator is the US operator as described
for REGAL.

The crossover operators used by G-NET are a clas-
sical two-point crossover [7] and a variant of the uni-
form crossover, which performs either specializing or
generalizing. The generalizing and specializing oper-
ators work just as the ones of REGAL.

The mutation operator is either specializing, gener-
alizing or seeding. The specializing mutation operator
is performed by turning zeros into ones. The general-
izing operator by turning ones into zeros.

G-NET has two different fitness functions, one to
evaluate the global (disjunctive) and one to evaluate
the local (conjunctive) fitness. These functions are
based on completeness, consistency and simplicity.

3.3 DOGMA

The concept description language and for this reason
the data representation of Domain Oriented Genetic
MAchine (DOGMA, [8]) is similar to the language
and data representation of REGAL described above.

DOGMA operates on two different levels: The
lower and the upper level. The lower level is the
bitstring-based level of REGAL with appropriate oper-
ators. The crossover, mutation and seeding operators
are the same as in REGAL, additionally there are a
mate and a background-seeding operator. In the upper
level the individuals are divided into genetic families
with special family operators: A break, a join and a
make-family operator is implemented.

DOGMA uses background knowledge: Individu-
als are divided into species according to which part of
background knowledge they may use. In one family
there can be only one individual of the same species.
This helps to enhance diversity in the population.

A next generation is build in DOGMA by applying
the different operators (both genetic and family) suc-
cessively.

The fitness function of DOGMA is a combination
of the minimum description length principle (MDL)

and information gain (IG).

3.4 ECL

Evolutionary Concept Learner (ECL, [4]) computes if-
then-rules of the form p(X,Y ) ← r(X,Y ), q(Y, a).
The rules consists of atoms; the arguments of the
atoms are either variables or constants.

ECL loops the following algorithms: First a part
of the background knowledge is chosen. A number
N of individuals are selected and these individuals are
reproduced. The loop will end, if either all positive
examples are covered or a maximum number of itera-
tions are processed. In the second case a logic program
is extracted which covers as much positive and as less
negative examples as possible.

ECL has three different selection operators: The
US operator of REGAL, described in section 3.1 and
two extensions of this operator: the Weighted Uni-
versal Suffrage (WUS) operator and the Exponentially
Weighted Universal Suffrage (EWUS) operator. These
two operators favor examples more difficult to deal
with, thus examples that are uncovered or examples
that are covered only by few clauses.

ECL does not use crossover operators, but it has
two specializing and two generalizing mutation opera-
tors: A clause is generalized either by deleting an atom
from the body of a clause or by replacing all occur-
rences of a constant in a clause with a variable. A
clause is specialized either by adding an atom to the
body or by replacing a variable with a constant. Every
mutation operator uses a gain function, which yields
the difference between the clause fitness before and af-
ter the application of the mutation operator: If for ex-
ample the AtomDeletion operator is choosen, the atom
at in the clause which omission yields to the highest
gain is deleted.

The fitness function of ECL is based on consistency
and completeness.

3.5 GELOG

The GELOG [10] framework is another GLP frame-
work, that combines ILP with an evolutionary search
algorithm. Especially, GELOG’s data representation re-
sembles the one of GP: The individual solutions con-
sist of Prolog program parts, which encode the hy-
potheses’ rules. Thus, an individual comprises the tar-
get predicate as its left hand side and a number of dis-
junctions (right hand sides), which are conjunctions of
literals. The following example demonstrates how in-



dividuals are represented in the the original GELOG im-
plementation:

daughter(X0, X1) :-
female(X0), parents(X1, X2, X0).
parents(X2, X1, X0).
female(X1), female(X0),
parents(X2, X1, X0).

The depicted individual consists of three disjunctions
(right hand sides); each disjunction contains a number
of conjuncted literals and is terminated by a dot.

The pay-off of one hypothesis results from the
number of correctly classified instances. Different se-
lection operators have been implemented: fitness pro-
portional selection, rank based selection and elitism
(for further explanation of these operators see [7, 9]).

Due to the non-standard data representation, spe-
cial recombination and mutation operators had to be
implemented:
• Recombination operators:

– two individuals exchange whole right hand
sides by single- or multi-point crossover,

– two individuals exchange literals of their
right sides by performing single- or multi-
point crossover.

• Mutation operators:
– insertion and deletion of literals,
– insertion and deletion of entire disjunctions,
– insertion of new variables, and
– substitution of variables.

The fitness function is based on the consistency,
completeness and the simplicity of the hypothesis.

Considering the size of the class of problems
GELOG can be applied to, it was inevitable that the lim-
its of the system quickly became obvious and under
certain circumstances or for certain problems, the sys-
tem thus turned out to be less efficient. Consequently,
works were realized, where it was tried to broaden the
existing system and thus resolve some of the surging
problems by using methods such as meta evolution,
parameter adaptation, seeding or linkage learning.

4 Comparison of the GLP systems

After the representation of the systems, they are com-
pared to their most important features: data represen-
tation, operators, fitness functions and parallelization.

4.1 Data representation

The data representation of the GLP systems is shown
in table 1. DOGMA, G-NET and REGAL use a bit-

GLP System data representation

REGAL bitstring, needs language template
DOGMA bitstring, needs language template
G-NET bitstring, needs language template

ECL high level language representation
GELOG logic program

Table 1: Data representation

wise representation for the individuals and use lan-
guage templates to map the attributes to a bitstring.
ECL and GELOG use high-level data representation.

A good choice seems to be a high level representa-
tion like ECL or GELOG, because the individuals can
have variable length and the specializing and gener-
alizing operators can be applied directly and may not
lead to inconsistent individuals.

4.2 Genetic Operators

Table 2 shows the comparison of the operators of the
different systems.
Mutation and Crossover
The high level representation of GELOG and ECL leads
to almost identical mutation operators. Both systems
have operators to insert or delete a new literal and to
insert or substitute variables. GELOG additionally uses
crossover operators.
Selection
The two extensions of the US operator in ECL are a
better solution than the pristine US operator. The US
operator does not distingiush between examples that
are harder to cover and examples that are easier to
cover. This can lead to an emergence of so called su-
perindividuals. These individuals cover many (easy)
examples. These superindividuals will often be se-
lected and the diversity of the population will decrease.
The selection operators of ECL are better than the se-
lection operators of REGAL and G-NET.

DOGMA uses a simple fitness proportional selec-
tion operator, which can also lead to superindividuals.
GELOG uses in addition to the fitness proportional se-
lection operator, an elitism and a rank based selection
operator. The rank selection operator prevents the oc-
currence of superindividuals.

The difference between GELOG and ECL relies on
the fact that in GELOG the selection occurs over the
whole population and in ECL the selection occurs over
a part of the population (over the individuals that are
selected randomly by the selection operator).



GLP System mutation operators crossover operators selection operators

REGAL classical uniform, two-point Universal Suffrage
seeding generalizing, specializing

DOGMA classical uniform, two-point fitness proportional
seeding generalizing, specializing on family-level

G-NET generalizing, two-point Universal Suffrage
specializing, seeding generalizing, specializing

ECL 2 specializing none Universal Suffrage,
2 generalizing WUS, EWUS

GELOG 7 different 2 RecombineRHSOperators fitness proportional
(specializing, 2 RecombineTwoRHS- elitism,

generalizing, neither) PredicateOperators rank

Table 2: Comparison of the operators

4.3 Fitness

The differences of the fitness functions are described
in table 3.

GLP System fitness function

REGAL consistency, completeness, simplicity
DOGMA Minimum Description Length,

Information Gain
G-NET 2 functions: consistency,

simplicity, completeness
ECL consisteny, completeness

GELOG consistency, completeness, simplicity

Table 3: fitness functions

The fitness function of DOGMA is based on com-
pleteness and consistency, because the MDL imple-
mented in DOGMA preferres fairly large, but very in-
consistent rules and the IG preferres almost consistent,
but very incomplete rules.

Therefore there are no great differences in the fit-
ness functions: all systems use completeness and con-
sistency to evaluate the fitness of an individual.

The feature simplicity is missed in ECL and in
DOGMA. Although it is not such an important feature
like completeness and consistency, shorter hypotheses
are more simple to handle, to save and to verify.

4.4 Parallelization

REGAL and G-NET are per se parallel algorithms, the
focus of the search can be shifted to promising parts of
the hypothesis space. DOGMA and GELOG have the
ability to parallelize the evolution process, DOGMA
has a Parallel Virtual Machine architecture and GELOG

has an extension of a so called meta evolution.

5 Accuracy

In this section the systems are compared using three
types of datasets: The mushroom and the chess
datasets are taken from the UCI Machine Learning
Repository [2] and the mutagenesis dataset is taken
from [3].

Unlike DOGMA for all systems the 10-fold cross
validation was used to get the average accuracy.
DOGMA was trained on five small training sets, each
containing 100 examples and the accuracy was then
tested on 5000 randomly generated examples. The re-
sults of ECL and DOGMA are from [4] and [8]. The
results of GELOG, G-NET and REGAL were tested by
the authors.

In table 4 the average accuracy obtained by the sys-
tems on different datasets is presented.

GLP System Chess Mushrooms Mutagenesis

REGAL – 99.7 –
DOGMA 97.31 – –
G-NET 96.34 100.0 86.1

ECL – – 87.2
GELOG 99.32 99.75 –

Table 4: Result is the average accuracy obtained by the
systems on different datasets

GELOG shows good results for the chess and the
mushroom dataset. But the best results on the mush-
room dataset has G-NET.

In table 5 DOGMA and GELOG are compared with
the ILP system mFOIL [5]. mFoil was developed to
handle noisy datasets; the results are not directly com-
parable with the results of DOGMA and GELOG, be-
cause mFoil does not use 10-fold cross validation. The



NL arguments arguments and class class
% mFOIL DOGMA GELOG mFOIL DOGMA GELOG mFOIL DOGMA GELOG

5 91.87 94.36 85.48 89.28 92.75 84.89 94.26 92.47 84.85
10 80.45 88.70 84.88 80.79 80.23 84.86 92.02 90.64 84.15
15 80.06 83.37 84.91 76.58 78.07 84.82 89.96 88.86 84.97
20 76.49 80.86 84.74 74.74 74.16 84.89 88.37 88.77 84.52
30 74.04 72.72 84.69 69.65 67.08 84.80 86.01 87.14 84.60
50 68.62 61.84 84.89 66.27 56.20 84.79 79.20 77.13 57.12
80 66.30 56.42 74.98 61.73 52.85 42.65 65.04 53.72 36.35

Table 5: Results of the chess problem. NL refers to level of noise.

comparison is based on corrupted training data. Three
kinds of noise were considered: noise only in the class
variable, noise in the arguments and noise in the argu-
ments and in the class variable.

GELOG produces stable results for almost all noise
levels. The system accuracy is about 85%. DOGMA
and mFoil have very good results for the 5% error level
and for the training data in which the classvariables are
corrupted.

6 Conclusion and Future Work

This paper described five GLP systems. Every system
combines GA with ILP.

The prime similiarity of REGAL, G-NET and
DOGMA lies in their bitwise data representation. Es-
pecially for the chess problem DOGMA proves effi-
cient on less corrupted training data.

The expected benefits from GELOG’s high-level
data representation are demonstrated by its stable re-
sults on noisy training data. The comparison between
GELOG and ECL was not possible because we do not
have information about ECL’s behaviour on corrupted
training data.

In the future we plan further comparisons, with a
broader range of datasets and with a simple genetic
algorithm.

References:

[1] C. Anglano, A. Giordana, G. Lo Bello, and
L. Saitta. An Experimental Evaluation of Co-
evolutive Concept Learning. In Proceeding of
the 15th International Conference on Machine
Learning, pages 19–27, 1998.

[2] C. Blake and C. Merz. UCI Repository of ma-
chine learning databases.

[3] A Debnath, R. L. de Compadre, G. Debnath,
A. Schusterman, and C. Hansch. Structure-
Activity Relationship of Mutagenic Aromatic
and Heteroaromatic Nitro Compounds. Corre-
lation with molecular orbital energies and hy-
drophobicity. Journal of Medical Chemistry,
34(2):786–797, 1991.

[4] F. Divina and E. Marchiori. Evolutionary Con-
cept Learning. In GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Con-
ference, pages 343–350, 2002.

[5] S. Džeroski. Handling imperfect data in induc-
tive logic programming. In Proceedings of the
4th Scandinavian Conference on Artificial Intel-
ligence, pages 111–125. IOS Press, 1993.

[6] A. Giordana and F. Neri. Search-Intensive Con-
cept Induction. Evolutionary Computation Jour-
nal, 3(4):375–416, 1996.

[7] D. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, 1989.

[8] J. Hekanaho. DOGMA: A GA-based Relational
Learner. In Proceedings of the 8th Interna-
tional Workshop on Inductive Logic Program-
ming, pages 205–214, 1998.

[9] C. Jacob. Illustrating Evolutionary Computation
with Mathematica. Morgan Kaufmann, 2001.

[10] G. Kókai. GeLog - a System Combining Genetic
Algorithm with Inductive Logic Programming.
In Proceedings of the International Conference
on Computational Intelligence, pages 326–345,
2001.

[11] N. Lavrač and S. Džeroski. Inductive Logic Pro-
gramming: Techniques and Applications. Ellis
Horwood, 1994.


