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Abstract- Elastically coupled nodes exposed to artificial potential fields can be used as a model for path
planning of autonomous mobile devices in unknown environments. In doing so, a possible path is pro-
vided by a spline interpolation of the nodes in their equilibrium positions. Repulsive potential fields
are assigned to non-valid areas and moving obstacles identified by environmental sensors. In general
the potential fields are nonlinear functions of position and time. Therefore, the equilibrium positions of
the nodes can only be determined numerically. A modification of the Newton-Raphson method for this
application is introduced and discussed with respect to its convergence properties. Finally, the method
is illustrated by a simulation example.
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1 Introduction
To equip autonomous mobile devices with path
planning capabilities in unknown environments is
a great challenge with many technical applica-
tions, see [1], [2]. The proposed model of elasti-
cally coupled nodes is biologically inspired by in-
sects using antennae to sense their environment,
as motivated in Fig. 1. However, for path plan-
ning the environmental sensing of the antennae is
extended by perception of motions of obstacles.

Fig. 1: Biological inspiration of virtual antennae
modeling

Kinematic information of the environment is col-
lected by sensors and incorporated in the exter-
nal potentials acting on the nodes of the anten-
nae. Appropriate repulsive potential fields are as-

signed to objects in the environment. Interpo-
lation points of safe traveling paths for the au-
tonomous device are provided by the equilibrium
positions of the elastically coupled nodes exposed
to external potentials. In general the external po-
tentials are nonlinear, time depending functions
of the position vectors. Therefore, the equilib-
rium configuration of the antennae can only be
determined numerically. In this paper a partic-
ularly tailored Newton-Raphson method for this
application is presented.

The setup of the antenna model exposed to ex-
ternal potentials is presented first. Subsequently,
the Newton-Raphson method and the according
modifications are discussed accounting for its con-
vergence properties. The overall procedure is then
demonstrated by a simulation example.

2 Model Setup
The mobile unit sketched in Fig. 2 may represent
a mobile robot or any kind of ground vehicle.
It is assumed that the mobile unit is capable of
sensing positions and velocities of environmen-
tal obstacles and boundaries relative to itself. A
virtual antenna, attached to the mobile unit, is



modeled by elastically coupled nodes Pi, where
the coupling between adjacent nodes is realized
by springs. Without environmental disturbances,
the antenna stays in an undeformed equilibrium
configuration aligned towards the planned direc-
tion of motion of the mobile unit. The node P0 is
fixed to a reference point on the mobile unit while
the node PN is placed in the planned direction of
motion at a distance corresponding to the max-
imum sensor detection range. Since the mobile
unit is only allowed to navigate on collision-free
paths, a potential field is assigned to each envi-
ronmental boundary or obstacle detected by the
sensor system of the mobile unit. As a conse-
quence of these potential fields, repelling forces
act on each node Pi transforming the antenna
into a penetration free equilibrium configuration
as shown in Fig. 2.

Fig. 2: Path planning procedure at timest0, t0+ , t3

At time t0+ , shortly after t0, a spline interpola-
tion of the nodes Pi(t0+) is carried out to provide
the evasion path. Figure 2 shows the position of
the mobile unit with the attached antenna moving
along the evasion path exemplary for the instant
of time t3. Note, that in the following, the instant
of time ti denotes the time, when the mobile unit
would pass the position of node Pi(t0+).

After this brief outline, the concept of motion
planning using a virtual antenna is now presented
in more detail. The idea of the proposed concept
is based on the method of elastic bands, first intro-
duced in [3] for robotic path planning. In [4] this
method was applied to vehicle following problems.

Recently, [5] applied and extended this method
to vehicle collision avoidance maneuver problems.
In Fig. 3 an example of a complex environment is
shown.

Fig. 3: Mobile unit navigating in a complex
environment with the global reference frame(x, y)
and the mobile unit fixed reference frame(xA, yA)

For the method outlined here, it is assumed that
the mobile unit moves with a given speed v(t).
The position vector rOj

i := rOj (ti) of an obstacle
Oj at time ti and the position vector ri of a node
Pi of the antenna are represented in a reference
frame (xA, yA). Points on the path of a moving ob-
stacle Oj at the instance of time ti are denoted by
Oj,i := Oj(ti). As a simplification of the geometry
of the obstacles Oj a safety circle of diameter dj is
chosen. By assuming constant velocity of moving
obstacles during the planned evasion maneuver,
the path of a moving obstacle is linearly extrapo-
lated, see the paths Oj,i−1, Oj,i, Oj,i+1, j ∈ {1, 2}
in Fig. 3. The mobile unit plans to move along the
initial path at the given velocity v(t) starting from
the position at node P0 at time t0. At time ti, the
mobile unit would pass the position of node Pi.
At the same time ti, the obstacles would occupy
the positions of the nodes Oj,i, j ∈ {1, 2}.

Each node Pi of the antenna is influenced by
the internal potential

V int
i =

1
2
ki(‖ri+1 − ri‖ − li)2

+
1
2
ki−1(‖ri − ri−1‖ − li−1)2 (1)

of its adjacent springs i and i − 1. Therein li
denotes the initial length and ki the stiffness of
spring i, respectively, see Fig. 2. The internal force
Fint

i acting on node Pi is given by the directional



derivative of the potential of the springs evaluated
at Pi

Fint
i = −∂V int

i

∂ri

= ki(‖ri+1 − ri‖ − li)
ri+1 − ri

‖ri+1 − ri‖
(2)

−ki−1(‖ri − ri−1‖ − li)
ri − ri−1

‖ri − ri−1‖
.

The external potential at the node Pi

V ext
i := V ext(ri, ti) = V B(ri) +

∑
j

V Oj (ri, ti) (3)

is made up from the external potential fields of the
environmental boundaries V B

i := V B(ri) and the
time dependent potential fields V

Oj

i := V Oj (ri, ti)
of the obstacles Oj at time ti. For the particular
scenario, shown in Fig. 3, the external potential
field V ext((x, y), ti), (x, y) ∈ R2, virtually sensed
by node Pi at time ti is illustrated in Fig. 4.

Fig. 4: Potential field of the complex environment in
Fig. 3 sensed by nodePi at ti

Now, the influence of the external potential
V ext

i on each node Pi of the antenna is addressed.
The potentials of obstacles act between positions
of the mobile unit and of the obstacles that would
be occupied at the same time. By taking the direc-
tional derivatives of the external potentials with
respect to a node Pi the external force acting on
the node Pi is given by

Fext
i := F ext(ri, ti) = −∂V ext

i

∂ri
. (4)

Thus, a node close to a non-valid area is repulsed.
The external forces on node Pi of the antenna due
to the potential fields of the obstacles and the en-
vironmental boundaries is illustrated in Fig. 5.

Fig. 5: External forces acting on nodePi at ti.

Force equilibrium

Fsum
i = Fext

i + Fint
i = 0, i = 0, ..., N. (5)

at each node Pi of the antenna gives the equilib-
rium solution in the deformed configuration.

To detect different possibilities to evade ob-
stacles, first approximations of solution paths are
needed. If more than one equilibrium solution ex-
ist, it should be ensured that all start configura-
tions of the antenna migrate into different equi-
libria. After smoothing the resulting equilibrium
solutions by interpolation with cubic splines, the
evasion path has to be selected. Therefore, certain
selection criteria are conceivable. One example is
given in section 4.

In general (5) represents a nonlinear system
of equations of several variables that can only be
solved numerically. The complexity of the calcu-
lation of a solution of (5) depends on the geometry
of the non-valid areas as well as on the number of
obstacles and their behavior.

3 Numerical Procedure
The problem of finding roots of a given function
F : Rn → Rn may be written in the form

F(x) = 0. (6)

A popular approach for solving (6) is known as
Newton-Raphson method.



3.1 The Newton-Raphson method
The Newton-Raphson iteration can be interpreted
as a linear approximation

F(x) ' F̃(x) := F(xn) + J(xn)(x− xn), (7)

obtained by truncating the Taylor series expansion
of F at xn after the linear term and then solving
the resulting linear equation F̃(x) = 0, calling the
solution xn+1 ([7], p.181-185). The matrix J de-
notes the Jacobian of F. Performing an iteration
step, (7) leads to

xn+1 = xn − J−1(xn)F(xn), n = 0, 1, 2, ... . (8)

At best, starting from an initial vector x0 the ap-
proximation converges to a root x∗.

In many cases, solutions of nonlinear equations
can be approximated by considering a fixed point
problem: Find x ∈ Rn such that for the mapping
φ : Rn → Rn

φ(x) = x (9)

holds. By choosing

φ(x) := x− J−1(x)F(x) (10)

the fixed point iteration

xn+1 = φ(xn), n = 0, 1, 2, ... , (11)

also known as the Banach-Iteration, generates
a sequence of approximations described in (8)
being the Newton-Raphson iteration for solving
F(x) = 0. Therefore, the convergence criteria
of the Banach-Iteration (11) are also valid for
the special case of the Newton-Raphson method.
Hence, the Newton-Raphson method converges to
a root x∗ if the requirements of the fixed point
theorem are met in a sufficiently small neighbor-
hood of the root x∗ ([6], p.305-307, [7], p.311). In
this context the function φ : Rn → Rn has to be
contractive

‖φ(xi)− φ(xj)‖ ≤ k‖xi − xj‖,∀xi,xj ∈ Rn (12)

with a contraction constant k ∈ [0, 1), that can
be estimated by the spectral radius %(φ′(x∗)) ([6],
p.169, 299-304, [7], p.311).

3.2 Modifications of the Newton-Raphson
method for path planning
Applying the Newton-Raphson iteration to the
nonlinear system (5), leads to

rn+1 = rn − J−1(rn)F(rn), n = 0, 1, 2, ... , (13)

where rn := [rn
0 , . . . , rn

N ] consists of all position
vectors ri

n of the nodes at the nth iteration step.
The initial configuration of the antenna is denoted
by the vector r0.

As pointed out in section 2, the force vector F
and therefore the Jacobian matrix J do not only
depend on the positions of the nodes Pi but also
on the corresponding instances of time ti. So (13)
may be written as

rn+1 = rn − J−1(rn, tn)F(rn, tn)
⇒ J(rn, tn)∆rn,n+1 = −F(rn, tn) (14)

n = 0, 1, 2, ... ,

where the vector tn := [tn0 , . . . , tnN ] consists of the
instances of time ti, i = 0, ...N , and ∆rn,n+1 =
rn+1−rn defines the displacement vector of the an-
tenna in the nth iteration step, respectively. Note
that at each iteration step n the instances of time
at which the displaced nodes would be passed
through are changed, such that in each subsequent
iteration step the positions rOj

i of the obstacles
have to be evaluated again.

In case the absolute value of the displacement
vector ∆rn,n+1 and therefore the changes in the
positions of the nodes decay with increasing num-
ber of iteration steps it is guaranteed that the dif-
ferences in time and thereby the differences in the
positions of the obstacles decrease, too. Thus, the
convergence of the modified time dependent pro-
cedure is dominated by the convergence behavior
of the Newton-Raphson method.

The external potential fields, as for example
depicted in Fig. 4, are defined in a way such that
their gradients are directed towards the valid area.
This ensures the existence of minima inside the
valid area. Thus, the problem of finding roots
of the gradient mapping of a potential field can
be solved by the Newton-Raphson method. To
prevent that a node of the antenna drops out of
the valid area constraints for the vector of dis-
placement ∆rn,n+1 are formulated. In case that



in one iteration step ñ the vector ∆ri
ñ,ñ+1 shifts a

node Pi into a non-valid area, it is cut to the half
length of the shortest distance to the correspond-
ing boundary, ∆rñ,ñ+1

i → ∆r̄ñ,ñ+1
i , as shown in

Fig. 6.

Fig. 6: Restriction of the iteration to valid solution
spaces.

In doing so, it is ensured that the nodes perma-
nently remain in the valid area for all iteration
steps of the Newton-Raphson iteration.

The internal forces of the antenna influence the
position of the nodes locally. It is desired that
the nodes migrate into collision-free configurations
which do not twist and have no peaks. Starting
with an inner spring stiffness being too low the
antenna may start to build out peaks or to twist.
Twisting means that in one iteration step some
nodes of the antenna pass each other. Here, higher
stiffness between the effected nodes are practical.
Otherwise for spring stiffness being too high the
flexibility of the antenna is restricted, such that
the equilibrium configuration eventually still in-
tersects the path of an obstacle. In the latter case
it is necessary to recheck the collision risk and if
need is to scale down the inner spring stiffness for
all intervals.

In order to detect all possible equilibrium con-
figurations of the antenna in the potential field it
is also useful to turn off the internal spring forces
at certain nodes temporally.

4 Simulation Example
As already mentioned, the number of equilibrium
solutions of the antenna is not restricted to a sin-
gle one. However, for locomotion a desired path
has to be selected with respect to a relevant cri-
terion depending on the application. For energy

critical systems the path that can be followed with
minimal energy effort

E(u, t) =
∫ tend

tstart

u(τ)dτ (15)

may be chosen, where u denotes the control vector
keeping the mobile unit on the prescribed path.
For devices traveling at high velocities the lateral
acceleration

an = v2(t)κ, (16)

where κ denotes the curvature, experienced on the
considered path, may be a suitable selection cri-
terion.

Fig. 7 illustrates the results of a sample simula-
tion scenario. A mobile unit moves at a constant
velocity of 30m

s on a rectangular 7m wide corri-
dor. At time t0 a resting obstacle appears 65m
ahead. A second oncoming obstacle travels from
an initial distance of 55m at a speed of 20m

s . The
influence of the borders of the corridor as well as
of the obstacles is modeled by logarithmic poten-
tials. The potential V

Oj

i of obstacle Oj evaluated
at node Pi is defined as

V
Oj

i = −kOj ln(‖ri − r
Oj

i ‖ − dj

2
), (17)

where kOj and dj denote the scaling factor of the
obstacle and its safety circle, respectively. To eval-
uate the external potential of the borders of the
corridor at node Pi reference points at the borders,
given by the vector r

Bl,r

i are assigned to each node
Pi. The potential of the borders V

Bl,r

i evaluated
at node Pi is determined separately for the left
and the right border by

V
Bl,r

i = −kBl,r ln(‖ri − r
Bl,r

i ‖). (18)

In Fig. 7 the positions of the obstacles sym-
bolized by their safety circles as well as the posi-
tion of the mobile unit are depicted over the entire
planned time period [t0+ , tN ].



Fig. 7: Spatial-temporal representation of the
simulation result

Therefore, cylinders are formed with the time be-
ing the third dimension. Possible collision points
resulting from the initial configuration of the an-
tenna are indicated. The path planning parame-
ters are summarized in Tab. 1.

The evasion path, shown in Fig. 7, was cal-
culated by use of the modified Newton-Raphson
method in 45 iteration steps with an accuracy of
ε = 0.05. The stiffness of the internal springs re-
mained unchanged over the iteration. In the final
configuration the spectral radius was evaluated to
k = 0.4712 underlining the good conditioning of
the procedure and therefore a posteriori approving
convergence ([7], p.300-311, [6], p.158-162).

Tab. 1: Path planning parameters
Symbol Description Value Unit
ki Initial internal spring stiff-

ness of all springsi
10000000 [-]

kBr Force scaling factor of the
right border

1/3 [-]

kBl Force scaling factor of the
left border

1 [-]

kO1 Force scaling factor, oncom-
ing obstacle

1 [-]

kO2 Force scaling factor, resting
obstacle

1 [-]

d1 Safety diameter, oncoming
obstacle

4 [m]

d2 Safety diameter, resting ob-
stacle

2 [m]

li Initial length of all internal
springsi

0.404 [m]

n Number of nodes 100 [-]

5 Conclusion
A model of elastically coupled nodes, biologically
inspired by antennae of insects, was presented as
an approach to path planning problems of au-
tonomous devices. To determine the solution path
given by an interpolation of the equilibrium posi-
tions of the nodes, exposed to external potentials,
the Newton-Raphson method was modified. The
modifications force the iteration procedure to stay
inside valid areas of the environment and avail
convergence because the nodes are kept in heuris-
tically known areas including the equilibrium posi-
tions. The application of the method was demon-
strated in a simulation example.
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