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Abstract: - Recently the attention has to a large extent been paid to the problem of designing perfect 
reconstruction (PR) filter banks. However, filter banks are most often used in applications where small errors 
are inevitable and allowed. Imposing PR on a filter bank is then an unnecessarily severe restriction, which may 
lead to a higher arithmetic complexity than is actually required to meet the specification at hand. To reduce the 
complexity one should therefore use near-PR filter banks. In this paper, essential features of the recently 
introduced frequency-response masking (FRM) approach as a means of generating narrow transition band 
linear-phase FIR filters with a low arithmetic complexity are explained and demonstrated using simulation. By 
decomposing the overall transfer function into its polyphase form, all filtering in the interpolators and 
decimators can be performed at the lowest of the two sampling rates involved resulting in a low overall 
complexity. Simulated results show the difference between the FIR filter designed using FRM approach and 
traditional FIR filter of same order. The ripple contents of the pass-band of the filter designed using FRM 
approach are more as compare to the traditional one. 
  
Key-Words: - Perfect Reconstruction (PR) filters, frequency-response masking (FRM),FIR filters, 
Interpolation and decimation. 
 
1   Introduction 

There exist many applications in modern 
signal processing where it is advantageous to 
separate a signal into different frequency ranges 
called sub-bands, which is his is achieved by filters.  
One goal in filter design is to have good sub-band 
frequency separation (i.e., good "frequency 
selectivity").  Second is to have good reconstruction 
when the sub-band processing is lossless. The first 
goal is driven by the assumption that the sub-band 
processing works best when it is given access to 
cleanly separated sub-band signals, while the second 
goal is motivated by the idea that the sub-band 
filtering should not limit the reconstruction 
performance when the sub-band processing (e.g., the 
coding/decoding is lossless or nealy lossless. 

Finite-impulse response (FIR) filters are 
often preferred to infinite-length impulse response 
(IIR) filters for several reasons [1]. One main reason 
being that they can be made to have an exact linear 
phase. However, the order and complexity of FIR 
filters are very high when the transition bandwidth is 
narrow [2-4]. 

This paper deals with same FIR filters, 
which are used with Interpolation and decimation. 
FIR filter design is of major problem in the field of 
signal and image processing. This paper would 
explain the simulated results for the designing of 
FIR filters, which are based on the frequency-
response masking (FRM) approach. 

 By using the FRM approach it is possible to 
obtain FIR filters requiring few multipliers even 
when the transition band is narrow. Further, by 
decomposing the overall transfer function into its 
polyphase form, all filtering in the proposed 
interpolators and decimators can be performed at the 
lowest of the two sampling rates involved resulting 
in a low overall complexity.  

In this paper, we are concerned with 
structures for interpolation and decimation by 
integer factors two.  We would first explain the 
interpolation and decimation by a factor of two in 
section 2, by factor of M in section 3 and FRM 
approach in section 4. Finally, simulated FIR filter 
design results are explained in section 5. 
 
2. Interpolation and decimation by a 
factor of two. 
 

This approach, which is recently proposed in 
[7] by Håkan Johansson, describes interpolation and 
decimation by a factor of two. The polyphase 
representation is in this case given by 

 
Where, H0 (z) and H1 (z) are referred to as 

the polyphase components. The corresponding 
polyphase interpolator and decimator structures are 
shown in Figs. 1 and 2, respectively. The filtering is 
performed at the lowest sampling rate, which results 



in a low arithmetic complexity (i.e., few 
multiplications and additions per sample are 
required). Interpolators and decimators for sampling 
rate conversion by a factor of two are also useful in 
cases where the conversion factor is larger than two 
since it often is advantageous to do the overall 
conversion in several steps, where in each step a 
conversion by a small factor is performed. In many 
applications, it is desired to use FIR filters; one main 
reason being that they can be made to have an exact 
linear phase. 

 

 

Figure 1: Polyphase interpolator structure 

 

 

Figure 2:Polyphase decimator structure 

3. Interpolation and decimation by a 
factor of M. 

This approach, which is proposed by Håkan 
Johansson in [9], is based on Interpolation and 
decimation by a factor of two (explained in section 
2). The polyphase representation is in this case given 
by  

 
 Where, Hm(z) are referred to as the 
polyphase components. The corresponding 
polyphase interpolator and decimator structures are 
shown in Figs 3 and 4, respectively. The filtering is 
performed at the lowest sampling rate, which results 
in a low arithmetic complexity (i.e., few 

multiplications and additions per sample are 
required).  
 

 

Figure 3 : Polyphase interpolator structure 

 

 

Figure 4: Polyphase decimator structure 

In many applications, it is desired to use FIR 
filters; one main reason is that they can be made to 
have a linear phase response. However, the order 
and complexity of FIR filters are very high when the 
transition band is narrow [4]–[6]. 
4. Frequency-Response masking 

Approach 
In the frequency-response masking approach 

[9][10], the transfer function of the overall  filter is 
expressed as 

 
Where L is some positive integer. The filters G(z) 
and Gc(z) work as a model filter and a 
complementary model filter, respectively. The filters 
F0 (z) and F1 (z)  work as masking filters which 
extract one or several passbands of the periodic 
model filter G(zL) and periodic complementary 
model filter Gc(zL). In the lowpass case, typical 
magnitude responses for the model, masking, and 
overall filters are as shown in Fig. 5 where k is a 
positive integer. The transition band of H(z) can be 
selected to be provided by one of the transition 
bands of either G(zL) or Gc (zL). We refer to these 



two different cases as Case 1 and Case 2, 
respectively. And are shown in figure 5 and figure 6 
respectively.  
 Further, we let ωc T, ωs T, δc ,and δs denote the 
passband edge, stopband edge, passband ripple, and 
stopband ripple, respectively, for the overall filter 
H(z). For the model and masking filters G(z), G c 
(z), F 0 (z), and F 1 (z), additional superscripts (G), 
(G c ), (F 0 ), and (F 1 ), respectively, are included 
in the corresponding ripples and edges. 
 

 

Figure 5: Frequency Response Masking (Case 1) 

 

Figure 6: Frequency Response Masking (Case 2) 

The complete system of frequency response masking 
approach is shown in the figure 7. 

 

Figure 7: Structure used in the FRM approach 

In [8] it has been a class of Mth-band linear-phase 
FIR filters synthesized using the FRM approach has 
been introduced, which makes it possible to obtain 
Mth-band FIR filters requiring few arithmetic 
operations even when the transition band is narrow. 
An approach for synthesizing two-channel 
maximally decimated FIR filter banks utilizing the 
FRM technique is proposed in[10]. Which compared 
to conventional quadrature-mirror filter (QMF) 
banks has lower significantly the overall arithmetic 
complexity at the expense of a somewhat increased 
overall filter bank delay in applications demanding 
narrow transition bands. 
5. Design example 

We tested the FRM approach using several 
examples one of which is demonstrated using figures 
(8-15) obtained using Matlab. Fig 8 and 9 shows 
model filter and complementary model filter 
respectively and figure 10 and figure 11 shows their 
periodic counter. Figure 12 and figure 13 shows 
masking filters F0 (z) and F1 (z) respectively. 
Finally, the total overall filter achieved using FRM 
approach is shown in the figure 14. For comparison 
purpose frequency response and phase response of 
traditional FIR filter is shown in the figure 15. 

6. Conclusion  
This paper has discussed new FRM FIR filter 
structures for interpolation and decimation by a 
factor of two and then by an integer factor.  The 
order will be higher for the FRM filters, since it is 
not possible to beat the optimum filters in this 
respect. However, the benefit of FRM FIR filters is 
that the number of arithmetic operations required 
can be substantially smaller, because of the zero-
valued impulse response values of the periodic 
model filter and at the same time a narrow transition 
band. FRM approach is demonstrated using 
simulation in MATLAB and results are presented. 
Simulated results have clearly shown the difference 
between the FIR filter designed using FRM 
approach and traditional FIR filter of same order, 
which being the increased ripple contents of the 
pass-band of the filter designed using FRM 
approach.



 
Figure 8: G(z) a model filter 

 
Figure 9: Gc(z) a complementary model filter 

 
Figure 10: Periodic model filter G(zL) 

 
Figure 11: Periodic complementary model filter Gc(zL) 



 
Figure 12: F0(z) a masking filter 

 
Figure 13: F1(z) a masking filter 

 
Figure 14: Total filter H(z) 

 
Figure 15: Traditional FIR filter of same order 
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