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Abstract: - We demonstrate that pulse-coupled neural networks can be regarded in terms of classical logic 
operations. This opens the possibility that algorithms used for adapting logic circuits might be employed for 
adaptation in pulse-coupled neural networks. 
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1   Introduction 
Pulse-coupled neural networks (PCCN) have 
numerous applications in image processing [1], and in 
clustering and classification [2]. Treatments of PCNN 
have focused on their synchronous firing character 
and how this can be exploited in image processing. 
Little has been reported on adaptation algorithms for 
PCNN. Possibly the primary difficulty here lies with 
their recurrent network structure combined with their 
pulse-mode, bursting behavior that would seem to 
make existing adaptation algorithms inapplicable to 
PCNN. Yet, the growing number of small, easily 
implemented pulse-mode neurons [3]-[5] makes the 
adaptation problem for PCNN rather an urgent one. 
The question is: Where does one begin? 
 
From their earliest conception, neural networks have 
had a special relation to logic circuits. The 
McCulloch-Pitts model in the hands of von Neuman 
produced the computer. Classification and other image 
processing tasks are describable in logic terms in a 
well-known manner [6], e.g. the cluster classification 
problem illustrated in Figure 1. Recently methods 
have been reported for making logic circuits adaptive. 
Martinez introduced the method of Adaptive Self-
Organizing Concurrent Systems for adaptation of 
logic circuits based on a dynamic programmable logic 
scheme [7]. Wells and Brennan developed a Quine-
McCluskey-like algorithm for adaptation based on a 
content-addressable parallel processor [8]. If an 
analogy is drawn between PCNN and logic functions, 

then approaches such as these may contain a 
framework for PCNN. 
 
2   PCNN Logic Circuits 
We show by demonstration that such a logic analogy 
can be drawn between PCNN and logic functions. We 
employ a previously reported pulse-mode neuron [4] 
with multiple synaptic inputs for charging and/or 
discharging a capacitive storage node. Each synaptic 
input can be programmed independently as excitatory 
or inhibitory through binary synaptic weights. The 
storage node is applied to Schmitt triggers to control a 
pulse generator circuit. The programmable weights 
give the neuron the capability of being made adaptive. 
 
Consider the three-way classification problem 
illustrated in Figure 1. This problem is solved by 
dividing the input space into subregions according to 
the given line equations. For this simple problem the 
solution is easily obtainable by hand according to 
standard methods [6]. The logic function is given by 
Table 1 and a PCNN implementing this function is 
shown in Figure 2. Integer inputs X and Y are 
represented using two bits (X1, X0) and (Y1, Y0). The 
input layer contains a neuron for each boundary line 
used to partition the input space. The output layer 
contains one neuron for each classification. 
 
The logic equations are given in Figure 1, where Nx 
denotes a specific subregion and the corresponding 
neuron from the input layer; an overbar denotes 
logical negation. It is easy to correlate these equations 



with the excitatory and inhibitory inputs in Figure 2. 
Two implementation details are worth note. To 
perform the logical inversion of the output of neuron 3 
at neuron 10, an excitatory input ("High") is provided 
to N10. This input provides a constant weak excitation 
to N10 which, when combined with a weak inhibitory 
input from N3, realizes the complement of the 
boundary line in Figure 1. If N7 and N3 are not active 
(firing), the "High" input causes N10 to begin firing. If 
N7 is inactive but N3 is firing, the inhibition it 
supplies prevents N10 from firing. Finally, the 
excitatory connection from N7 to N10 is weighted 
such that if N3 and N7 are both firing then N7 
dominates the inhibition from N3 and N10 begins 
firing. 
 
The second detail is the ease with which standard 
logic connectives are implemented by the neurons. An 
AND function is the summation of excitatory inputs 
with small weight values. An OR uses large weight 
values such that any input excites firing. The function 
A AND not-B uses a large inhibitory weight that 
dominates if B is firing and a medium excitatory 
weight such that A in the absence of B can produce 
firing. Other logic connectives are easy to obtain with 
proper choice of weights. 
 
Simulation results for each of the input combinations 
from Table 1 are illustrated in Figure 3. The circuits 
were simulated using Pspice for a 1.2 micron process. 
Burst firing by a neuron is analogous to a logic "1" 
output. In every case, the response of the network 
correctly matches the logic in Table 1. 
 
4   Conclusion 
This simple illustration demonstrates that an analogy 
can be made between PCNN functions and logic 
equations. This opens the door for the application of 
the mathematical theory of switching circuits to 
PCNN. It also suggests strongly that methods 
developed by researches into adaptive logic circuits 
might equally well apply to adaptation algorithms for 
PCNN. Of course, the issues involved with adaptation 
in recurrent networks remain formidable. We believe 
that the "logic paradigm" presents a new way of 
looking at adaptation in neural networks. 
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Table 1 Truth table showing the input stimulus and 
desired neuron outputs for the network in Fig. 2. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Distribution of patterns and 
the formation of subregions through 
Boolean combination of linear 
classifiers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Each neuron in the input 
layer represents one linear classifier. 
Neurons in the hidden and output 
layer form Boolean combinations to 
produce the final cluster outputs. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Simulation results for a 1.2 
micron CMOS process. Each input 
pattern from Table 1 was applied for 
250 ns. Waveforms correspond to the 
output layer of Fig. 2 and indicate 
cluster membership. 
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