
Towards a Paradigm for Adaptation
in Pulse-Coupled Neural Networks

SAI R.J.R. KONDURI, JAMES F. FRENZEL AND RICHARD B. WELLS

MRC Institute
University of Idaho

POB 441024, Moscow, ID 83844-1024
USA

Abstract: - We demonstrate that pulse-coupled neural networks can be regarded in terms of classical logic
operations. This opens the possibility that algorithms used for adapting logic circuits might be employed for
adaptation in pulse-coupled neural networks.

Key-Words: - neural networks, pulse-coupled, VLSI, classification

1 Introduction
Pulse-coupled neural networks (PCCN) have
numerous applications in image processing [1], and in
clustering and classification [2]. Treatments of PCNN
have focused on their synchronous firing character
and how this can be exploited in image processing.
Little has been reported on adaptation algorithms for
PCNN. Possibly the primary difficulty here lies with
their recurrent network structure combined with their
pulse-mode, bursting behavior that would seem to
make existing adaptation algorithms inapplicable to
PCNN. Yet, the growing number of small, easily
implemented pulse-mode neurons [3]-[5] makes the
adaptation problem for PCNN rather an urgent one.
The question is: Where does one begin?

From their earliest conception, neural networks have
had a special relation to logic circuits. The
McCulloch-Pitts model in the hands of von Neuman
produced the computer. Classification and other image
processing tasks are describable in logic terms in a
well-known manner [6], e.g. the cluster classification
problem illustrated in Figure 1. Recently methods
have been reported for making logic circuits adaptive.
Martinez introduced the method of Adaptive Self-
Organizing Concurrent Systems for adaptation of
logic circuits based on a dynamic programmable logic
scheme [7]. Wells and Brennan developed a Quine-
McCluskey-like algorithm for adaptation based on a
content-addressable parallel processor [8]. If an
analogy is drawn between PCNN and logic functions,

then approaches such as these may contain a
framework for PCNN.

2 PCNN Logic Circuits
We show by demonstration that such a logic analogy
can be drawn between PCNN and logic functions. We
employ a previously reported pulse-mode neuron [4]
with multiple synaptic inputs for charging and/or
discharging a capacitive storage node. Each synaptic
input can be programmed independently as excitatory
or inhibitory through binary synaptic weights. The
storage node is applied to Schmitt triggers to control a
pulse generator circuit. The programmable weights
give the neuron the capability of being made adaptive.

Consider the three-way classification problem
illustrated in Figure 1. This problem is solved by
dividing the input space into subregions according to
the given line equations. For this simple problem the
solution is easily obtainable by hand according to
standard methods [6]. The logic function is given by
Table 1 and a PCNN implementing this function is
shown in Figure 2. Integer inputs X and Y are
represented using two bits (X1, X0) and (Y1, Y0). The
input layer contains a neuron for each boundary line
used to partition the input space. The output layer
contains one neuron for each classification.

The logic equations are given in Figure 1, where Nx
denotes a specific subregion and the corresponding
neuron from the input layer; an overbar denotes
logical negation. It is easy to correlate these equations

with the excitatory and inhibitory inputs in Figure 2.
Two implementation details are worth note. To
perform the logical inversion of the output of neuron 3
at neuron 10, an excitatory input ("High") is provided
to N10. This input provides a constant weak excitation
to N10 which, when combined with a weak inhibitory
input from N3, realizes the complement of the
boundary line in Figure 1. If N7 and N3 are not active
(firing), the "High" input causes N10 to begin firing. If
N7 is inactive but N3 is firing, the inhibition it
supplies prevents N10 from firing. Finally, the
excitatory connection from N7 to N10 is weighted
such that if N3 and N7 are both firing then N7
dominates the inhibition from N3 and N10 begins
firing.

The second detail is the ease with which standard
logic connectives are implemented by the neurons. An
AND function is the summation of excitatory inputs
with small weight values. An OR uses large weight
values such that any input excites firing. The function
A AND not-B uses a large inhibitory weight that
dominates if B is firing and a medium excitatory
weight such that A in the absence of B can produce
firing. Other logic connectives are easy to obtain with
proper choice of weights.

Simulation results for each of the input combinations
from Table 1 are illustrated in Figure 3. The circuits
were simulated using Pspice for a 1.2 micron process.
Burst firing by a neuron is analogous to a logic "1"
output. In every case, the response of the network
correctly matches the logic in Table 1.

4 Conclusion
This simple illustration demonstrates that an analogy
can be made between PCNN functions and logic
equations. This opens the door for the application of
the mathematical theory of switching circuits to
PCNN. It also suggests strongly that methods
developed by researches into adaptive logic circuits
might equally well apply to adaptation algorithms for
PCNN. Of course, the issues involved with adaptation
in recurrent networks remain formidable. We believe
that the "logic paradigm" presents a new way of
looking at adaptation in neural networks.

References:
[1] Johnson, J.L., and Padgett, M.L., ‘PCNN

models and applications’, IEEE Transactions on

Neural Networks, May 1999, Vol. 10, no. 3, pp.
480–498.

[2] Garcia-Lamont, J., Flores-Nava, L.M., GOMEZ-
Castaneda, F., and Moreno-Cadenas, J.A., ‘CMOS
analog integrated circuit for fuzzy c-means
clustering’, Proc. 5th Biannual World Automation
Congress, 2002, Vol. 13, pp. 462–467.

[3] Ota, Y., and Wilamowski, B.M., ‘CMOS

architecture of synchronous pulse-coupled neural
network and its application to image processing’,
(Proc. 26th Annual Conference of the IEEE
Industrial Electronics Society, October 2000,
Nagoya, Japan, pp. 1213–1218.

[4] Liu, B., and Frenzel, J.F., ‘A CMOS neuron for

VLSI circuit implementation of pulsed neural
networks’, Proc. 28th Annual Conference of the
IEEE Industrial Electronics Society, November
2002, Seville, Spain, pp. 3182–3185.

[5] Barnes, B.C., Wells, R.B., and Frenzel, J.F.,

‘PWM characteristics of a capacitor-free integrate-
and-fire biomimic neuron’, IEE Electronic Letters,
Vol. 39, Issue 16, pp. 1191-1193, August 2003.

[6] Widrow, B., and Lehr, M., ‘Thirty years of

adaptive neural networks: perceptron, adaline, and
backpropagation’, Proc. IEEE, vol. 78, no. 9, pp.
1415-1442, 1990.

[7] Maretinez, T.R., ‘Models of parallel adaptive

logic’, Proc. on Systems, Man, and Cybernetics
Conf., pp. 290-296, 1987.

[8] Brennan, A., ‘Binary Connectionist Networks’,

M.S. thesis, University of Idaho, Aug. 1998.

Table 1 Truth table showing the input stimulus and
desired neuron outputs for the network in Fig. 2.

Figure 1 Distribution of patterns and
the formation of subregions through
Boolean combination of linear
classifiers.

Figure 2 Each neuron in the input
layer represents one linear classifier.
Neurons in the hidden and output
layer form Boolean combinations to
produce the final cluster outputs.

Figure 3 Simulation results for a 1.2
micron CMOS process. Each input
pattern from Table 1 was applied for
250 ns. Waveforms correspond to the
output layer of Fig. 2 and indicate
cluster membership.

5V

0V

5V

0V

5V

0V

V(vo8)

V(vo9)

Time

0s

0.5us

1.0us

1.5us

2.0us

2.5us

3.0us

3.5us

4.0us
 V(vo10)

